© 1997 XYCOM, INC.
Printed in the United States of America

Windows NT

Board Support
Package

P/N 74984-010A

XYCOM

750 North Maple Road
Saline, Michigan 48176-1292
734-429-4971 (phone)
734-429-1010 (fax)

Xycom Revision Record

Revision Description Date
A Manual Released 9/97
Trademark Information

Brand or product names are registered trademarks of their respective owners.
Windows is a registered trademark of Microsoft Corp. in the United States and other countries.

Copyright Information
This document is copyrighted by Xycom Incorporated (Xycom) and shall not be reproduced or copied
without expressed written authorization from Xycom.

The information contained within this document is subject to change without notice. Xycom does not
guarantee the accuracy of the information and makes no commitment toward keeping it up to date.

-

[Xycom|

Xycom

Technical Publications Department
750 North Maple Road

Saline, Ml 48176-1292
734-429-4971 (phone)
734-429-1010 (fax)

Table of Contents

Chapter 1 - Introduction

OVEBIVIBW ..cii it e ittt e e e e st re e s e et et te et e e e s e bt teaeeases s bbb an et esessasabeersesesasesasseseaeetessanassntee et aseeesseseennennsnnne 1-1
BOards SUPPOMEAcoviiiiiiiiiiii it et st e b r e e st e e eanee e reeesaaes 1-2
VMEDbuUs Manager APPlICALION........oviiiii et rer s ettt sera e snaee s 1-2
o E =T I oo =T o o HOO PO OO ORRTRTRN 1-3
Chapter 2 — VMEDUS SUPPOTt ...ttt enrssneses e sssssssesssess e sesesesssesssssssnsanes 241
[1a) (e o [UTe3 o o S PR TPRTOPRIPPON 2-1
VIMEDUS MasSter INtEITACE .. .cooiiiei ittt e e e beee e s eeeeesbebbea s s enenneeeenennnesnsnaneeess 2-1
VIMEDUS SIaVE INtBITACE .. oottt bbbt et a e eeeeebebebaeebeee e be s enennnene s aeseeeas 2-1
INEEITUDPES ..ot e e st eaae e s aaraeeeans 2-2
(B L=3Y ot B Y- RO PPPRUPUSR 2-2
XVMEA.DLLIXVME.LIBIXVMELH ...ttt ettt e e s e e s st e e et enaeesenasan 2-2
XVME.DLL/XVMEISR.DLL oottt tes ettt e e e st s st s s sasresesssanneneeenanneeessesasenes 2-3
LIDIArY ROULIMES «...ee ettt ettt sb et st e st s atsabe s n e sr e e satas sabe e sreesbenen 2-3
L LD 171 | T Yo TP PR TSR 2-4
AUXINTDISEDIE ...t e ettt r e e rt e et et e et ee et 2-5
AUXINTENGDIE ... 2-5
AUXINEFTEE ..o iiiiitie ettt eree s e e e e e e e eee e s e e et e et eee e s eressresba s b s eesretbnbasn e sesrannnn e eeenentnaeens 2-5

F LU D (1 R 1ATAT £ L1 SRR PUPURRURRTTTN 2-6

Lo [T 2\ ol PR UUPUPPRRRRION 2-6
To F= T - PP RUPPRRT 2-7
e F= .Y [1S P O PTRPRSPRTTON 2-7
Lo =1 (=T Lo [TR R PRRURRTOONt 2-8
ARMWY ..ottt ettt e e e sttt e e e ste e e e steeaeesateeeesatereterneeesesaresssasbeeesssasenesesetbatenseaneneesennnrenas 2-8
QAU e eetirttti b ba e a b b e bas s aeeeserereseeseeeeeaes et ane s et et easeseseresastaseenteeateteeeresetenean e ennnnn 2-9
[=T=To £ T R TRRRTTRTNE 2-9
(01 n CT=To k< TR ORI 2-9
{01 a1C 1o [72N PR TPRRURUPRT 2-10
(o)A 1 (= S PP URRR TR 2-10
(o) L 10X - T OPRRRUTPRTURIOE 2-10
Lo T 1=3 7R TOPRRRRORORRTRROE 2-10
UNIVIREAASoeiveeiieieieiiierete et ee e rte et re e e eaeeteteaeeaeee et s teestetetetetetetstetetetsseetstetesseeeeanereesasseeasssseneenennanens 2-11
TV S =TT k< T PP PR PO RTTRT 2-11
(U YAV S L=7=To I USRI 2-11
(TR TAYATAY 1= < S PO 2-12
T TYATAY L T3 T PO 2-12
(BN AT (=X 72 RTRRRTRTRTRITN 2-12
(V20 1= X1 (oo PP PR 2-13

A 200 1= =T TR 2-14
VIMIBIMOVE ... ettt ee ettt et s e e s e e e e e ee s e st eee e st eea b s bt sseseatetababasa e sesesensbabaansesesennnbasntsernnnnnnnnes 2-14
V201 121 (ST= Lo [RO 2-15

Windows NT Manual

A et l= 31 L U TR 2-16
A 0 L=) AL 1= OO TR 2-17
VITIEINEALIOC o tvee ittt t e e e e et eieree s e e e e et e ta b e reeeeraeeeaaetatireteeeeaee s e bbb aesesessesnnasnseeesenanntansarssestannnernns 2-18
A 0L 1 =] o] (= RN 2-19
110 0= 011 =T g =1 o3 L= TP 2-19
VITIEINEFTEE oeeeeieee ettt ettt e s sttt et e s e s e e teresesssesasbeetaesssasbarebesesesssasassbesensaeessssanbsbbenrereenens 2-20
00 =) 21 (C 1= 8 = £ L= DU PSPPSR 2-20
AV 00 1=1 £ 1A"A 2= 1L ST SO SUO PR STRR 2-21
AV 00 =T 1A TA 2= 1 = U UP TR 2-22
3 g o g 0o Yo L= 1= FUUTT U 2-23

