
ASIC-200 Version 5.0

integrated industrial control software

User Guide

User Guide 139837(B)

Published by: Pro-face
750 North Maple Road
Saline, MI 48176

Copyright © 2007 Xycom Automation, LLC. All rights reserved.

No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by information
storage and retrieval system, without the permission of the publisher, except where
permitted by law.

WARNING: The Software is owned by Xycom Automation, LLC and is protected
by United States copyright laws and international treaty provisions.
Unauthorized reproduction or distribution of this program, or any portion of it,
may result in severe penalties.

ASIC-100® is a registered trademark of Xycom Automation, LLC.
ASIC-200 is a registered trademark of Xycom Automation, LLC.
Windows® and Windows NT® are registered trademarks of Microsoft Corporation.

ASCI-200 release 5.0 documents include:

Getting Started 137586

User Guide 139837

Language Reference 139183

HMI Guide 139168

Revision Description Date

 D Name change, correct where applicable with document 4/07

Note: the current revisions of each of these documents should be used.

Note: Features available on your system depend on product version
 and installed options (toolkits).

Owner
Rectangle

Owner
Rectangle

ASIC-200 User Guide Contents • i

Contents

Contents i

Introduction 1

Projects 3
Managing Projects... 3

Creating a New Project ... 3
Opening a Project.. 4
Copying a Project.. 5
Renaming a Project ... 6
Activating a Configuration.. 6

I/O Configuration 9
Overview ... 9
Help with Hardware Conflicts... 10

Data Port ... 10
Memory Address... 10
Interrupt... 10

Configuration Files.. 11
Elements of a Configuration ... 11
Creating a New Configuration .. 11
Editing an Existing Configuration File ... 11
Activating a Configuration File... 12
Saving a Configuration File .. 12

Configuration Utility ... 13
System Configuration.. 13
Using the Define Board Dialog... 15
Using the Connector Dialog.. 16

Symbol Configuration 17
Symbols... 17
User-Defined Data Type.. 18
Arrays .. 18

ii • Contents ASIC-200 User Guide

Pointer Symbols...19
Symbol Manager ...19

Opening the Symbol Manager...20
Creating a Symbol...21
Editing a Symbol...21
Copying a Symbol...22
Deleting a Symbol...22
Symbol Details ..22
Naming a Bit in a Symbol ...23

Editing User-Defined Data Structure Types ..24
Using Symbols...26

Drag-and-Drop ..27
Enumerations...27

System Symbols ..28
Predefined System Symbols..28
Run-Time Symbols ...29

Application Programs 31
Managing Application Programs...31
Creating a New Program ...31
Opening a Program..32
Viewing Programs ...32
Saving a Program...33
Printing a Program...34
Printing Program Cross-References...35
Closing Application Programs...36
Panning and Zooming..36
Turning Comments On and Off ...37
Selecting Program Elements in SFC and RLL Editors ..37

RLL Programming 39
About Structuring RLL Application Programs..39
Relay Ladder Logic Instructions ...41

Relay Contacts...41
Relay Coils ..42

How RLL Application Programs are Solved ...45
How Relay Logic is Solved...45
How Function Blocks Are Solved...46

Extensions to IEC 1131-3 Ladder Diagrams ...46
Creating Relay Ladder Logic Programs ..46

Creating an RLL Program ...47
Adding Program Elements ..47
Moving and Editing Program Elements ..54
Documenting RLL Application Programs...56

SFC Programming 59

ASIC-200 User Guide Contents • iii

About Structuring Sequential Function Charts.. 59
About Steps ... 59
About Actions ... 62
About Transitions.. 67
About Divergences.. 68
About Macro Steps.. 70
About Program Flow Control Features ... 71

How SFCs are Solved.. 75
How Transitions are Evaluated ... 76

Extensions to IEC 1131-3 SFCs (SFC+/M)... 77
About Creating Sequential Function Charts .. 78

Creating an SFC Program ... 79
Using the SFC Tool and Menu Bar ... 80
Using the Keyboard... 81
Working with Steps... 81
Working with Transitions.. 85
Working with Macro Steps ... 86
Working with Actions ... 87
Adding SFC Program Flow Controls .. 90
Documenting an SFC Program.. 98

Structured Text Programming 101
Introduction ... 101
Structured Text Editor Overview .. 101

Opening a Structured Text Document... 102
Editing Structured Text in an SFC Step .. 102
Entering Statements .. 102
Editing Structured Text ... 103
Bookmarks .. 104
Printing.. 104
Saving ... 104
Exiting the Editor .. 104

Language Overview... 105
Expressions ... 105
Operators... 105
Pointer Operators .. 106

Structured Text Syntax .. 110
Assignment Statement ... 110
BREAK Statement .. 111
CASE Statement.. 112
Comments.. 113
Exit Statement ... 113
IF Statement .. 114
INCLUDE ... 115
FOR Statement .. 115
Function Call ... 116
LABEL.. 117

iv • Contents ASIC-200 User Guide

REPEAT Statement ...117
SCAN ..118
WHILE Statement ...118

Instruction List Programming 121
Introduction ...121
Instruction List Editor Overview...121

Opening an Instruction List Document ...121
Entering Instructions ...122
Editing Instructions ...122
Bookmarks ..122
Printing..123
Saving..123
Exiting the Editor ..123

Language Overview...124
Instruction List Syntax ..124
Operators ...124
Functions and Function Blocks ...125

Program Examples...127

Motion Programming 131
Motion Programming Overview..131
Motion Card Support ...131
Hardware Setup of a Motion Control System..132
Software Setup of a Motion Control System ...132
Architecture of a PC Based Motion Control System ...132
Relative Roles of ASIC-200 and the Motion Card ..133

Integrated Motion 135
Integrated Motion Drivers ...135
Integrated Motion Features..135
About the Motion Control Language...135
Adding Motion Control to an SFC ..136
Software Enhancements to RS-274D ..136
Using Motion Control Statements ...137

Using Motion Control Commands ..137
Using G Codes ..140
G05 Spline Move Notes ..142
Using M Codes..143
Using the Define M Flag Symbols Feature ...144
Using the Wait on All M Codes Feature ...144
Using the Do Not Process M Codes Feature ...145

Predefined Integrated Motion Control Symbols ..145
Axis Output Symbols ..145
Axis Group Output Symbols ...146
Axis Input Symbols...147

ASIC-200 User Guide Contents • v

Axis Group Input Symbols.. 148
Configuring Motion Options ... 151

Using the Suspend on Spindle Commands Feature................................... 151
Using the Suspend on Tool Changes Feature.. 152

Using Program Flow Control in Motion Applications .. 152
Using the WHILE Command.. 152
Using the IF-GOTO Command... 153

Using the G65 Macro Calls with Motion .. 154
Designing the Macro ... 154
Calling the Macro for Execution... 155

Monitoring and Running Motion Application Programs... 156
Using the Jog Panel... 156
Monitoring Axis Plot... 157
Using the Single Axis Panel.. 157
Using the Multi-Axis Status Panel .. 158

Embedding Structured Text into Motion Control Code .. 158
Guidelines for Embedding Structured Text in a Motion Control Step 159
How the Embedded Structured Text Code is Evaluated 160

Structured Text Motion Functions... 160
AXSJOG ... 161
MOVEAXS... 161
STOPJOG ... 161

Motion Direct 163
Motion Direct Overview.. 163
Motion Direct Driver Support ... 163
Motion Direct Features.. 164
Predefined Motion Direct Symbols ... 164

Axis Output Symbols .. 164
Axis Group Input Symbols.. 165

Running Application Programs 167
Runtime Subsystems ... 167
Running an Individual Program .. 167

Running the Active Program... 167
Canceling a Running Program .. 168

Configuring Programs to Execute Automatically.. 168
Starting Programs with a Batch file .. 168
Starting Programs with the Run With Restart Command.......................... 169

Monitoring Power Flow .. 169
Active RLL Programs ... 169
Active SFC Programs.. 170

Viewing the Status of Application Programs .. 170
Monitoring and Testing Application Programs ... 170

Parsing a Program ... 170
Watching and Forcing Symbols .. 170

vi • Contents ASIC-200 User Guide

Run with Debug ..171
Single Stepping a Program..171
Clearing Fault Mode and Error Conditions ...171

Program Operation Overview 173
Activate Configuration ..173
First Scan with Active Configuration ..173
Power-Down Sequence..173
Normal Operation..173
Initialization of Variables ..174
Program Execution Order ..174

Transferring Project to RunTime 175
Transferring Project to RunTime Procedure..175

Installing to a Different Path ...176
Other Considerations...177

Backup and Restore Project 179
Backup and Restore Project Overview ..179
Project Backup...179
Project Restore...179

File Types 181
File Type Descriptions...181

Trace 183
Trace Overview ...183
Logging Symbol Data..183
Trace Symbol Data ..185

On-Line Editing 189
On-Line Editing Operation..189
Rules..190

General ..190
Symbols...190
I/O ...191
RLL Programs...191
SFC Programs ...191
File Operations ..192
Structured Text Programs..192
Instruction List Programs ..193

System Options 195

ASIC-200 User Guide Contents • vii

System Options Dialog Box .. 195
Customize Text Editor... 198
IEC Style Locations... 200

UPS Configuration 203
Configuring the UPS ... 203

Dynamic Data Exchange (DDE) 205
About the DDE Interface... 205
DDE Communication with Microsoft's Excel ... 205

Transferring Data to Excel .. 205
Transferring Data to the Control System... 207
Transferring Values to the Control System upon Request 207

Network DDE Communication ... 208

OLE for Process Control (OPC) 211
OPC Server Overview ... 211
Using OPC... 211

Import/Export Configuration 213
Import/Export Introduction ... 213
Import/Export Support .. 213
Format ... 213
Exporting a CSV File .. 213
Importing a CSV File .. 215

Index 217

ASIC-200 User Guide Introduction • 1

Introduction

This user guide describes how to use the control system to develop and run
your application program, including:

Control Projects

IO Configurations

Symbol Configuration

RLL Programming

SFC Programming

Structured Text Programming

Instruction List Programming

Motion Programming

It also discusses system options, how to use an uninteruptable power supply
(UPS), DDE (Dynamic Data Exchange) and OPC (OLE for Process Control)
communication, and Import/Export features. For information on standard
functions and functions blocks, refer to the Language Reference. For
information on using the operator interface editor, refer to the HMI Guide.

