
Reasons to Choose an Embedded Operating System
An Embedded Operating System (OS) is designed to be more compact, efficient at resource usage,
and reliable, while eliminating many functions that a non-embedded computer operating system
provides. Unlike a desktop operating system, embedded operating systems do not load or execute
applications. This means that the system can only run a single application at a time.

Choosing an embedded OS can have a big effect on
the efficiency of your applications. The two operating
systems offer different benefits that must be evaluated
to determine the best fit in the industrial environment.

Understanding how the
application will be used now and
in the future is necessary for
executing operations effectively.

Selecting Your Embedded Operating System (OS)
Microsoft Windows 7 and XP are commonly used in industrial PCs (iPC) for factory automation.
The advantages of using these systems, such as multitasking and full capacity utilization, are
advantageous for most applications; however, with the size and overhead of these operating systems,
applications cannot always use the systems efficiently.

Microsoft offers embedded versions of these operating systems that help address the size and
overhead concerns. In addition, the embedded operating system brings more stability and security
to embedded devices. Windows-based applications can also run on Windows XP Embedded, which
allows developers to easily write applications with the Windows API set.

WHITE PAPER - Embedded Operating System: The Right Choice for Your Application? 1

Chart 1 - Features and Benefits of Windows 7 and Windows XP Embedded

Scalability

Built-in networking and
communication services

Interoperability with existing
PC and server hardware

Win32 API support

Windows services support

C2-level security

Systematic multiprocessing
support

Reduces time to market

Broad range of productive
Windows-based development
tools

Easy enterprise connectivity

Overall size of the operating system can be condensed by removing

unneeded features and services

Allows use of TCP/IP, DHCP, WinSock, RPC, RRAS, FTP, etc.

Provides greater choices and flexibility when choosing your platform

Provides consistent development environment

Allows greater manageability

Supports applications that demand secure environments

Provides one system that can be used for simple and very demanding

applications

- Allows easy integration into your platform using powerful authoring tools

- Requires less time developing and supporting proprietary OS code

- Involves less time developing drivers, services, and applications,

and getting them to work

- Many trained and experienced developers

- Multitude of off-the-shelf hardware and device drivers

- Large number of existing Win32 applications

- Microsoft BackOffice family applications

- Allows easy integration of new opportunities with an

existing IT infrastructure

- Introduces and manages devices similar to other

Windows-based systems

Permits next generation devices to participate in enhanced management

environments (examples: Microsoft Systems Management Server, HP

OpenView, IBM Tivoli, CA Unicenter TNG, etc.)

WHITE PAPER - Embedded Operating System: The Right Choice for Your Application? 2

Important Tools for the Transition
Embedded Operating System Component Tool Kit

Target Designer
Tool that provides a development environment that you use to
create a bootable run-time image for a target device.

Component Designer
Development tool that enables you to define an application or
device in a graphic development environment and save it to a disk.

Component Database Manager
Provides management functions for the component database and the repositories,
which are used by both Component Designer and Target Designer tools.

Target Analyzer
Probe utility which creates a configuration that can be built into a Target Designer run-time
image by analyzing the specific details about the target device and the Target Analyzer Importer.

Steps to develop an embedded operating system
The steps in the development process are as follows:

1. Identify the hardware on your target device.

2. Choose the features and functionality required in your run-time image.

3. Identify the embedded system-specific features that need to be included in your target device.

4. Include custom components.

5. Build your run-time image.

6. Deploy your run-time image.

WHITE PAPER - Embedded Operating System: The Right Choice for Your Application? 3

Chart 1 shows some of the advantages of using these embedded operating systems in an
application. Using these versions requires a solid understanding of the application and its
future uses to ensure successful application efficiency on the operating system.

Below are examples of issues and concerns that may be associated with using an embedded OS.

Image Development
Before developing an embedded run-time image, consider the target application as well as the
minimum computer requirements that will be used in the development system. Items such as
additional I/O device network connections, programmable controllers, motion control systems,
scanners, and many others can only be chosen by the OEM or end user of the device. For example,
Pro-face can supply an industrial computer with a compact flash storage device and a reduced size
operating system, but if the system has one of the previously mentioned hardware devices added, it
may cause the system to not run properly. For this reason it is important that the OEM or end user be
involved in developing the original run-time image.

Hardware
Before developing an embedded run-time image, consider the target application as well as the
minimum computer requirements that will be used in the development system. Items such as
additional I/O device network connections, programmable controllers, motion control systems,
scanners, and many others can only be chosen by the OEM or end user of the device. For example,
Pro-face can supply an industrial computer with a compact flash storage device and a reduced size
operating system, but if the system has one of the previously mentioned hardware devices added, it
may cause the system to not run properly. For this reason it is important that the OEM or end user be
involved in developing the original run-time image.