Chapter 3 - VMEbus Manager

1Yo T I8 T3 1] R PP 3-1
1Y T L1 T V1= o T I PP PR PPRRPPRPORPPRPTO 3-2
MONItOr=->XVMESTALeiitieeeeie e e 3-2
MOMIEOT-SVIME IDS ...ttt s e eree e s bbb bbbt b bbb st b e bt et emr e nr e neenee e 3-2
PrODE IMEBNUeoviieieeeiir ettt ettt st h et e s et s s e n e n e n e s r e e e e e ree nar e e 3-3
PrOBE->VIMEPIODE.eiiii ittt s 3-3
Probe->DAPIODE ..ottt s 3-3
Probe->Lock/UNIOCK VIMIEDUScocviiiiiiiiiie ettt st 3-4
IREEITUPES IMBNU ..ot ettt e ae e et s e r s re s s s ae e sb et 3-4
Interrutps->Wait for INterrupt ..o 3-4
Interrupts->Generate VME INterrupt..........coooiiiiviiiiiiii i, 3-5
Interrupts->INterrupt SOUICEScccviiiiiiiiii e 3-6
CONFIGUI IMEBNU ..ottt bbbt sb e n bbb a e e bbb e be s 3-6
Configure->Master INEIaCE ... 3-7
Configure->Slave INtErfacec.coooiviiiiiiiii 3-7
Configure->Block Hardware ... 3-8
Configure->Interrupt SUPPOIT ..ot 3-8
Configure->PCl Memory EXCIUSIONSccooiiviiiiiiiiiie e 3-9
Chapter 4 - XVMEstat
15} ol (8 w31 1o) o T OO TRV PP TR 4-1
XVMESEEE WINAOW ..ottt ia s st eaa s s a s s a s s b e e s sab b s ba e s s sanne e 4-1
CONFIGUIE MBINUenieier e bbb bbbt b e s e be b ebe s e 4-2
CONFIGUIB-STIMET .o e b et b e e b e et e b e b s aeea s eb s 4-2
CONTIGUIB-STHIE ...ttt bbb ae bbb e b b 4-2
RV AT A Y=Y o 1 OO 4-3
(YT 1= Yo T=Y - OO P PRSP PPN PUSTRTON 4-3
VIEW=>MaStEr INEITACE . .ovvieieiiiiieie e e e e s 4-4
VIEW=>S18VE INTEITACE .. uviivriiie ittt sttt st r e er e s e e r e sr e e reeenbe s sane e 4-4
VIBW= INEEITUDES L.ttt e e e sn e s 4-5
2T Lol (=T 1 OO OO 4-5

Chapter 5 - VMEprobe

[T oo [U1e) (1] TP TP P TP O OTRTTO PP 5-1
CONTIGUIE MENU ..ot e bbb e e e et e b e b e e st eh b sas st st sa b ebe s 5-2
CoNfIQUrE-PREEU ...t s s 5-2
CONFIGUIB-SWVIIE ..ottt bbb s b s e b sae bbb et 5-3
L07o alile 0] =Tl 1 o= TSP U PP RRPROPR 5-5

Table of Contents

CONFIGUIB-STIIE .ttt st 5-5
RV T 1= LU TS 5-5
A 3T o L U RPN 5-6
AV TN T S o L TN 5-6
VT U U RERUUTPRSNE 5-7
REAT IMIBIU oevveis e eeeeeeiere e e e et e et eteettastaa st raaseeeea et e reta s e s erreeeata bbbt e taseteaenetasa e s te s eeabase e s aaeanetnaneesrasananns 5-7
AT e C= X\ = 10 PO O P PO PO 5-7
e Yo 1t = 11U IO R 5-8
Lo o oo =Y o o WSOt 5-8
o o Fo = || P TOUPTPOT ST UUPPURPRN 5-10
Chapter 6 - DAprobe
123 (5o o B[t o) n IO OO PP PP PPN 6-1
(07 g ile 0Ly =30 1V 1=1 U [P O PO PPP P 6-2
CONFIGUIE->REEM ...ttt bbbt 6-2
CONFIGUIB=SWWIIEE ...t a e et 6-3
CONFIGUIE=STIMIET ...ttt h et b e s e b b b e ket st a e r et 6-4
CONAIGUIB-STIIE ...cv et 6-5
WIBW MBIU 1ovveeete s eeeeeeeeeeresesesesesssssesssese s sas s snseat s ts s s tssnsntssssesssbsesens s eeeeeese e s e s e sebemessbe b amssnse et saas e anseeeaenas 6-5
V=N L TSP PP OPUPR O PPTPPY 6-5
RV =TT o T < T SRR 6-6
IBW= D32 ottt e ra e n e e e s e e taaeaaraenens 6-6
=T e Y, = 10 T U U U PSP TOPPPTPPT 6-6
LAY et =31 =12 O U RPPPON 6-7
R To Lol 1YL= 10 IO ET OO 6-7
0008 S BaAICN ..ot e et r e a e e e e aaaaeraenees 6-7
e o [| U PP PP PPPP 6-9

Appendix A - Universe Chip for VMEbus Interface

[Y e el u[o) o [P RO TR OO P A-1
Universe | (CA9TC042) EITata......ccccoiiiiiiiiiiiiiin ittt bbb A-1
VME Master Fair Mode Failureoooveiiiiiie i A-1
Y A T SRR = aTT= 1 (o) o O A-1
Local Slave Channel Read Modify Write CYCIES ... A-1
VME Interrupt HaNAINGcoviieriiiii e s A-2
Coupled Window Timer and Release-On-Request ... A-2

Chapter 1 — Introduction

Overview

The Windows NT™ Board Support Package (BSP) is a comprehensive package that
simplifies the process of designing VMEbus application programs for Xycom VME
PC/AT® hardware in a Microsoft® Windows NT™ 4.0 or greater environment.

The Windows NT BSP has the following components:

¢ Installation program

e Application Programming Interface (API) used to develop VMEbus applications
e Operating system (OS) specific VMEbus device driver

e 32-bit Dynamic Link Libraries (DLLs)

e VMEDbus Manager (VMEman) application

o XVME Status (XVMEstat) application

e VMEbus probe (VMEprobe) application

e Dual-access probe (DAprobe) application

These components are distributed on a 3.5" diskette provided in the kit.

The installation program is a Windows application that installs the BSP for you.
Installation includes copying appropriate files to a hard disk and modifying the
system registry. This program copies the VMEman, XVMEstat, VMEprobe, and
DAprobe applications to the hard disk.