ASIC-200 User Guide Projects • 3

Projects

Managing Projects
Projects let you logically organize your work. Each project contains a group
of program, configuration, and operator interface files that are used for a
common purpose. A project groups and organizes the application programs
and configuration files for a control application in a unique folder.

All project management functions are performed from the Program Editor.
The following notes pertain to projects:

• The Program Editor can have only one project open at a time.

• The project name should identify the common purpose of the files.

• The active project is displayed in the Program Editor window title bar.

Creating a New Project
1. Select New from the Project menu. The New Project dialog box appears.

2. Type the name of the new project and click OK.

4 • Projects ASIC-200 User Guide

Note: If there was an active project open it is closed and the new
project becomes the active project.

Opening a Project
1. Select Open from the Project menu. The Open Project dialog box appears.

2. Select the project you want to open and click OK.

When a project is opened it becomes the active project. The previously active
project is closed along with any open program files. When a project is
opened, all program files that were previously open in the project are opened
again, and the configuration file that was last active in that project is
activated.

ASIC-200 User Guide Projects • 5

Copying a Project
1. Select Copy from the Project menu. The Copy Project From dialog box

appears.

2. Select the project you want to copy and click OK. The Copy Project To
dialog box appears.

3. Type the name of the copy and click OK.

When a project is copied, all of the program, operator interface and
configuration files in that project are copied into the new project, and the
new project becomes the active project. Program files that were previously
open in the source project are copied to the new project and opened. The
configuration file that was active in the source project is copied to the new
project and activated.

6 • Projects ASIC-200 User Guide

Renaming a Project
1. Select Rename from the Project menu. The Rename Project From dialog box

appears.

2. Select the project you want to rename and click OK. The Rename Project
To dialog box appears.

3. Type the new name of the project and click OK.

After a project is renamed, it becomes the active project.

Activating a Configuration
1. Select Activate from the Project menu. The Select Global Configuration File

dialog box appears. It displays a list of configuration files defined for the
current project.

2. Select the configuration you want to activate and click OK.

ASIC-200 User Guide Projects • 7

ASIC-200 User Guide I/O Configuration • 9

I/O Configuration

Overview
The System Configuration dialog box is used to configure and display the
I/O hardware that is used across all the control programs in a given project.

The configuration tells the software what interface cards are in the computer
and what I/O are attached to those cards. For motion control applications, it
also contains information about what axes are present in the system and to
which cards they are attached. You assign symbol names to the I/O points
using the configuration editor and optionally enter comments regarding the
function of particular elements.

The configuration editor takes you step by step through the configuration
process. You start by naming the system (the computer) you are working on
and defining the program scan time. The PC slots follow this on the system
and the control system cards (not the basic computer cards) in each slot, and
then to each I/O module connected to the card, and finally the I/O points
and axes.

If a card is a communications card or I/O scanner, then the configuration
goes even deeper to describe remote racks, slots, boards etc.

The following figure shows the configuration levels for simple onboard I/O:

10 • I/O Configuration ASIC-200 User Guide

Help with Hardware Conflicts
There are several settings that must be properly configured to communicate
with most interface cards. The most common are the:
• data port address
• memory base address
• interrupt

For the interface card to work properly, the jumper or DIP switch settings on
the card must match the settings in the Define Board dialog box AND not
conflict with other hardware in the PC.

IMPORTANT:
The best way to determine what resources your current hardware devices
are taking up is to look in the NT Diagnostics in the Administrative Tools
menu. This displays most of the hardware resources that are in use on your
system. Be aware that some devices that are in use may not report this usage
to the NT diagnostics, and devices that are not currently in use will not be
reported. However, these devices still can cause conflicts. The NT
diagnostics are a good place to start.

Data Port
The data port is often used by the device driver to communicate with the
card. Some port addresses are standard across most PCs and should not be
used. The following is a list of common port uses:

COM1: 3F8-3FF
COM2: 2F8-2FF
COM3: 2E8-2FF
COM4: 3E8-3FF
LPT1: 378-37A
Floppy: 3F0-3F7
Video: 3B0-3BB and 3C0-3DF

Memory Address
The memory address is used to set-up a shared memory area for the interface
card. Normally memory from C800-DFFF will be available. This area
memory is normally used by special-function cards like the an interface card.
For example: if the card uses 4000 bytes hex of shared memory and starts at
D0000, it will use D0000-D3FFF.

Interrupt
The interrupt is used to communicate with the card. Valid interrupt values
are between 0 and 11.

ASIC-200 User Guide I/O Configuration • 11

Some interrupt levels are standard across most PCs. Here is a list of common
uses:

COM1 and COM3: IRQ4
COM2 and COM4: IRQ3
Floppy: IRQ6
LPT1: IRQ7

IRQ1 and 2 are always in use by the system hardware.

Configuration Files

Elements of a Configuration
I/O stands for Inputs and Outputs to and from the industrial controller. A
configuration lets you define the I/O structure and assign tag names to I/O
points and I/O ports. For applications with motion control the configuration
lets you define motion parameters. All configurations have a *.cfg file name.

All configuration operations are performed from the Program Editor.

Creating a New Configuration
• Select New Config from the File menu. The configuration dialog box

appears.

Editing an Existing Configuration File
1. Select Open Config from the File menu. The configuration dialog box

appears.

2. Edit the fields as desired and click Close and Save.

12 • I/O Configuration ASIC-200 User Guide

Activating a Configuration File
Select Activate Config from the Project menu to activate a new configuration
file for the active project. The name of the active configuration file is
displayed on the lower status bar of the Program Editor.

The active file is used by the runtime environment to determine the structure
of the I/O systems and global symbol naming. The active configuration file
is also used by the Program Editor to make system level Input, Output, and
Memory symbols available to the user while creating programs.

When a new configuration file is activated, active programs are cancelled if
information from the previously active configuration does not exist in the
new configuration. The activation of a configuration file is recorded in the
active project.

Whenever that project is opened, the active configuration file for that project
will be activated.

Saving a Configuration File
To save the active configuration

• Select Save from the File menu or click the save button on the editor
tool bar.

When you save a configuration for the first time, the Program Editor
displays the Save As dialog box, so you can name your configuration.
Otherwise, if you want to change the name or folder of the active
configuration before you save it, use the Save As file command.

To save a configuration with a new name
1. Click File and select Save As.

2. The Program Editor displays the Save As dialog box so you can change
the name of the configuration and folder.

To save a configuration to a previous release format
You can save a configuration to an earlier format to insure compatibility with
a target runtime system that is of an earlier release than the development
system, for example.

1. Click File and select Save As.

2. The Program Editor displays the Save As dialog box so you can change
the name of the configuration and folder. Additionally, you can change
the file type to ASIC Revision 4.01.

When you save a file to revision 4.01 (or any revision less than the current
revision), any features in the current version that are not in the previous
version you are saving to are permanently removed. Even if you open the
file in a version you originally created it in, these features will not be present.

ASIC-200 User Guide I/O Configuration • 13

Configuration Utility

System Configuration
To edit the system configuration, select the System item in the configuration
tree. Using the System Configuration dialog box, you can provide a system
name to the configuration. The file name must be a valid DOS type eight
character name. No spaces are allowed. The system name in the example
shown below is Washer.

Configuration files are stored by default in the current project directory.

I/O Scan Rate
You configure the I/O scan interval in the System Configuration dialog box.
The I/O scan specifies the intervals at which control programs update the
I/O and execute program logic. Lower priority Windows tasks are
interrupted by the I/O scan. At each I/O scan, active control programs begin
execution and run until completion.

Before program logic is solved, the I/O scanner reads inputs. After the
control logic is executed, outputs are written. The executing time of control
logic is variable, since the numbers and type of instructions active in any I/O
scan interval is variable. Once outputs are updated, the control task is
suspended and other lower priority NT tasks resume execution.

When defining a scan rate, consider:

• Minimum input pulse width - the minimum time an input must
maintain a state to be recognized by the software.