Features and Functionality
Embedded operating systems are designed to do a specific task, rather than be a general-purpose
computer for multiple tasks. Some have real-time performance constraints that must be met, for
reasons such as safety and usability; others may have low or no performance requirements, allowing
the system hardware to be simplified to reduce costs. An embedded system has fewer capabilities, as
applications have been taken out of the operating system for more efficient use when building the run-
time image. If an application that requires support is added, and was not included when building the
run-time image, then the application might not run properly. This is another example of the importance
of the OEM and end-user’s involvement in the development of the original run-time image.

Embedded System-Specific Features
When using an embedded OS, it is important to pay attention to the size of the storage device. For
example, storing a full operating system on a compact flash less than 16Gb for an iPC will cause your
applications to run improperly. However, for an embedded OS, using a 2Gb, 4Gb, or 8Gb compact flash
would be ideal. Though, when using reduced sized media with an embedded OS, you may not be able to

WHITE PAPER - Embedded Operating System: The Right Choice for Your Application? 4

store data or utilize swap files. Pro-face offers industrial PCs with CF cards or SSD/HDD options, along
with alternative storage devices, such as an SD card. The size of the media and the system’s intended use
are key factors in making the correct image.

Custom Components
It is important to install components in the developmental stage of the image. Not installing at this time
may cause functions and applications not to work properly. Embedded operating systems are dedicated
to specific tasks, and are not meant to be altered once the image has been developed. All utilities can be
added directly to the run-time image by using Microsoft Target and Component Designers. With a non-
embedded system, custom components can be added to the image after the developmental stage.

Build the Run-time Image
Building the image for an embedded operating system differs from building an image from source
code. When using Target Designer, the image is generated by reassembling the individual components
to create the operating system. With the use of Windows Embedded Studio, dependencies can be
checked and resolved before building the run-time image. Tasks, such as assembling resources and
generating directory structures, can all be accomplished before the image has been finalized. If the
features or services are not functioning correctly for the OEM or end user, then more attempts to
build the image will be required until the needs are addressed.

Deployment of the Run-time Image
After building the run-time image for an embedded operating system, it is ready to be deployed from the
development system to the embedded device. There are a few methods you can employ to do this:

• Transfer the image using traditional methods such as disk, bootable CD-ROM,
or bootable digital video disc (DVD).

• Swap a storage device (HDD, SSD) or persistent storage module (Rom, Flash, Disk).
• Transfer the image electronically over a communications line.

You can also use the deployment tools to transfer, install, and configure the run-time image into your
target device. Your target device must have sufficient storage available to run the image. This storage
may need to be initialized prior to receiving the image, which is done by a setup program.

Hardware Selection
Now that you have an understanding of the process to create an image, it is important to understand
what hardware or target device will be used. Once the hardware platform is selected, all application
software and auxiliary devices need to be determined.

WHITE PAPER - Embedded Operating System: The Right Choice for Your Application? 5

First, the drive must be selected. Compact flash card and solid-state drives are more reliable than
rotating media hard drives. Applications that will require levels of vibration and shock should use a
compact flash card or solid state drive. HDD (hard disk drives) will have a higher capacity for storage,
but will not function properly within a vibration/shock environment.

When deciding which storage device to use, it is important to have enough storage space for data. For
example, an iPC with a 16Gb compact flash will fill more quickly than a 60 GB Solid State Drive. Also,
when these drives reach capacity, the system and application may terminate unexpectedly. This is
unacceptable in a manufacturing environment.

Swapping Files
The use of swap files is the most important item to consider when choosing between an embedded or
non-embedded system. The standard non-embedded Windows 7 or XP operating systems use swap
files that can significantly increase the amount of storage required. With an embedded system, you
can disable the swap files if needed. But unlike hard drives, solid-state drives and compact flash
cards have a limited amount of times you can “write” and “rewrite” onto the drive or card. With a hard
drive, there are an unlimited number of “writes” to the drive.

It is also important to have an understanding of the image you will be receiving from your iPC
provider. For example, Pro-face creates the image for the operating system and ships the product.
But, if there are any other requirements needed for your operating system, it is important to know
that it will be supported. If it is not supported, the hardware may not function properly and may need
a new image.

Choose Wisely
Though there are many options, it is important to understand the benefits and drawbacks to embedded
operating systems. To recap, the factors when considering an embedded operating system are:

 • Hardware Selection
 • Features and Functionality
 • Custom Components
 • Building and imaging the embedded operating system specifically to your needs

Choosing an embedded operating system will allow the applications for your industrial PC to
run more smoothly and efficiently.

For more information, contact Pro-face America
profaceamerica.com | customercare@profaceamerica.com | 734-477-0600 | 800-289-9266

© 2013 Pro-face America

WHITE PAPER - Embedded Operating System: The Right Choice for Your Application? 6