A device driver is needed to manage the XVME-CPU VMEbus interface. This driver
contains the following functionality: VMEDbus accesses, dual-access memory
allocation and accesses, VMEDbus interrupt generation, and VMEbus interrupt
handling.

The DLLs provide a 32-bit, high-level interface to the device driver. They contain
routines that simplify development of Win32™compatible application programs to
run under Microsoft Windows NT on your Xycom VMEbus PC/AT products.

11

Windows NT Manual

Boards Supported
The following VMEbus boards are supported in the BSP:

VMEbus Boards Supported by the BSP

PC/AT Processors | Type of Support

XVME-655 100, 133, 166, 200 or 233 MHz Pentium processor; 8 to 64
Mbytes of Enhanced Data Out (EDO) DRAM; Super VGA
graphics controller; two serial, one parallel port; floppy and IDE
hard disk controllers.

XVME-654 133 MHz AM5x86” processor; 4 to 32 Mbytes of DRAM, Super

VGA graphics controller; two serial, one parallel port; floppy and
IDE hard disk controllers.

VMEbus Manager Application

Xycom’s VMEbus Manager (VMEMAN.EXE) is a Win32 application program
that gives you a simple mechanism for accessing and monitoring the VMEbus on
Xycom VMEbus PC/AT processors. Three stand-alone applications have been
developed to support the VMEbus Manager so you can test your VMEbus system
configuration easily and efficiently. Those applications are listed in the table below.

VMEbus Manager Applications

Application Name Description

XVMEstat Displays and monitors the status of VMEbus interrupts and
VMEbus control and status registers in graphical form.

VMEprobe Reads from and writes to VMEbus memory.

Daprobe Reads from and writes to dual-access memory.

Chapter 1 - Introduction

Install Program

The install program is a Windows-based program that is used to install the BSP.

This program copies the appropriate files from the distribution disk and makes the
necessary changes to the system registry which let the operating system know to
load the driver.

Follow the steps listed below to install the BSP onto a hard disk:

1.

2.
3.
4

Start Windows NT 4.0.
Insert the BSP distribution diskette into drive A or B.
Select Run from the Windows NT Start menu.

Type A:Setup or B: Setup, depending upon which drive the diskette was
inserted in, and click OK.

Follow the series of dialog prompts to complete the installation.

Chapter 2 — VMEbus Support

Introduction

Windows NT™ requires a device driver to manage the XVME-CPU VMEbus
interface. It’s responsibilities include:

e managing VMEbus master resources

¢ managing VMEDbus slave resources

e generating VMEDbus interrupts

¢ handling VMEDbus and auxiliary interrupts

Dynamic Link Libraries provide a 32-bit, high-level application programming
interface (API) to the driver. This interface is a comprehensive set of functions that
simplifies the development of VMEDbus application programs.

This chapter describes the API in detail as well as the VMEbus master interface,
VME-bus slave interface, and interrupt capability.

VMEbus Master Interface

Xycom’s VMEbus PC/AT processor modules, which contain a VMEbus master
interface, have one or more resources that can be configured to provide a “window”
to the VMEbus. The number of resources or “windows” is dependent on the
XVME-CPU module being used. At a minimum, each “window” is configured with
the VMEbus Address Space (A16, A24, A32), VMEbus base address, Program/Data
address modifier, and Supervisory/Non-Privileged address modifier. Depending on
which XVME-CPU module being used, other configurations such as VMEbus bound
address, maximum data width, and cycle type may be configured as well. The device
driver accepts VMEDbus access requests, through the provided API, from application
programs and configures a “window” accordingly to fulfill the request. The driver
also ensures the integrity of the configuration when receiving multiple requests from
different processes and/or threads.

VMEDbus Slave Interface

Xycom VMEbus PC/AT processor modules that contain a VMEbus slave interface
have one or more resources that can be configured to provide an external “window”
to the XVME-CPU local memory. The number of resources or “windows™ is
dependent on the XVME-CPU module being used and is configured in the BIOS
setup menus (see your XVME-CPU hardware manual for information on configuring
the VMEbus slave interface). The device driver allocates and reserves the specified
amount of local memory from Windows NT and maps it accordingly to the

241

Windows NT Manual

“windows." This memory must be allocated as physically contiguous and non-
pagable that can only be done during initialization of the device driver. The device
driver accepts access requests, through the provided API, to this local memory from
application programs.

Interrupts

All Xycom VMEbus PC/AT processor modules are capable of handling interrupts on
all seven VMEDbus interrupt levels. Some VMEbus PC/AT modules also contain a
VMEDbus interrupter circuit. This local interrupter allows the VMEbus PC/AT
processor module to generate a VMEDbus interrupt on any of the seven VMEbus
interrupt levels.

Device Driver
A device driver is required to access the XVME-CPU VMEbus control and status
registers and the VMEDbus. The functionality built into this driver includes
o VMEDbus accesses
¢ Dual-access memory allocation and accesses
¢ VMEDbus interrupt generation
e VMEbus interrupt handling

e General access to control registers

XVME4.DLL/XVME.LIB/XVME.H

The XVME4.DLL provides a 32-bit, high-level interface to the device driver.
Programming to the DLL requires users to include the XVME.H header file in their
C source code. This header file contains all of the function prototypes and VMEbus
constant definitions. Once the application has been developed and compiled, it must
be linked with the XVME.LIB file. This links the application to the DLL so that the
functions can be accessed at run-time.

Note

See the appropriate Windows programming manuals for more
information on building and linking to DLLs.

Chapter 2 - VMEbus Support

XVME.DLL/XVMEISR.DLL

These DLLs are provided to support applications which were developed using the
XVME-984/3 Windows 32-bit VMEbus Toolkit. Applications developed with
XVME-984/3 will run unmodified with the Windows NT BSP. However, to gain
improvements in both performance and functionality, it is necessary to reprogram
these applications to use the API documented in this manual.

Library Routines

The table below summarizes the library routines. See the remainder of this chapter

for detailed descriptions of the DLL library routines.