14 • I/O Configuration ASIC-200 User Guide

• Minimum throughput - the minimum time for the control system to
produce a change in state of an output in response to a change in state of
an input.

• Maximum throughput - The maximum time for the control system to
produce a change in state of an output in response to a change in state of
an input.

Motion Options
To edit motion options, click on Motion Options in the Configuration Utility.
The Motion Options dialog box allows you to enter optional motion
configuration settings. Some of these options were developed for specific or
customized applications and may not apply to your application. For more
information, refer to Configuring Motion Options.

Option Description
Suspend on Spindle
Commands

In an RS-274D program, suspends motion execution
whenever spindle (S, M3, M4 or M5) commands are
executed. Refer to Using the Suspend on Spindle
Commands Feature for more information

ASIC-200 User Guide I/O Configuration • 15

Option Description
Suspend on Tool
Changes

In an RS-274D program, suspends motion execution
whenever a tool (T) command is executed. Refer to Using
the Suspend on Tool Changes Feature for more
information.

Define MFlag Symbols Configures the control system to generate global motion
symbols Refer to Using the Define M Flag Symbols Feature
for more information.

Wait on All M Codes The control system software has the ability to wait on RS-
274D M Codes. Once the M code processing is done, the
control system software lets the application program wait for
your logic to inform the system that the operation has
completed and for execution to resume with the next
sequential RS-274D block. Refer to Using the Wait on All M
Codes Feature for more information.

Don't Process M Codes The control system software supports the special M code
functionality as described in the RS-274D specification.
Clicking this check causes the application program to ignore
the following M codes:
M3 (spindle positive)
M4 (spindle negative)
M5 (spindle stop)
Refer to Using the Do Not Process M Codes Feature for
more information.

Advance after Single
Step

Advance the motion block pointer to the next block.

Allow Jog Speed changes
on the fly

For MEI controllers only. Allows jog speed changes without
having to come to a stop first.

Parse during PRGCB
GEN function

When generating an SFC program from an NC program,
parses the SFC program as well.

Using the Define Board Dialog
1. From the configuration dialog box, click Define Board.

2. Set the board attributes as appropriate and click OK.

16 • I/O Configuration ASIC-200 User Guide

Using the Connector Dialog
Each type of I/O board has a slightly different dialog box for configuring
I/O points. For more specific information about configuring I/O points, see
the help file for the driver you are using.

A name given to an I/O point appears in the symbol list when using the
Program Editor along with the hardware definition information.

ASIC-200 User Guide Symbol Configuration • 17

Symbol Configuration

Symbols
Constants, variables, and function block instances are given symbolic
(identifier) names by the programmer. I/O points are given symbolic names
in the I/O configuration. System-defined variables (e.g., run-time variables)
are given symbolic names by the programmable control system. Collectively,
the term symbol refers to these items. Each symbol has an associated data
type. Furthermore, symbols have a scope (global or local) and associated
properties.

Symbols are defined and viewed in the Symbol Manager. The content of the
information is defined by the data type and can be real, integer, string of
characters, etc. The scope of a symbol can be local to a program or global.
Global symbol definitions are stored in the active configuration file. Local
symbol definitions are stored within the application program file. I/O points
and system and run-time symbols are predefined and can be viewed and
used in programs, but not edited. They appear as global symbols.

Refer to the following table for a description of symbol types.

Symbol Types Description
Local symbol A local symbol can be referenced only within the

program in which it is defined or in macro steps called
by an SFC program. The program must be open for
you to define local symbols to be used within in it. You
cannot access a local symbol within the Operator
Interface or for DDE operations.

Global symbol All programs within a project can reference a global
symbol. You can use global symbols within the
Operator Interface and for DDE operations

18 • Symbol Configuration ASIC-200 User Guide

Symbol Types Description
I/O points I/O points are external locations. Because you can

reference them in a program just like symbols, I/O
points appear in the Symbol Manager and are listed
as global symbols.
I/O points function like global symbols: you can
reference them from any program, and you can use
them within the Operator Interface and for DDE
operations. I/O symbols can only be edited from the
Configuration Utility; you cannot edit an I/O point from
within the Symbol Manager.

Function blocks Most function blocks need to be instantiated. To be
used in Structured Text or Instruction List programs,
an instance of the function block type must be
explicitly declared in the Symbol Manager.

System objects (PID,
PRGBC, and TMR)

These need to be instantiated. To be used in
Structured Text, an instance of the system object type
must be explicitly declared in the Symbol Manager.

Note: Refer to the Language Reference for information on identifiers, data
types, literals, type conversion, generic data types, pointers, and system
keywords.

User-Defined Data Type
For more sophisticated data handling, you can create your own structured
data types. A structure can contain several members of different base types
or user-defined structured types. Consider a user-defined structure named
UserStructure01 having and integer type USInt member, a Boolean type
USBool, and a string type USString. The individual members can be accessed
in the following manner:

UserStructure01.USInt:=101;
UserStructure01.USBool:= TRUE;
UserStructure01.USString:="ABC";

User-defined types are valid anyplace that accepts an ANY or USER-
DEFINED data type. Refer to Editing User-Defined Data Structure Types
for more information.

Arrays
To access a particular element of an array, enter the symbol name followed
by square brackets with the number of the element you wish to access. For
example to access the fifth element of an array symbol called Myarray you
would type Myarray[5]. This is assuming you have defined the lower bound
of the array as 1. You can also index into an array by placing a symbol name
of type INT inside the square brackets.

ASIC-200 User Guide Symbol Configuration • 19

Pointer Symbols
Structured Text has two pointer operators: the pointer reference & operator
and the pointer dereference * operator. These operators are used in indirect
addressing operations.

In programming languages, data values are typically referred to by symbolic
name. This is known as direct addressing. The data value is given a symbolic
name and that symbolic name is used to directly access that data value.

X := Y;
The data value known as X is assigned the value of the Y data value.

Indirect addressing is a common paradigm in programming languages.
When using indirect addressing, the symbolic name refers to the location
where the data value is stored. These indirect symbols are commonly called
pointer symbols. To get the actual data value using indirect addressing, the
symbolic name of the pointer symbol is used to obtain the location of the
data value, then the location of the data value is used to get the actual data
value (an indirect operation).

If pVar1 is a pointer symbol, then in the following assignment, pVar1 is
assigned the location of the X data value.

pVar1 := & X;
If pVar1 is a pointer symbol, then in the following assignment, Y is assigned
the value contained in Var1, since pVar1 contains the location of Var1.

Y := * pVar1;
If pVar1 is a pointer symbol, then in the following assignment,Var1 is
assigned the value contained in Y.

* pVar1 := Y;
Refer to the Language Reference for complete information on pointers and to
Structured Text Programming for information on using pointers in
structured text statements.

Symbol Manager
The Symbol Manager is used to view, create, edit, copy, and delete variable
and constant symbols, and function block instances. I/O points and system
symbols can be only be viewed. The Symbol Manager displays a list of local
symbols defined in the active file and global symbols defined in the active
configuration.

Using drag and drop techniques, the Symbol Manager can be used to add
symbols into Structured Text program statements, Instruction List program
statements, or RLL program contacts and coils. You can also drag and drop
symbol information to other OLE capable software programs, such as

20 • Symbol Configuration ASIC-200 User Guide

Microsoft WordPad, Word, Excel and others. Symbols can also be selected
from lists in various dialog boxes.

Opening the Symbol Manager
To Open the Symbol Manager
• Select Symbol Manager from the Program Editor or Operator Interface

Editor Tools menu.

 Notes:
1. The Symbol Manager can also be opened from various dialog

boxes in the editors.
2. You cannot have the Symbol Manager open in both the Program

Editor and Operator Interface Editor.

The following figure shows an example of the Symbol Manager. The
description of I/O and memory symbols is displayed in table format. In front
of each symbol name is a G for global symbols or an L for local symbols. An
asterisk (*) preceding the symbol name indicates it is a pointer symbol. If the
symbol name corresponds to an I/O point, the board information is
displayed in the appropriate column.

ASIC-200 User Guide Symbol Configuration • 21

Symbol Manager Controls

Control Description
Local
Global

If checked, that symbol type is displayed in the symbol list.

Board Info If checked, the board info is displayed (interface board,
rack, etc.).

List Types Filters the symbol list by data type and function block type.
Add Local Create and add a local symbol.
Add Global Create and add a global symbol.
Copy Symbol Copy the currently selected symbol.
Delete Symbol Delete the currently selected symbol.
Close Close the Symbol Manager.
Apply Makes symbol edits visible outside the Symbol Manager.
Help Displays Symbol Manager help.
Print Locals Prints a list of local symbols.
Print Globals Prints a list of global symbols.
Local User Types Creates a local user type.
Global User Types Creates a global user type.

Creating a Symbol
To create a new symbol
• Click either the Add Local or Add Global button, or use the context menu

within the symbol list. The Symbol Details dialog box appears. Enter the
appropriate information in the Symbol Details dialog box and click OK.
The new symbol will appear in the symbol list.

If a program is not open, you can create only global symbols. If any program
is open, you can create both local and global symbols. A local symbol can be
used only by the program that is open (active) when you define the symbol.

Note: When done editing symbols, be sure to click Apply to make the
changes visible outside the Symbol Manager.