Windows NT Library Routines

Routine Description

auxintAlloc Allocates an auxiliary interrupt object.

auxintDisable Disables an auxiliary interrupt.

auxintEnable Enables an auxiliary interrupt.

auxintFree Frees up the auxiliary interrupt object allocated by the auxintAlloc.
auxintWait Waits for an auxiliary interrupt.

daAlloc Returns a user mode pointer to access an allocated dual access memory region.
daFree Frees up the dual access memory region allocated by daAlloc.

daMove Copies data from dual access memory to dual access memory.
daRead Dual access memory read.

daRMW Performs read/modify/write operation on dual access memory.

daWrite Dual access memory write.

ioRead8 Reads an 8-bit value from an I/O port.

jioRead16 Reads a 16-bit value from an I/O port.

ioRead32 Reads a 32-bit value from an I/O port.

ioWrite8 Writes an 8-bit value to an 1/O port.

ioWrite16 Writes a 16-bit value to an I/O port.

ioWrite32 Writes a 32-bit value to an 1/O port.

univRead8 Reads an 8-bit value from the configuration space of the Universe chip.
univRead16 Reads a 16-bit value from the configuration space of the Universe chip.
univRead32 Reads a 32-bit value from the configuration space of the Universe chip.
univWrite8 Writes an 8-bit value to the configuration space of the Universe chip.
univWrite16 Writes a 16-bit value to the configuration space of the Universe chip.
univWrite32 Writes a 32-bit value to the configuration space of the Universe chip.
vmeAlloc Allocates a VMEbus memory region and returns a user mode pointer to access it.
vmeFree Frees up the VMEbus memory region allocated by vmeAlloc.

vmeMove Copies data from VMEbus memory to VMEbus memory.

vmeRead VMEbus memory read.

vmeRMW Performs read/modify/write operation on VMEbus memory.

vmeWrite VMEbus memory write.

Table continued on following page

Windows NT Manual

Windows NT Library Routines (continued)

vmeintAlloc Allocates a VME interrupt object.

vmeintDisable Disables a VME interrupt.

vmeintEnable Enables a VME interrupt.

vmeintFree Frees up the VME interrupt object allocated by vmeintAlloc.
vmeintGenerate | Generates a VMEbus interrupt.

vmeintWait Waits for a VME interrupt.

vmeintWaitEx Waits for a VME interrupt.

auxintAlloc

Syntax: unsigned long auxintAlloc(ID, Source, ExecutionFlag)

Function: This function creates an “interrupt object” to allow access to auxiliary

interrupts.
Parameters Type Description
1D unsigned long * | Reference to a handle, filled by the function,

for the created object. This handle is then to
be used in other auxintXXX functions.

Source unsigned char | Auxiliary interrupt source (SYSFAIL,
ACFAIL, ABORT)

ExecutionFlag unsigned short | Bit definition for execution which include:
RORA

NOTE

By default, the allocated interrupt object and associated local interrupt source are
disabled. The interrupt object is enabled when the application calls the
auxintEnable function. The interrupt manager enables the local interrupt source
only when all associated interrupt objects are enabled.

RORA - This bit definition tells the driver interrupt manager that the source of this
interrupt object is external and needs to be cleared before clearing this interrupt.
It is the responsibility of the application which created this object to explicitly clear
the interrupt by calling the auxintEnable function after it clears the external
source. The manager will keep track of all interrupt objects that have this bit
defined and not actually clear the interrupt until all objects have called
auxintEnable.

Error Codes: ERRORCODE_MEMORYALLOC

Chapter 2 - VMEbus Support

auxintDisable
Syntax: unsigned long auxintDisable(ID)
Function: This function disables the auxiliary interrupt which is assigned to the
interrupt object.
Parameters Type Description
ID unsigned long | ID of the interrupt object given by auxintAlloc.
NOTE

The interrupt object will be marked so that the interrupt source cannot be enabled
until auxintEnable is called with this interrupt object ID.

Error Codes: ERRORCODE_INVALIDPARM

auxintEnable
Syntax: unsigned long auxintEnable(ID)
Function: This function enables the auxiliary interrupt which is assigned to the
interrupt object.
Parameters Type Description
ID unsigned long | ID of the interrupt object given by auxintAlloc.
NOTE

The auxiliary interrupt will be enabled only if no other interrupt objects have the
interrupt source disabled.

Error Codes: ERRORCODE_INVALIDPARM

auxintFree
Syntax: unsigned long auxintFree(ID)
Function: This function frees the interrupt object.
Parameters Type Description
1D unsigned long | ID of the interrupt object given by auxintAlloc.
NOTE

The local interrupt source will be disabled if there are no interrupt objects that
were allocated for it. Likewise, the interrupt source will be enabled if there are
interrupt objects that were allocated for it and are all enabled.

Error Codes: ERRORCODE_INVALIDPARM

Windows NT Manual

auxintWait
Syntax: unsigned long auxintWait(ID, Count, Timeout)
Function: This function waits for an auxiliary interrupt to occur within the
specified time.

Parameters Type Description

ID unsigned long ID of the interrupt object given by
auxintAlloc.

Count unsigned long * | Filled in by this function to indicate the
number of interrupts, corresponding to the
interrupt object, which have been
acknowledged since the last time auxintWait
was executed.

Timeout unsigned long Amount of time, in milliseconds, to wait for
the interrupt. Value of zero means to wait
indefinitely for the interrupt

Error Codes:

daAlloc

Syntax:

Function:

ERRORCODE_INVALIDPARM, ERRORCODE_TIMEQUT

unsigned long daAlloc(ID, Region, Source, Size, AccessFlag)
This function returns a user mapped pointer to the VMEbus memory

region which is mapped into dual access memory.

Parameters

Type

Description

ID

unsigned long *

PC/AT address to store the ID for the allocated
region

Region

void *

PC/AT address to store the pointer to the
allocated region

Source

unsigned long

Starting address within the VMEbus address
space which is mapped into dual access.

Size

unsigned long

Number of bytes to allocate.

AccessFlag

unsigned long

Bit definitions for VMEbus access configuration
which include:

Address space: SHORTIO, STANDARD,
EXTENDED

Default is: SHORTIO

Error Codes: ERRORCODE_MEMORYALLOC, ERRORCODE_INVALIDPARM

Chapter 2 - VMEbus Support

daFree

daMove

Syntax: unsigned long daFree(ID)
Function: This function frees up the memory region allocated by daAlloc.
Parameters Type Description
ID unsigned long | ID of allocated region to be freed. This value
is given by the daAlloc function.

Syntax: unsigned long daMove(Source, Destination, Size, SrcAccessFlag,
DestAccessFlag)

Function: This function copies a specified number of bytes from dual access

mapped VMEbus memory to dual access mapped VMEbus memory.

Parameters Type Description

Source unsigned long Starting address from which to read within the
specified VMEbus address space which is
mapped into dual access.

Destination unsigned long Starting address from which to write within the
specified VMEbus address space which is
mapped into dual access.

Size unsigned long Number of bytes to copy.

SrcAccessFlag

unsigned long

Bit definitions which can be combined with the
bitwise OR (|) operator for Source VMEbus
access configuration include:

Data width: D8, D16, D32, D64

Address space;:SHORTIO, STANDARD,
EXTENDED

Defaults are: D8, SHORTIO

DestAccessFlag

unsigned long

Bit definitions which can be combined with the
bitwise OR (|) operator for destination VMEbus
access configuration include:

Data width; D8, D16, D32, D64

Address space: SHORTIO, STANDARD,
EXTENDED

Defaults are: D8, SHORTIO

Error Codes: ERRORCODE_INVALIDPARM

27

Windows NT Manual

daRead

daRMW

Syntax: unsigned long daRead(Source, Destination, Size, AccessFlag)
Function: This function reads a specified number of bytes of VMEbus memory
which is mapped into dual access memory.
Parameters Type Description
Source unsigned long Starting address from which to read within the specified
VMEbus address space which is mapped to dual
access.
Destination void * PC/AT destination address
Size unsigned long Number of bytes to read
AccessFlag unsigned long Bit definitions which can be combined with the bitwise

OR (]) operator for VMEbus access configuration
include:

Data width: D8, D16, D32, D64

Address space: SHORTIO, STANDARD, EXTENDED
Byte order: LITTLEENDIAN, BIGENDIAN

Defaults are: D8, SHORTIO, BIGENDIAN

Error Codes: ERRORCODE_INVALIDPARM, ERRORCODE_ODDBLOCKSIZE

Syntax: unsigned long daBRMW(ENMask, CMPMask, SWPMask, Destination,
AccessFlag, Result)
Function: This function performs a read-modify-write operation on VMEbus
memory which is mapped into dual access memory.

Parameters Type Description

ENMask unsigned long Defines the bits to be used in the compare and swap
operations

CMPMask unsigned long Defines the bits to compare, controlled by ENMask,
against the read portion of the RMW

SWPMask unsigned long Defines the bits to write, controlled by ENMask, if the
compare portion of the RMW is found to be equal

Destination unsigned long Address within the specified VMEbus address space,
which is mapped into dual access, at which to perform
the operation.

AccessFlag unsigned long Bit definitions which can be combined with the bitwise
OR (|) operator for VMEbus access configuration
which include;

Data width: D8, D16, D32, D64
Address space: SHORTIO, STANDARD, EXTENDED
Defaults are: D8, SHORTIO

Result unsigned long * PC/AT address to store the result from the read

portion of the RMW cycle.

Error Codes: ERRORCODE_INVALIDPARM

Chapter 2 - VMEbus Support

daWrite
Syntax: unsigned long daWrite(Source, Destination, Size, AccessFlag)
Function: This function writes a specified number of bytes to VMEbus memory
which is mapped into dual access memory.
Parameters Type Description
Source void * PC/AT source address
Destination unsigned long Starting address from which to write within the
specified VMEbus address space which is
mapped into dual access.
Size unsigned long Number of bytes to write
AccessFlag unsigned long Bit definitions which can be combined with the
bitwise OR (]) operator for VMEbus access
configuration include;
Data width: D8, D16, D32, D64
Address space: SHORTIO, STANDARD,
EXTENDED
Byte order : LITTLEENDIAN, BIGENDIAN
Defaults are: D8, SHORTIO, BIGENDIAN
Error Codes: ERRORCODE_INVALIDPARM, ERRORCODE_ODDBLOCKSIZE
ioRead8
Syntax: unsigned long ioRead8(Source, Destination)
Function: This function returns an 8-bit value read from the requested I/O port.
Parameters Type Description
Source unsigned short | 1/O port to read
Destination char * PC/AT address to store the port value
ioRead16
Syntax: unsigned long ioReadl6(Source, Destination)

Function: This function returns a 16-bit value read from the requested I/O port.

Parameters Type Description
Source unsigned short | 1/O port to read
Destination short * PC/AT address to store the port value

Windows NT Manual

ioRead32
Syntax: unsigned long ioRead32(Source, Destination)
Function: This function returns a 32-bit value read from the requested I/O port.
Parameters Type Description
Source unsigned short | [/O port to read
Destination long * PC/AT address to store the port value
ioWrite8
Syntax: unsigned long ioWrite8(Value, Destination)
Function: This function writes an 8-bit value to the requested I/O port.
Parameters Type Description
Value char Value to write
Destination unsigned short | 1/O port to write to
ioWrite16
Syntax: unsigned long ioWrite16(Value, Destination)
Function: This function writes a 16-bit value to the requested I/O port.
Parameters Type Description
Value short Value to write
Destination unsigned short | 1/0O port to write to
ioWrite32

Syntax: unsigned long ioWrite32(Value, Destination)

Function: This function writes a 32-bit value to the requested I/O port.

Parameters Type Description
Value long Value to write
Destination unsigned short | /O port to write to

2-10

Chapter 2 - VMEbus Support

univRead8

Syntax: unsigned long univRead8(Source, Destination)

Function: This function returns an 8-bit value read from the configuration space
of the Universe device.

Parameters Type Description
Source unsigned short | Register to access
Destination char * PC/AT destination address

Error Codes: ERRORCODE_INVALIDPARM

univRead16

Syntax: unsigned long univRead16(Source, Destination)

Function: This function returns a 16-bit value read from the configuration space
of the Universe device.