Editing a Symbol
1. Select the symbol you want to edit and press Enter, or double-click on

the symbol.

2. The Symbol Details dialog box appears.

3. Modify information and click OK to accept changes.

Note: When done editing symbols, be sure to click Apply to make the
changes visible outside the Symbol Manager.

22 • Symbol Configuration ASIC-200 User Guide

Copying a Symbol
You can quickly create a new symbol with the same properties as an existing
symbol by using the copy command.

1. Select the symbol you want to copy.

2. Click the Copy Symbol button or use the context menu. The Symbol Details
dialog box opens with all the parameters filled in exactly as in the
selected symbol.

3. A new symbol name must be entered. Type a new symbol name, make
any other needed changes, and click OK.

Note: When done editing symbols, be sure to click Apply to make the
changes visible outside the Symbol Manager.

Deleting a Symbol
• Select the symbol you want to delete and click the Delete Symbol button

or use the context menu.

Note: When done editing symbols, be sure to click Apply to make the
changes visible outside the Symbol Manager.

Symbol Details

ASIC-200 User Guide Symbol Configuration • 23

Symbol Details

Field Description
Symbol Name Any valid identifier can be used for the symbol name.
Type The elementary or user-defined structure data type, or

function block type of the symbol. Refer to Error! Reference
source not found. for more information.

Edit User Type If the symbol is defined as a user type, this button is
enabled and the user type can be edited. Refer to Editing
User-Defined Data Structure Types for more information.

Array If checked, defines the symbol as an array. Provide upper
and lower bounds for the array. Refer to Arrays for more
information.

Pointer If checked, defines the symbol as a pointer. Refer to Pointer
Symbols for more information.

Indexed Bit The indexed bit feature lets you reference a specific bit
within a byte, word, or double word symbol. Refer to
Naming a Bit in a Symbol.

Initial Value Used to provide an initial value for the symbol. A local
symbol is reset to its initial value each time the program is
run. A global symbol is assigned its initial value when the
configuration is activated.

Comment The comment is a short description that appears within the
Symbol Manager.

Description The description can be longer than the comment, but it does
not appear in the Symbol Manager, only in the Symbol
Details dialog box.

Naming a Bit in a Symbol
The indexed bit feature lets you reference a specific bit within a byte, word,
or double word symbol. You can index a global symbol only with a global bit
and a local symbol with a local bit.

1. Open the Symbol Manager and click the Add Global or Add Local button.
The Symbol Details dialog box appears.

2. Enter the name of the bit in the Symbol Name field.

3. Select the BOOL data type in the Type field.

4. The Indexed Bit check box is only enabled if you have at least one symbol
of type BYTE, WORD, or DWORD already defined. Select the Indexed Bit
check box. The Source and Bit # fields become active.

5. The Source list shows all defined symbols of BYTE, WORD, and DWORD
data types (for either Global or Local symbols). Select the symbol that
you want to index in the Source field.

6. Enter the bit number in the Bit # field. Valid values are 0-7 for bytes, 0-15
for words, and 0-31 for double words.

24 • Symbol Configuration ASIC-200 User Guide

7. Enter the optional description into the Description field.

8. Click on the OK button. The indexed bit appears in the Symbol List field.

Editing User-Defined Data Structure Types
You can define your own stucture data types to organize data or to operate
on the data as a group with certain operations (e.g., file operations). A user-
defined structure data type consists of a group of data type members
(integers, real numbers, strings, etc., or even other user-defined structure
data types. Structure members do not have to be of the same data type. For
example, you can define a structure data type called Report. It consists of
three members called Year, Task, and ItemNumbers. Year and ItemNumbers
are integers and Task is a string. You can then use a symbol of the Report
data type in any program, and the data it contains consists of three members
that represent a year, a task name, and a number.

User-defined structure data types can be global or local. A local data type can
be used only by the program that is open (active) when you define the data
type.

Once you have defined data structure types, they will be added to the Types
list box in the Symbol Manager. You can now define one or more variable
data structures of that data structure type (e.g. mystruct : struct1). You
reference the members within your structure in an application program
using dot notation. The format is “struct.member” (e.g. mystruct.x).

You can define a structure that contains other structures as members, but a
structure cannot contain itself in any way. For example if you defined
structure type struct2 that contained a member a : struct1 and b : INT and a
variable data structure c : struct2, then you can reference variables
c.a.x(BOOL) and c.b(INT).

Note: The names of the structure members must be unique so that they will
not conflict with other global or local variable names or structure members.
You should try to create structure name in uppercase letter to follow the
convention.

To edit user-defined data types
1. Open the Symbol Manager

2. Click on Local User Type or Global User Type. The respective User Types
dialog box appears. It lists defined user types (either local or global) and
provides buttons to add, edit, and delete user types.

ASIC-200 User Guide Symbol Configuration • 25

3. Do any of the following:

• To create a new type, click Add Type. The Edit User Type dialog box
appears.

• To edit a user type, select the type name and click Edit Type. The Edit
User Type dialog box appears.

• To delete a user type, select the type name and click Delete Type.

26 • Symbol Configuration ASIC-200 User Guide

Edit User Type

Field Description
Type Name Displays the user type. If adding a user type, enter the

type name.
Ordered member list Displays a list of the type members.
Add Member Adds a new member. Displays an Edit Type Member

dialog box in which to assign a name and data type to
the member.

Delete Member Deletes the selected member.
Edit Member Edits the selected member. Displays an Edit Type

Member dialog box in which to assign a name and data
type to the member.

Move Up
Move Down

Moves the selected member up or down in the ordered
list.

Using Symbols
You can manually enter symbol names where needed by typing the symbol
name. However, they can be more easily added using symbol list boxes that

ASIC-200 User Guide Symbol Configuration • 27

appear (for example in the RLL editor), or dragging them from the Symbol
Manager (into Structured Text or Instruction List documents).

Drag-and-Drop
Drag-and-drop features of the Symbol Manager allow you to do the
following:

• You can drag a Boolean symbol onto an RLL rung. You are prompted to
add the symbol as a contact or a coil. When you select contact or coil, the
standard Edit Contact or Edit Coil dialog box appears.

• You can drag a Boolean symbol onto an existing RLL contact or coil. You
are prompted to replace the existing contact or coil symbol with the one
you have dragged from the Symbol Manager.

• You can drag symbols from the Symbol Manager directly into a location
in a Structured Text or Instruction List document.

Enumerations
For symbols that have member elements (structures, function blocks, and
system objects), when a symbol of that type is dragged from the Symbol
Manager into a Structured Text document (for example), the Select Symbol
Members list appears. You can then drag-and-drop the member element you
want to use from this list. This also works when adding symbols (that have
member elements) to the Watch Window.

28 • Symbol Configuration ASIC-200 User Guide

System Symbols

Predefined System Symbols
The system software automatically creates the following symbols that can be
used with application programs.

Symbol Description
TODAY Contains the current system date.

The TODAY system symbol is a DATE data type that contains
the current system date and can be used to determine when
an event takes place. The following operators can be used
with the TODAY symbol: EQ, LT, GT, LE, GE, and NE. Use
the assignment statement or MOVE command to define a
value for TODAY. Use the ADD command to add a time
duration to TODAY.

NOW Contains the current system time.
The NOW system symbol is a TOD data type that contains the
current system time and can be used to determine when an
event takes place. The following operators can be used with
the NOW symbol: EQ, LT, GT, LE, GE, and NE. Use the
assignment statement or MOVE command to define a value
for NOW. Use the ADD command to add a time duration to
NOW.

NULL Used to set a pointer symbol to a null value or to compare a
pointer symbol (equal or not equal) to a null value.

TMR Variables These variables contain status information for the TMR data
type.

Counter Variables These variables contain status information for RLL counters
(CTD, CTU, and CTUD). These symbols are Local to the
application program.

Timer Variables These variables contain status information for RLL timers
(TOF, TON, and TP). These symbols are Local to the
application program.

"stepname".X Contains the active/inactive status of an SFC step. These
symbols are Local to the application program.

"stepname".T Contains the elapsed execution time of an SFC step. These
symbols are Local to the application program.

Motion Control These variables contain status information for the axis,
axis variables group, program control, and spindle

File Control Block These variables contain status information for file operations.
Program Control These variables contain the status information for the PRGCB

data type.

ASIC-200 User Guide Symbol Configuration • 29

Run-Time Symbols
The following symbols are automatically created by the system software.
These symbols are accessible from the Symbol Manager or the Watch
Window and can be used in user application programs.

Symbol Name Description
RT_ERROR (INT) Math errors:

0 = no error
1 = divide by zero
2 = negative square root
RT_ERROR must be cleared by the user.

RT_FIRST_SCAN (BOOL) set to TRUE on the first scan of the first program
running in the ASIC run-time engine. After all programs
are aborted, RT_FIRST_SCAN will be set again for the
first scan of the first program to run.

RT_SCAN_OVERRUN (BOOL) set to TRUE when I/O scan + logic scan exceed
scan rate.

RT_MAX_SCAN (REAL) duration in milliseconds of maximum run-time
engine scan.

RT_LAST_SCAN (REAL) duration in milliseconds of last runtime engine
scan.

RT_AVG_SCAN (REAL) duration in milliseconds of average runtime
engine scan (runtime scan= logic + I/O + overhead).
Rolling average calculated over the last 100 scans.

RT_LOGIC_MAX (REAL) duration in milliseconds of maximum logic scan.
RT_LOGIC_LAST (REAL) duration in milliseconds of last logic scan.
RT_LOGIC_AVG (REAL) duration in milliseconds of average logic scan.

Rolling average calculated over the last 100 scans.
RT_IO_MAX (REAL) duration in milliseconds of maximum I/O scan.
RT_IO_LAST (REAL) duration in milliseconds of last I/O scan.
RT_IO_AVG (REAL) duration in milliseconds of average I/O scan.

Rolling average calculated over the last 100 scans.
RT_MEM_PCT (REAL) contains remaining percentage of system RAM

(heap space) allocated for the programmable control
system software.

RT_LOW_BATTERY (BOOL) low battery signal from UPS.
RT_POWER_FAIL (BOOL) power fail signal from UPS.
RT_SCAN_RATE (REAL) configured scan rate of (in milliseconds) as set in

the active configuration.

ASIC-200 User Guide Application Programs • 31

Application Programs

Managing Application Programs
Program management lets you create and save Relay Ladder Logic (RLL),
Sequential Function Chart (SFC), Structured Text (ST), and Instruction List
(IL) programs. You can open many programs at the same time. The active
program is displayed on the Program Editor title bar.

Creating a New Program
To create a new program in a new window
1. Select New Editor from the File menu or click the new program button

 on the editor tool bar. A dialog box appears that lets you specify a
new Relay Ladder Logic (RLL) program, Sequential Function Chart
(SFC), Structured Text Document, or Instruction List Document.

2. Select the type of program you want to create and click OK. A new editor
window of the appropriate type opens. The program is given a default
name (RLL1, for example).

You can open many programs at the same time. Use the Window menu to
switch between open programs or use the mouse to click on a partially
visible program and bring that program's window to the top.

32 • Application Programs ASIC-200 User Guide

Opening a Program
Each program is opened in its own editor window.

To open an existing program
1. Select Open Editor from the File menu or click the open program button

 on the editor tool bar. An Open dialog box appears displaying the
programs in the current project.

2. If no project is active when a file open command is executed, the new
project or the open project dialog box is displayed.

3. From the Files of type list, select the type of program you want to open.

4. Select a file from the list box, then click OK to open it.

You can open many programs at the same time. Use the Window menu to
switch between open programs, or use the mouse to click on a partially
visible program and bring that program's window to the top.

Viewing Programs
When a program is opened, the contents of the program are displayed in a
window. You can open many windows of the same program. Open
programs are listed under the Window menu.

To access other open programs in Program Editor
• Select the program from the list under the Window menu.

ASIC-200 User Guide Application Programs • 33

Note: You can also use the mouse to click on a partially visible
program and bring that to the front.

Commands that are executed from the menus or by pushing buttons on the
tool bars are performed on the active program.

To view a new window of an open program
• Click Window on the menu bar and select New Window.

Saving a Program
To save the active program

• Select Save from the File menu or click the save program button on
the editor tool bar.

When you save a program for the first time, the Program Editor displays the
Save As dialog box, so you can name your program. If you want to change
the name or folder of the active program before you save it, use the Save As
file command.

To save a program with a new name
3. Click File and select Save As.

4. The Program Editor displays the Save As dialog box so you can change
the name of the program and folder.

To save a program to a previous release format
You can save a program to an earlier format to insure compatibility with a
target runtime system that is of an earlier release than the development
system, for example.

1. Click File and select Save As.

3. The Program Editor displays the Save As dialog box so you can change
the name of the program and folder. Additionally, you can change the
file type to ASIC Revision 4.01.

When you save a file to revision 4.01 (or any revision less than the current
revision), any features in the current version that are not in the previous
version you are saving to are permanently removed. Even if you open the
file in a version you originally created it in, these features will not be present.

Note: When saving an SFC program with macros, only the main SFC (and its
actions) is saved in the previous release format; if necessary, each macro
must be opened and saved as the previous release format.

34 • Application Programs ASIC-200 User Guide

Printing a Program
Programs can be printed as needed. Printing options allow you to add
descriptive information to the printed sheet, view a print preview, and scale
the diagram if necessary. Before printing RLL and SFC diagrams you should
look at the print preview to see if there would be awkward page breaks and
scale or adjust the diagram if possible. As a further aid, Print Boundaries can
be displayed (a toggle item on the View menu) in normal view mode that
show the edges of the printable page.

To perform printer setup
• Focus on the program of interest and choose Print Setup from the File

menu. The Print and Title Block Setup dialog box appears. Refer to the
table for descriptions.

Note: The print setup of each program is saved with the diagram, meaning
each can have its own print properties. However, you can also specify a print
setup as the default - any newly created programs will use the default print
setup until you edit it.

Field Description
Company
Name
Additional
Company
Information
Engineer/
Technician
Description

Space is available at the bottom of each print out for this
descriptive information. These fields can be edited to include any
descriptive information you wish to include with the printed
diagram. These fields are also displayed in the Print Preview.

ASIC-200 User Guide Application Programs • 35

Field Description
Actions/
Transitions

Appears only for SFC diagrams. You can enable or disable
printing of action and transition code as well as select whether or
not they are scaled the same as the parent SFC diagram. They
are printed on separate sheets.

Scaling Percent scaling of the program. You can adjust this as needed or,
by selecting Fit to, automatically scale a diagram to fit a specified
number of pages. Scaling is always the percent reduction or
magnification of the normal size. Fit to will never magnify a page.

Current
Printer
Settings

These are the settings from the Printer Setup. To change any of
these, click Printer Setup.

OK Accepts the Print and Title Block Setup and returns to the Program
Editor.

Cancel Cancels any Print and Title Block Setup changes and returns to
the Program Editor.

Printer
Setup

Displays the standard Windows printer setup dialog box.

Set as
Default

Saves the current Print and Title Block Setup as the default. Any
new programs will inherit these properties.

To view a print preview
• Focus on the program of interest and choose Print Preview from the File

menu or tool bar. The diagram window changes to a print preview of the
diagram. You can print, browse through the pages (if more than one),
toggle between one page/two page display mode, zoom in and out, and
close the print preview.

Print preview shows exactly how the page will be printed, including the
coordinates and print and title block setup fields.

To print a program
• Focus on the program of interest and choose Print from the File menu or

tool bar (or from the print preview). The standard Windows print dialog
box appears. Make any changes to the print options and click OK to print
the program.

Printing Program Cross-References
This lists symbol usage for a program. It lists all symbols in a configuration,
the number of times they are used in the program, and their location in the
program. For example, the rung number and contact or coil type for an RLL
program.

To print program cross-references
• Select Print Xref from the File menu.

36 • Application Programs ASIC-200 User Guide

Closing Application Programs
To close a program
• Select Close from the File menu.

Panning and Zooming
To pan a diagram
• Use the horizontal and vertical scroll bars to bring the area of the

diagram of interest into view.

• Alternatively, the Page Up and Page Down keys can be used to scroll
vertically; the Home and End keys can be used to scroll horizontally.

•

To magnify the a diagram, do any of the following
• Restore the zoom level to 100% by toggling Zoom from View menu off or

use the magnifier icon.

• Choose Zoom, then one of the zoom percentages from the View menu, or
use the zoom icon as shown in the figure.

• Click Scale to Fit Window from the View menu or zoom icon to scale the
diagram to fit the work space area.

• Toggle between 100% zoom level and the last selected zoom level by
selecting Zoom from the View menu or use the magnifier icon.

Note: The zoom value appears in the status bar.

To locate a program element using zooming
1. Zoom the program to fit the window.

ASIC-200 User Guide Application Programs • 37

2. Select the desired element.

3. Toggle zooming off. The selected element is positioned as close to the
center of the window as possible.

Turning Comments On and Off
Descriptive comments can be added to application programs to document
functions of the program. RLL and SFC program comments can be displayed
or hidden. The View Comments toggle affects all open programs.

To toggle program comments
• Select Program Comments from the View menu or click View Comments

button on the tool bar.

Note: A check mark next to Program Elements and a depressed View
Comments button indicates that comments are visible.

Selecting Program Elements in SFC and RLL Editors
• You can use area selection to select program elements by positioning the

cursor at one corner of a rectangular area that will be drawn to select the
elements, then clicking-and-dragging to the other corner and releasing
the mouse button. All program elements completely within the
rectangular area are selected.

• While using area selection, auto-scrolling is enabled. That is the view
boundaries are repositioned as if you were using the scroll bars.

• After selecting one or more elements, you can reposition them by
dragging to another part of the diagram. If you drag past the view
boundaries in any direction, auto-scrolling is enabled.

• If you position the cursor outside the view boundary while using area
selection or element dragging, after 5 line scrolls, all further scrolls will
be page scrolls. Scrolling in the opposite direction or returning the cursor
inside the view boundaries resets to normal scrolling.

ASIC-200 User Guide RLL Programming • 39

RLL Programming

About Structuring RLL Application Programs
Relay Ladder Logic (RLL) diagrams are commonly used on programmable
controllers to construct continuous logic programs. RLL diagrams are
designed to resemble the electrical diagram for an equivalent electrical relay
logic circuit.