Parameters Type Description
Source unsigned short | Register to access
Destination short * PC/AT destination address

Error Codes: ERRORCODE_INVALIDPARM

univRead32

Syntax: unsigned long univRead32(Source, Destination)

Function: This function returns a 32-bit value read from the configuration space
of the Universe device.

Parameters Type Description
Source unsigned short | Register to access
Destination long * PC/AT destination address

Error Codes: ERRORCODE_INVALIDPARM

2-11

Windows NT Manual

univWrite8

Syntax: unsigned long univWrite8(Value, Destination)

Function: This function writes an 8-bit value to the configuration space of the
Universe device.

Parameters Type Description
Value char Value to write
Destination unsigned short | Register to write to

Error Codes: ERRORCODE_INVALIDPARM

univWrite16

Syntax: unsigned long univWrite16(Value, Destination)

Function: This function writes a 16-bit value to the configuration space of the
Universe device.

Parameters Type Description
Value short Value to write
Destination unsigned short | Register to write to

Error Codes: ERRORCODE_INVALIDPARM

univWrite32

Syntax: unsigned long univWrite32(Value, Destination)

Function: This function writes a 32-bit value to the configuration space of the
Universe device.

Parameters | Type Description
Value long Value to write
Destination unsigned short | Register to write to

Error Codes: ERRORCODE_INVALIDPARM

212

Chapter 2 - VMEbus Support

vmeAlloc

Syntax: unsigned long vmeAlloc(ID, Region, Source, Size, AccessFlag)

Function: This function allocates a VMEbus memory region and returns a user
mapped pointer to that region to be used in read or write operations.

Note

This function locks down a VMEbus master resource possibly
preventing access to the VMEbus from other applications.

Parameters Type Description

ID unsigned long * | PC/AT address to store the ID for the
allocated region

Region void * PC/AT address to store the pointer to the
allocated region

Source unsigned long Starting address within the specified VMEbus
address space.

Size unsigned long Number of bytes to allocate.

AccessFlag unsigned long Bit definitions which can be combined with

the bitwise OR (]) operator for VMEbus
access configuration include:

Data width: D8, D16, D32, D64

Address space: SHORTIO, STANDARD,
EXTENDED

Program/data AM: PROGRAM_AM,
DATA_AM

Supervisory/Nonprivileged AM:
SUPERVISORY_AM, NONPRIVILEGED_AM
Cycle type: SINGLE_ONLY,
SINGLE_AND_BLK

Term of allocation: LONGTERM,
SHORTTERM

Defaults are: D8, SHORTIO, DATA_AM,
SUPERVISORY_AM, SINGLE_ONLY,
SHORTTERM

Error Codes:

ERRORCODE_RESOURCEALLOC, ERRORCODE_MEMORYALLOC,
ERRORCODE_TIMEOUT

213

Windows NT Manual

vmeFree

vmeMove

214

Syntax: unsigned long vmeFree(ID)
Function: This function frees up the VMEbus memory region allocated by
vmeAlloc.
Parameters Type Description
iD unsigned long ID of allocated region to be freed. This value is

given by the vmeAlloc function.

Syntax: unsigned long vmeMove(Source, Destination, Size, SrcAccessFlag,

DestAccessFlag, ExecutionFlag)
Function: This function copies a specified number of bytes from VMEbus
memory to VMEbus memory.

Parameters Type Description

Source unsigned long Starting address from which to read within the specified
VMEbus address space.

Destination unsigned long Starting address from which to write within the specified
VMEbus address space.

Size unsigned long Number of bytes to copy.

SrcAccessFlag unsigned long Bit definitions which can be combined with the bitwise OR (|)
operator for Source VMEbus access configuration include:
Data width: D8, D16, D32, D64
Address space: SHORTIO, STANDARD, EXTENDED
Program/Data AM: PROGRAM_AM, DATA_AM
Supervisory/Nonprivileged AM: SUPERVISORY_AM,
NONPRIVILEGED_AM
Cycle type: SINGLE_ONLY, SINGLE_AND_BLK
Defaults are: D8, SHORTIO, DATA_AM,
SUPERVISORY_AM, SINGLE_ONLY

DestAccessFlag unsigned long Bit definitions which can be combined with the bitwise OR (|)

operator for Destination VMEbus access configuration
include:

Data width: D8, D16, D32, D64

Address space: SHORTIO, STANDARD, EXTENDED
Program/Data AM: PROGRAM_AM, DATA_AM
Supervisory/Nonprivileged AM: SUPERVISORY_AM,
NONPRIVILEGED_AM

Cycle type: SINGLE_ONLY, SINGLE_AND_BLK
Defaults are: D8, SHORTIO, DATA_AM,
SUPERVISORY_AM, SINGLE_ONLY

ExecutionFlag

unsigned long

Bit definitions for execution include:
Detect BERR: DETECT _BERR

NOTE

Although the data will be transferred correctly, using D64 will result in D32 transfers on the VMEbus.

Error Codes: ERRORCODE_RESOURCEALLOC, ERRORCODE_MEMORYALLOC,
ERRORCODE_INVALIDPARM, ERRORCODE_BERR

Chapter 2 - VMEbus Support

vmeRead

Syntax: unsigned long vmeRead(Source, Destination, Size,
AccessFlag, ExecutionFlag)
Function: This routine reads a specified number of bytes of VMEbus memory.
Parameters | Type Description
Source unsigned long | Starting address from which to read within the
specified VMEbus address space.
Destination void * PC/AT destination address
Size unsigned long | Number of bytes to read
AccessFlag unsigned long | Bit definitions which can be combined with the bitwise

OR (|) operator for VMEbus access configuration
include:

Data width: D8, D16, D32, D64

Address space: SHORTIO, STANDARD,
EXTENDED

Program/Data AM: PROGRAM_AM, DATA_AM
Supervisory/Nonprivileged AM:
SUPERVISORY_AM, NONPRIVILEGED_AM

Byte Order: LITTLEENDIAN, BIGENDIAN

Cycle type: SINGLE_ONLY, SINGLE_AND_BLK
Defaults are: D8, SHORT!O, DATA_AM,
SUPERVISORY_AM, BIGENDIAN, SINGLE_ONLY

ExecutionFlag

unsigned long

Bit definitions which can be combined with the bitwise
OR (|) operator for execution include:

Use block hardware: USE_BLOCK_HARDWARE
Detect BERR: DETECT_BERR

NOTE

Although the data will be transferred correctly, using D64 without using
USE_BLOCK_HARDWARE will result in D32 transfers on the VMEbus.

Error Codes:ERRORCODE_RESOURCEALLOC,ERRORCODE_MEMORYALLOQC,
ERRORCODE_TIMEOUT, ERRORCODE_INVALIDPARM,
ERRORCODE_BERR, ERRORCODE_ODDBLOCKSIZE

215

Windows NT Manual

vmeRMW

Syntax: unsigned long vmeRMW(ENMask, CMPMask, SWPMask,

Destination, AccessFlag, Result)

Function: This function performs a read-modify-write operation on VMEbus
memory.

Parameters

Type

Description

ENMask

unsigned long

Defines the bits to be used in the compare
and swap operations.

CMPMask

unsigned long

Defines the bits to compare, controlled by
ENMask, against the read portion of the
VMEbus RMW.

SWPMask

unsigned long

Defines the bits to write, controlled by
ENMask, if the compare portion of the
VMEbus RMW is found to be equal.

Destination

unsigned long

Address within the specified VMEbus
address space to perform the operation.

AccessFlag

unsigned long

Bit definitions which can be combined with
the bitwise OR (|) operator for VMEbus
access configuration include:

Data width: D8, D16, D32, D64

Address space: SHORTIO, STANDARD,
EXTENDED

Program/Data AM: PROGRAM_AM,
DATA_AM

Supervisory/Nonprivileged AM;
SUPERVISORY_AM, NONPRIVILEGED_AM
Defaults are: D8, SHORTIO, DATA_AM,
SUPERVISORY_AM

Result

unsigned long *

PC/AT address to store the result of the read
portion of the RMW cycle.

Error Codes: ERRORCODE_RESOURCEALLOC, ERRORCODE_MEMORYALLOC,

ERRORCODE_TIMEOUT

216

Chapter 2 - VMEbus Support

vmeWrite

Syntax:

Function:

XDWORD unsigned long vmeWrite(Source, Destination, Size,

AccessFlag, ExecutionFlag)

This function writes a specified number of bytes to VMEbus memory.

Parameters

Type

Description

Source

void *

PC/AT source address

Destination

unsigned long

Starting address from which to write within the
specified VMEbus address space.

Size

unsigned long

Number of bytes to write.

AccessFlag

unsigned long

Bit definitions which can be combined with the
bitwise OR (|) operator for VMEbus access
configuration include:

Data width: D8, D16, D32, D64

Address space: SHORTIO, STANDARD,
EXTENDED

Program/Data AM: PROGRAM_AM, DATA_AM
Supervisory/Nonprivileged AM:
SUPERVISORY_AM, NONPRIVILEGED_AM
Byte Order: LITTLEENDIAN, BIGENDIAN
Cycle type: SINGLE_ONLY, SINGLE_AND BLK
Defaults are: D8, SHORTIO, DATA_AM,
SUPERVISORY_AM, BIGENDIAN,
SINGLE_ONLY

ExecutionFlag

unsigned long

Bit definitions which can be combined with the
bitwise OR (|) operator for execution include:

Use block hardware: USE_BLOCK_HARDWARE
Detect BERR: DETECT_BERR

NOTE

Although the data will be transferred correctly, using D64 without using
USE_BLOCK_HARDWARE will result in D32 transfers on the VMEbus.

Error Codes: ERRORCODE_RESOURCEALLOC, ERRPRCODE_MEMORYALLOC,
ERRORCODE_TIMEOUT, ERRORCODE_INVALIDPARM,
ERRORCODE_BERR, ERRORCODE_ODDBLOCKSIZE

217

Windows NT Manual

vmeintAlloc

218

Syntax: unsigned long vmeintAlloc(ID, Level, Vector, ExecutionFlag)

Function: This function creates an “interrupt object” to allow access to VME

interrupts.

Parameters | Type Description

ID unsigned long * | Reference to a handle, filled by the function,
for the created object. This handle is then to
be used in other vmeintXXX functions.

Level unsigned char | VMEbus interrupt level (1-7)

Vector unsigned char | VMEbus vector to look for (0-255).

ExecutionFlag | unsigned short | Bit definitions which can be combined with
the bitwise OR (|) operator for execution
which include: RORA, ALL_LEVELS,
ALL_VECTORS

NOTE

By default, the allocated interrupt object and associated local interrupt source, i.e.
level, are disabled. The interrupt object is enabled when the application calls the
vmeintEnable function. The interrupt manager enables the local interrupt source
only when all associated interrupt objects are enabled.

RORA - This bit definition tells the driver interrupt manager that the interrupt
source of this interrupt object must be cleared by the application. It is the
responsibility of the application which created this object to explicitly reenable the
interrupt by calling the vmeintEnable function after it ¢lears the interrupt source.

ALL_LEVELS - Tells this function to create the object with VMEbus interrupt
levels 1-7 as the source.

ALL_VECTORS - Tells this function to create the object with VMEbus interrupt

vectors 0-255 as the source.

Error Codes: ERRORCODE_MEMORYALLOC, ERRORCODE_INVALIDPARM

Chapter 2 - VMEbus Support

vmeintDisable

Syntax: unsigned long vmeintDisable(ID)

Function: This function disables the local VME interrupt source which is assigned
to the interrupt object.

Parameters

Type

Description

D

unsigned long

ID of the interrupt object given by
vmeintAlloc.

NOTE

The interrupt object will be marked so that the local interrupt source cannot be
enabled until vmeintEnable is called with this interrupt object ID.

Error Codes:

vmeintEnable

ERRORCODE_INVALIDPARM

Syntax: unsigned long vmeintEnable(ID)

Function: This function enables an interrupt object. The local VME interrupt
source, which is assigned to the interrupt object, is enabled if all other

interrupt objects with the same source are enabled.

Parameters

Type

Description

1D

unsigned long

ID of the interrupt object given by
vmeintAlloc.

NOTE

The VME interrupt source will be enabled only if no other interrupt objects have
the interrupt source disabled.