The RLL diagram contains two vertical power rails. The left power rail is
assumed to be an electrical current source and is energized whenever the
RLL program is running. The power rail on the right is assumed to be an
electrical current sink. The two power rails are connected by horizontal lines
called rungs (like the rungs of a ladder) on which the logical instructions are
placed.

The basic RLL program instructions, contact and coils, represent actual
hardware components (limit switches, solenoid coils, lights, etc.) and single-
bit internal memory locations.

40 • RLL Programming ASIC-200 User Guide

RLL diagrams use input contacts to represent Boolean input symbols
(variables). These contacts act as:

• Normally open (active high), which means that current passes to or
energizes the RLL element to its right when the symbol associated with it
is high (1 or on).

• Normally closed (active low) relay contacts, which means that current
passes to or energizes the RLL element to its right when the symbol
associated with it is low (0 or off).

These inputs usually have the name of the Boolean symbol they represent
located above the graphical element. They are variations of the input contact,
including transition sensing contacts that pass current to the next element for
only one scan of the RLL program.

RLL diagrams use output coils to represent Boolean output variables. If the
logic to the left of an output coil is energized (set true), the Boolean symbol
represented by the output coil receives a Boolean 1 (high); otherwise, it
receives a Boolean 0 (low). Variations of the coil element exist, including
inverting and pulsed (single scan outputs. Some output coils are latching and
only set (or reset) the output variable to true (or false) if the logic to the left is
true.

RLL logic elements that reside on the same horizontal rung are assumed to
be logically ANDed together. Function blocks are provided to facilitate
complex operations that use more than one Boolean symbol.

ASIC-200 User Guide RLL Programming • 41

Relay Ladder Logic Instructions
Relay Ladder Logic consists of:
• "Relay Contacts" on page 41
• "Relay Coils" on page 42
• Function blocks, refer to the Language Reference.

Relay Contacts
The contact typically represents a discrete input point, such as a limit switch.
A contact can also represent an internal memory location, and as such, it is
termed a Boolean. The contact can have one of two states: TRUE or FALSE.
You refer to the contact in your program and the object that it represents by
its symbolic name, which you assign in the Symbol Manager. You can assign
the same symbolic name to a contact and a coil, and the output from one
rung can serve as an input to another rung.

Normally Open Contacts

The normally open contact operates as follows:

• The contact passes power flow if the point that it represents is TRUE.

• The contact does not pass power flow if the point that it represents is
FALSE.

 Normally Closed Contacts

The normally closed contact operates as follows:

• The contact passes power flow if the point that it represents is FALSE.

• The contact does not pass power flow if the point that it represents is
TRUE.

 Positive Transition Sensing Contact

The positive transition sensing contact operates as follows:

• The contact passes power flow if the point that it represents transitions
from FALSE to TRUE immediately prior to the evaluation of the contact.
Otherwise, the contact does not pass power flow.

• The contact cannot pass power flow again until the point that it
represents transitions from FALSE to TRUE again.

42 • RLL Programming ASIC-200 User Guide

 Negative Transition Sensing Contact

The negative transition sensing contact operates as follows:

• The contact passes power flow if the point that it represents transitions
from TRUE to FALSE immediately prior to the evaluation of the contact.
Otherwise, the contact does not pass power flow.

• The contact cannot pass power flow again until the point that it
represents transitions from TRUE to FALSE again.

Relay Coils
The coil typically represents a discrete output point, such as a solenoid. A
coil can also represent an internal memory location, and as such, it is termed
a Boolean. You refer to the coil in your program and the object that it
represents by its symbolic name, which you assign in the Symbol Manager.
You can assign the same symbolic name to a contact and a coil, and the
output from one rung can serve as an input to another rung. You can place
multiple coils on a single rung, and the status of one coil is not affected by
the status of the others.

 Output Coils

The output coil operates as follows:

• The coil sets the point that it represents to TRUE when the coil has
power flow.

• The coil sets the point that it represents to FALSE if the coil does not
have power flow.

 Negated Output Coils

The negated output coil operates as follows:

• The coil sets the point that it represents to TRUE when the coil does not
have power flow.

• The coil sets the point that it represents to FALSE if the coil has power
flow.

ASIC-200 User Guide RLL Programming • 43

 Set (Latch) Coil

The set (latch) coil operates as follows:

• The coil sets the point that it represents to TRUE when the coil has
power flow.

• The point continues to be TRUE (the point is set, or latched) even when
the coil no longer has power flow.

• The point can be set to FALSE only by a reset coil.

Reset (Unlatch) Coil

The reset (unlatch) coil operates as follows:

• The coil sets the point that it represents to FALSE when the coil has
power flow.

• The point remains FALSE (the object is reset, or unlatched) even when
the coil no longer has power flow.

• The point can be set to FALSE only by a reset coil.

 Positive Transition Sensing Coil

The positive transition sensing coil operates as follows:

• When power flow to the coil transitions from FALSE to TRUE, the coil
sets the point that it represents to TRUE.

• The point remains TRUE, unless it is set to FALSE elsewhere, for the
duration of one scan cycle.

 Negative Transition Sensing Coil

The negative transition sensing coil operates as follows:

• When power flow to the coil transitions from TRUE to FALSE, the coil
sets the point that it represents to TRUE.

• The object remains TRUE, unless it is set to FALSE else where, for the
duration of one scan cycle.

44 • RLL Programming ASIC-200 User Guide

Jump Coil/Label

Use the jump and label elements to disable sections of program code
temporarily. You must use the jump coil and label together. A label without
a jump coil causes a runtime error. The jump coil and label operate as
follows:

• When a jump coil receives power flow, program execution ignores all
logic between the jump coil and its corresponding label.

• When a jump coil is actively skipping logic, outputs between the jump
coil and the label are not activated.

• All logic between a jump coil and label is executed normally when the
jump coil does not receive power flow.

• Program execution cannot jump backwards to a previous rung.

Note: If you do not close a jump coil with a label, power flow jumps
to the end of the program and does not execute any code following
the jump coil.

SFC Transition Coil

The SFC transition coil is an RLL program element that you can use only
under specific conditions (within an SFC Action) in an SFC program. The
SFC transition coil, which executes similarly to the jump element described
above, operates as follows.

You use the SFC transition coil in an RLL Action associated with a Step or a
Macro Step.

• Associated with a Step – When the SFC transition coil receives power
flow, the Structured Text within the Step is cancelled, and program
execution jumps to the SFC label specified in the SFC transition coil.

• Associated with a Macro Step – When the SFC transition coil receives
power flow, the child SFC called by the macro step is cancelled and
program execution in the parent SFC (the SFC with the macro step)
jumps to the SFC label specified in the SFC transition coil.

ASIC-200 User Guide RLL Programming • 45

How RLL Application Programs are Solved
This topic explains how RLL programs using simple relays and function
block are solved.

How Relay Logic is Solved
After the system writes to the physical outputs, it reads physical inputs and
then solves the RLL logic. Power flow and solving of the program logic is
always from top to bottom and from left to right. In the following example,
power flow begins at the left power rail. If contact vlv1 is on, power flow
continues to contact pmp1. The three contacts, vlv1, pmp1, and agit1 are in a
series and represent the logical ANDing of the three contacts. Contact bt1 is
in parallel with contacts vlv1 and pmp1, representing the logical OR of bt1
with vlv1 and pmp1. If contact bt1 is on, power flow continues to agit1, even
if vlv1 is not on. If power flow continues to coil sys1, then it turns on the
circuit, completing power flow to the right rail.

46 • RLL Programming ASIC-200 User Guide

How Function Blocks Are Solved
Function blocks provide a mechanism for solving more complex operations
not easily handled by contacts and coils, such as:

• math operations

• logic functions

• counters and timers, etc.

Function block inputs receive power flow from the rung and transfer power
flow to the next element on the rung through their outputs. They can also
read and write data from their internal inputs and outputs. In the following
example, the division function block (DIV) is enabled by its rung input EN,
which receives power flow when contact I75 is enabled. It receives divisor
and dividend data through two internal inputs (IN1, IN2). The function
block writes the quotient to an internal output (OUT) and transfers power
flow to the next program element, Q44, through its rung output (ENO).

Extensions to IEC 1131-3 Ladder Diagrams
Extensions to the IEC-1131-3 standard Ladder Diagram language include:

• Output Coils can be placed anywhere on a rung, and:

• store the partial Boolean result evaluated up to that point

• pass power on to the next element to the right

• You can use "OR" branches that do not contain any logical elements to:

• shunt around a block of logic without deleting it

• generate compiler warnings that signal possible omission of
elements

Creating Relay Ladder Logic Programs
This section provides information about:
• "Creating an RLL Program" on page 47
• "Adding Program Elements" on page 47
• "Moving and Editing Program Elements" on page 54
• "Documenting RLL Application Programs" on page 56

ASIC-200 User Guide RLL Programming • 47

Creating an RLL Program
To open the RLL editor and begin creating a program, you need to enter the
Program Development environment.

1. Start the Program Editor.

2. Click on File and select New Editor. The New dialog box appears.

3. Select RLL Program and click on OK.

4. The RLL editor displays a new RLL file with the two power rails and one
rung.

Adding Program Elements
Use this section to help you build an RLL program.