Error Codes: ERRORCODE_[NVALIDPARM

219

Windows NT Manual

vmeintFree

Syntax: unsigned long vmeintFree(ID)

Function: This function frees the interrupt object. The local VMEbus interrupt
source will be disabled if there are no interrupt objects that were
allocated for it. Likewise, the interrupt source will be enabled if there
are interrupt objects that were allocated for it and are all enabled.

Parameters Type Description
D unsigned long | ID of the interrupt object given by
vmeintAlloc.

Error Codes: ERRORCODE_INVALIDPARM

vmeintGenerate
Syntax: unsigned long vmeintGenerate(Level, Vector)
Function: This function generates a VMEbus interrupt at the specified level
and vector.
Parameters Type Description
Level unsigned char | VMEbus interrupt level (1-7)
Vector unsigned char | Interrupt vector to be provided during the
VMEbus IACK cycle.

NOTE
When generating an interrupt, Universe supports only even numbered of vectors.

Error Codes: ERRORCODE_TIMEOUT, ERRORCODE_INVALIDPARM

2-20

Chapter 2 - VMEbus Support

vmeintWait

Syntax: unsigned long vmeintWait(ID, Count, Timeout)

Function: This function waits for a VMEDbus interrupt to occur within the
specified time.

Parameters Type Description

ID unsigned long ID of the interrupt object given by
vmeintAlloc.

Count unsigned long * | Filled in by this function to indicate the
number of interrupts, corresponding to the
interrupt object, which have been
acknowledged since the last time either
vmeintWait or vmeintWaitEx was executed.

Timeout unsigned long Amount of time, in milliseconds, to wait for
the interrupt. Value of zero means to wait
indefinitely for the interrupt.

NOTE

Count has limited meaning for interrupt objects that are allocated with

ALL_LEVELS and/or ALL_VECTORS as the interrupt source. The counter is tied

to the object as a whole, not to each individual vector/level. This means that if the

count value returned is greater than 1, there are interrupts whose level and/or
vector information cannot be determined. Interrupt objects that are allocated with

a single level/vector pair do not have this limitation.

Error Codes:

ERRORCODE_INVALIDPARM, ERRORCODE, TIMEQUT

2-21

Windows NT Manual

vmeintWaitEx

2-22

Syntax:

Function:

unsigned long vmeintWaitEx(ID, Level, Vector, Count, Timeout)

This function waits for a VMEbus interrupt to occur within the

specified time. It will return the VMEDbus level and vector of the

interrupt received. This is typically used for interrupt objects that were

allocated with ALL_LEVELS and/or ALL,_ VECTORS.

Parameters

Type

Description

ID

unsigned long

ID of the interrupt object given by
vmeintAlloc

Level

unsigned char*

Filled in by this function to indicate which
VMEDbus interrupt level caused the interrupt

Vector

unsigned char*

Filled in by this function to indicate which
VMEbus interrupt vector was retrieved

Count

unsigned long *

Filled in by this function to indicate the
number of interrupts, corresponding to the
interrupt object, which have been
acknowledged since the last time either
vmeintWait or vmeintWaitEx was executed.

Timeout

unsigned long

Amount of time, in milliseconds, to wait for
the interrupt. Value of zero means to wait
indefinitely for the interrupt.

NOTE

Count has limited meaning for interrupt objects that are allocated with
ALL_LEVELS and/or ALL_VECTORS as the interrupt source. The counter is tied
to the object as a whole, not to each individual vector/ievel. This means that if the
count value returned is greater than 1, there are interrupts whose level and/or
vector information cannot be determined. Interrupt objects that are allocated with
a single level/vector pair do not have this limitation.

Error Codes:

ERRORCODE_INVALIDPARM, ERRORCODE_TIMEOUT

Chapter 2 - VMEbus Support

Error Codes

Error Code Definition

ERRORCODE_NOERROR The function executed successfully.

ERRORCODE_GENERAL The function did not executed successfully due to
an error reported by the OS,

ERRORCODE_BERR The requested VMEbus transaction resulted in a
bus error.

ERRORCODE_MEMORYALLOC The function did not execute successfully due to
a memory allocation error.

ERRORCODE_INVALIDPARM The function did not execute successfully due to
an invalid function parameter.

ERRORCODE_ODDALIGNMENT The function could not execute successfully

because the hardware does not support
unaligned 16- or 32-bit transfers on the bus.

ERRORCODE_TIMEOUT The function did not execute successfully
because the time-out period had expired.

ERRORCODE_RESOURCEALLOC The function did not execute successfully
because the necessary resources are not
available.

ERRORCODE_ODDBLOCKSIZE The function did not execute successfully
because the block size was not a multiple of the
data width.

2-23

Chapter 3 — VMEbus Manager

Introduction

The Xycom VMEbus Manager (VMEMAN.EXE) is a 32-bit Windows application
program that provides a simple mechanism for accessing and monitoring the
VMEDbus. When using a Xycom PC/AT processor, the program allows you to
quickly test your VMEbus system configuration, by providing a convenient
mechanism for reading and writing to VMEbus memory, and monitoring the status
of VMEDbus interrupts and the PC/AT status registers. This program, like all
Windows programs, is menu driven.

YME probe Dapiobe X¥MEstat VMEbus BSP

Figure 3- 1. VMEbus Windows NT Applications

To execute the VMEman application, select the VMEman icon from the VME Tools
group. The VMEman window will open.

Figure 3- 2. VMEbus Manager Window Menus

Windows NT Manual

Monitor Menu

This section describes the menu options associated with the Monitor Menu. The
figure below shows the screen display.

Figure 3- 3. Monitor Menu

Monitor->XVMEstat

This menu option executes the XVMEstat application. This application displays
general information about the status of the VMEbus master interface, VMEbus slave
interface, and VMEbus interrupts. See Chapter 4 for information about the
XVMEstat application.

Monitor->VME IDs

This menu option searches the VMEbus short I/O address space for Xycom ID
PROM:s. If any are found, a window is opened and a description of the board found
is displayed. This description includes the short I/O address where the board resides.
If the board found is intelligent, the result of its power-on self test is displayed
(PASS/FAIL). If the board is not intelligent, its green LED is turned on and its red
LED is turned off.