Adding a Contact

1. Click on the Contact Tool on the RLL toolbar. The cursor changes into the
contact cursor.

2. Move the cursor to the location on the rung where you want to place the
new contact.

3. Click the left mouse button. The Edit Contact dialog box appears.

48 • RLL Programming ASIC-200 User Guide

4. If you have already defined the symbol names for your system, click on
the symbol to represent the contact (heaters_bldg_2 in the figure).

5. If you have not defined the symbol names, or if you want to define a
new symbol, you need to access the Symbol Manager and fill in the
symbol data for the contact. Refer to the “Defining Symbols” chapter for
more information about defining symbols.

6. Select the contact type (Normally Open, Normally Closed, etc.) and then
click on OK. The new contact appears on the rung at the location you
specified.

Adding a Coil

1. Click on the Coil Tool on the RLL toolbar. The cursor changes into the coil
cursor.

2. Move the cursor to the location on the rung where you want to place the
new coil.

3. Click the left mouse button. The Edit Coil dialog box appears.

ASIC-200 User Guide RLL Programming • 49

4. If you have already defined the symbol names for your system, click on
the symbol to represent the coil.

5. If you have not defined the symbol names, or if you want to define a
new symbol, you need to access the Symbol Manager and fill in the
symbol data for the coil.

6. Select the coil type (Output, Negated Output, etc.) and then click on OK.
The new coil appears on the rung at the location you specified.

You can place an Output Coil anywhere on a rung, including to the left of an
input coil or within an OR branch. An Output coil stores the logical result of
the logic evaluated up to its location on the rung.

Inserting a New Rung

1. Click the Rung Tool. A rung symbol attaches to the mouse pointer.

2. Move the cursor to the location on the left power rail where you want to
insert the new rung.

50 • RLL Programming ASIC-200 User Guide

3. Click the left mouse button. The editor inserts the rung at the
specified location.

Adding a Branch

1. Click on the Branch Tool on the RLL toolbar. The cursor changes into
the Branch Tool cursor.

2. Move the cursor to the location on the rung where you want to insert
the branch.

3. Click the left mouse button. The editor inserts the branch at the
specified location.

4. After inserting the branch, you can adjust the contact points as
necessary.

To move the contact points of a branch

1. Click on the Select Tool .

2. Move the cursor over the contact point that you want to move and press
the left mouse button.

3. With the mouse button depressed, move the cursor and the contact to the
new location on the rung and release the button. The editor connects the
branch at the new location on the rung.

ASIC-200 User Guide RLL Programming • 51

You can insert an branch that contains no logic (a shunt). You can use a
shunt to temporarily disable a section of logic without deleting it from the
program. Used with a contact that turns off power flow to the logic in
question, the shunt maintains power flow across the rest of the rung. This
feature is useful for debugging your program.

You can also move a contact point from rung to rung without deleting the
logic contained within the branch.

Adding a Jump Coil

1. Click on the Jump Tool on the RLL toolbar. The cursor changes into the
Jump cursor.

2. Move the cursor to the location on the rung where you want to place the
new jump.

JMP

3. Click the left mouse button. The Edit Jump Coil dialog box appears.

4. Enter a target label and click on OK. A target label name cannot contain
any spaces. The editor inserts the jump at the specified location.

Adding an SFC Transition Coil

The SFC transition coil is an RLL program element that you can use only
under specific conditions (within an SFC action) in an SFC program. To add

52 • RLL Programming ASIC-200 User Guide

an SFC transition coil to the program, you must be editing an action in an
SFC program.

To add an SFC Transition Coil
1. Click on the SFC Transition Coil tool on the RLL toolbar. The cursor

changes into the SFC Transition Coil cursor.

2. Move the cursor to the location on the rung where you want to place the
SFC Transition Coil.

TRN

3. Click the left mouse button. The Edit SFC Transition Coil dialog box
appears.

4. Type the name of the SFC target label and click OK. The editor inserts the
SFC Transition Coil at the specified location.

Adding Function Blocks
To Add a Function Block

If the Function Block palette is not being displayed, select View/Function Block
Palette from the menu bar. The editor displays the Function Block Palette.

ASIC-200 User Guide RLL Programming • 53

1. Click on the Display tool to display a list of the function block types.

2. Click on the type of function block that you need. The Function Block
Palette changes to display the selected function block types.

3. Click on the specific function block that you want to add. The cursor
changes into the function block cursor.

4. Move the cursor to the location on the rung where you want to place the
function block.

FB

5. Click the left mouse button. The dialog box for the block appears.

6. Fill in the appropriate information for the function block.

7. To enter a constant (an integer, real number, characters of a string, etc.)
type the value directly into the field. To enter a symbol, either type the
symbol name into the field, or click on the display tool for a list of valid
symbols from which to select.

Enter constant or variable name here.

Click on the display tool
for list of valid variables.

54 • RLL Programming ASIC-200 User Guide

8. When you have finished filling out the dialog box, click on OK. The
editor inserts the block at the specified location.

Moving and Editing Program Elements
This section explains how to select, edit, and move RLL elements.

Selecting Program Elements
To select elements with the keyboard
Use the arrow keys to select the next element in the desired direction. A beep
will sound if the selection cannot be made.

To select elements with the mouse
1. Select the Selector tool from the RLL Tool Bar or the SFC Tool Bar.

2. Move the cursor to the desired element and press the left mouse button.
The element will highlight in the select highlight colors.

 Notes:
1. To select a select diverge or simultaneous diverge in a SFC

program, select the top or bottom bar of the diverge.
2. To select a rung in a SFC program, select the left or right power

rail of the rung.

To select multiple elements at one time
1. Select the Selector tool from the RLL Tool Bar or the SFC Tool Bar.

2. Move the cursor to the top and left of the top, leftmost element in the
desired group (be sure the cursor is not over any element).

3. Press and hold the left mouse button and drag the cursor. As the cursor
is dragged, a selection box will appear.

4. When the desired elements are in the selection box, release the left
mouse button. All elements entirely inside of the selection box will be
selected.

ASIC-200 User Guide RLL Programming • 55

 Notes:
1. To select a branch connector in a RLL program, both connectors

and all elements on the branch must be inside of the selection
box.

2. To select a rung in a RLL program, the left and right power rails
and all elements on the rung must be inside of the selection box.

3. To select a loop in a SFC program, the topmost loop arrow, all
loop transitions and all elements contained in the loop must be
inside of the selection box.

4. To select a jump in a SFC program, the jump diamond, all
transitions and all target labels must be inside of the selection
box.

5. To select a select diverge or a simultaneous diverge in a SFC
program, the top and bottom bars and all elements in the
diverge must be inside of the selection box.

Moving a Branch
1. Select the Selector tool from the RLL Tool Bar or the SFC Tool Bar.

2. Move the cursor over the desired branch connector. Press and hold the
left mouse button.

3. Drag the branch connector to the desired location (the cursor will change
to a branch connector cursor).

4. Release the left mouse button to drop the branch connector at the desired
location.

• To cancel the drag operation, press the Esc key.

• If the target location for the branch connector is on the same rung
and not inside of any embedded branches or outside of any nested
branches, the dragged branch connector is located at the drop position
and the other end of the branch remains in its current position. However,
if the target location for the branch connector is on a different rung,
inside of an embedded branch or outside of a nested branch, both ends
of the branch are moved to the target position (the entire branch will be
moved).

Moving Program Elements
1. Select the desired element(s) and move the cursor over one of the

selected elements.

2. Press and hold the left mouse button and drag the selected elements to
the desired location. When dragging begins the elements being dragged
will be blanked out and the cursor will change to represent the element
being dragged. If multiple elements are being dragged the cursor will be

56 • RLL Programming ASIC-200 User Guide

changed to the group drag cursor. Release the left mouse button to drop
the element(s) at the desired location.

• To cancel the drag operation, press the Esc key.

Editing Program Elements
1. Click on the Select Tool.

2. Double click on the element (Step, Transition, label, etc.). The dialog box
appropriate for the element (Edit Step, Select RLL Transition Logic, Bypass
Jump Transition Logic, etc.) appears.

3. Make changes in the dialog box as needed.

Deleting a Branch
The operation of the Cut tool is based on you selecting an object and then
clicking on the Cut tool to delete the object. To delete the branch, however,
follow one of these procedures.

To delete a Branch with out any elements
1. Click on the Select Tool.

2. Place the cursor in the middle of the branch and click.

3. Click on the Cut tool to delete the branch.

To delete a Branch that contains one or more elements
1. Click on the Select Tool.

2. Drag an area that includes the entire branch and its connection points.

3. Click on the Cut tool to delete the branch.

Undoing/Redoing Edits
Click the Undo button on the Tool bar to undo an operation.

Documenting RLL Application Programs
A program comment can consist of any meaningful description that you
want to display on a Rung. You can choose whether the system displays the
comments or hides them.

Adding and Editing Rung Comments
1. Click on the Comment Tool on the RLL menu bar.

When no comment is associated with a rung, the comment displayed is
(* Rung Comment *).

2. Move the cursor to the Rung in the program where you want to edit the
comment and double click. The Program Comments dialog box appears.

ASIC-200 User Guide RLL Programming • 57

3. Enter the comment and click on OK. The comment appears on the Rung
specified.

Adding and Editing Symbol Descriptions
1. Open an RLL or SFC program.

2. Click on Symbol Manager Tool.

The Symbol Manager dialog box for local/global symbols appears.

Add or change information as desired.

ASIC-200 User Guide SFC Programming • 59

SFC Programming

 About Structuring Sequential Function Charts
A Sequential Function Chart represents an application program as a series of
sequential steps. You associate control logic with these steps called actions.
The logic in the action executes when the step becomes active.

Steps are connected by links and control is passed between steps via
transitions. Transitions can be a Boolean expression or a single RLL rung.

You can manage multiple control paths using divergences. A select
divergence lets you choose one path to be active from two or more control
paths; whereas, a simultaneous divergence lets you activate multiple control
paths simultaneously in parallel.

Other program flow capabilities exist. You can include control loops that let
you repeat a series of steps or transfer control flow to another location using
a jump-and-label structure.

This section describes these SFC components:
• "About Steps" on page 59
• "About Actions" on page 62
• "About Transitions" on page 67
• "About Divergences" on page 68
• "About Macro Steps" on page 70
• "About Program Flow Control Features" on page 71

About Steps
A step represents a condition in which the behavior of the system follows a
set of rules defined by the actions and functions associated with the step.
While the SFC is being executed, a step is either active or inactive. At any
given moment, the state of the factory process is defined by the set of active
steps and the values of its internal and output variables. The figure below
shows a series of steps.

60 • SFC Programming ASIC-200 User Guide

A step is graphically represented within an SFC as a box containing the step
name, which identifies the step. Program flow into and out of the step is
through a vertical line entering the top of the box and another line exiting
from the bottom of the box.

When you create a new SFC, the system automatically generates the:
• first step, labeled start,
• last step, labeled end.

You cannot edit these steps; they simply represent the initiation and
termination of the SFC.

Typically, you separate steps in an SFC with transitions, which are program
elements. As an enhancement to the IEC-1131-3 specification, the control
software lets you place a step immediately before or after another step, at
runtime the system inserts the required "dummy" transition for you. For
details about transitions, see "About Transitions" on page 67.

SFC steps can have one of more actions attached to them. An action can
contain one or more rungs of ladder logic and uses special action qualifiers
to control the execution of the action. For details about actions, see "About
Actions" on page 62.

You can create SFCs with multiple paths, and it is possible for more than one
SFC to be active at a time. Divergences help you manage multiple control
paths. See "About Divergences" on page 68.

From within a single step you can call another entire SFC (the child) for
execution–a macro step. When the child SFC has completed, program

ASIC-200 User Guide SFC Programming • 61

control returns to the macro step that made the call. For information about
macro steps, see "About Macro Steps" on page 70.

Step Parameters
To create a step, you must configure step parameters in the edit step dialog
box. This table summarizes the parameters. For more information, see
Working with Steps on page 81.

 Field/Button Description
 Motion/Process Commands Contains the program code for the Step.
 RS-274D Selects the RS-274D programming language.
 Structured Text Selects the Structured Text programming language.
 Link File Links the Step to a file containing the program code
 Edit Linked File Opens the linked file of program code for the Step

and displays it in an editor.
 Symbol Manager Accesses the Symbol Manager.
 Display (Click on one.)
 Step Name Displays the Step name within the Step.

 Motion/Process Commands Displays the code (motion control or structured
text) within the Step.

 Step Description Displays the Step description within the Step.
 Icon Displays an icon within the Step.
 Width Sets the width in pixels for the Step description.
 Icon... Accesses the Icon palette.
 Remove Deletes an icon from the Step, if one is assigned.

Using the Step System Symbols
Each SFC step has two system symbols (.X and .T). You can use these system
symbols in any expression, contact or coil instead of a symbol of the same
type. Reference the system symbols by typing the step name followed by a
period and the symbol suffix.

Symbol Definition Example
X Boolean step-is-active Step active symbol

X is TRUE when the step is active and
FALSE when the step is inactive.

STEP1.X
Refers to the step active
symbol for step STEP1.

T Step time. Step time symbol T contains
the current elapsed time of the step in
milliseconds. When a step is inactive, T
contains the total elapsed time of the step.
T is set to zero when the Step becomes
active.

STEP1.T
Refers to the step time
symbol for step STEP1.

62 • SFC Programming ASIC-200 User Guide

About Actions
Actions contain Relay Ladder Logic. Actions are graphically represented as
a rectangular box containing the action’s name. This box is connected to the
step with a horizontal line. You can associate more than one action to a step.

Actions associated with a step are invoked when the step becomes active.
You can specify when an action is executed relative to when the step
becomes active by using an action qualifier. The qualifiers are:

• Action qualifier–determines when the RLL runs relative to the
activation of the step, which can be either Structured Text or Motion
Control language. You can use an action qualifier with or without a
motion qualifier.

• Motion qualifier–determines when the RLL runs relative to the
execution of the Motion Control code within the step.

Using a program label can also affect when an action is executed. The action
does not run until the label in the step code is encountered.

The action qualifier is shown as a box containing an abbreviation attached to
the right side of the action.

Action Function
In the example below, the action called PaintColorAction consists of several
rungs of RLL that are executed when Step2 becomes active. In this particular
example, the RLL execution does not begin until code execution in the step
encounters the label called label_a. The P code is the action qualifier and
means that the RLL is executed one time, i.e., it is pulsed.

You can associate zero or more actions with a step, and you can associate one
action with more than one step by referencing the action’s name.

The SFC transition coil used in an action associated with a step or a macro
step provides the following program flow controls:

• Associated with a step–When the SFC transition coil receives power
flow, the Structured Text within the step is cancelled, and program
execution jumps to the SFC label specified in the SFC transition coil.

• Associated with a macro step–When the SFC transition coil receives
power flow, the child SFC called by the macro step is cancelled, and
program execution in the parent SFC (the SFC with the macro step)
jumps to the SFC label specified in the SFC transition coil.

ASIC-200 User Guide SFC Programming • 63

Action Parameters
To create an action, you must configure action parameters in the Edit Action
dialog box. This table summarizes the parameters. For more information, see
"Working with Actions" on page 87.

Field/Button Description
Program Label (Optional) The RLL code does not begin running until the

code in the step encounters the label. For more information,
see "Program Label" on page 63.

Action Qualifier Specifies an action qualifier. For more information, see
"Action Qualifier" on page 64.

Motion Qualifier Specifies a motion qualifier. Select None for no qualifier. For
more information, see "Motion Qualifier" on page 64

Time Duration (Action qualifier only) Specifies the time duration for Limited
and Delay qualifiers. If the action qualifier does not actually
use the time duration, any value entered for this parameter is
ignored. For more information, see "Time Duration" on page
66.

Specify Duration Accesses the Define Time Duration dialog box.
Action Name Specifies the name of the Action. For more information, see

"Action Name" on page 66.

Program Label
If you specify the optional program label, the RLL code does not begin
running until the code in the Step encounters the label. The action and the
program label must be in the same SFC. No cross-reference between
programs is allowed. If no label is in the step with which the action is
associated, then the program label parameter is ignored.

The labels in a macro step SFC cannot be referenced from the parent SFC,
and the labels in the parent SFC cannot be referenced by the macro SFC.

For a step with Structured Text, the label consists of a label name followed by
two colons, e.g., LabelA::. For a step with Motion Control code, the label is an
N followed by a block number, e.g., N45. If you enter a label, it appears
within the action as shown below.

Program
Label

64 • SFC Programming ASIC-200 User Guide

Motion Qualifier

Note: Not all motion qualifiers are supported by all motion cards.
Refer to the motion card documentation for supported motion
qualifiers.

Motion Qualifiers specify motion constraints that must be satisfied before the
RLL begins running. If you use a program Label, the motion constraint
applies to the motion block following the program Label. Qualifiers appear
within the Action as shown below.

Motion
Qualifier

Choose from the following qualifiers. Leave a blank for no qualifier.

If you do not want the RLL to begin
running until the:

Use this qualifier:

motion starts Motion Started (MS)
acceleration profile is complete Acceleration Complete

(AC)
motion reaches the target speed At Speed (AS)
motion begins the deceleration profile Deceleration Started

(DS)
motion is finished Motion Complete (MC)
motion is finished and all axes associated
with the motion are within the In Position
tolerance of the programmed endpoint

In Position (IP)

move command is finished End of Block (EB)

Action Qualifier
Action qualifiers specify constraints on the execution of the RLL code.
Qualifiers appear within the action as shown below.

Action
Qualifier

ASIC-200 User Guide SFC Programming • 65

If after the Step becomes active, you
want the:

Use this qualifier:

RLL to begin running and stops when the Step
becomes inactive.

Non Stored (N)

RLL to begin running and continue to run until
reset by the Reset qualifier.

Stored (S)

RLL to execute once. Pulsed (P)
RLL to begin running after a delay*
The RLL stops when the Step becomes inactive.

Time Delayed (D)

RLL to begin running and stops when the time
limit* expires or the Step becomes inactive.

Time Limited (L)

RLL to begin running after a delay* and continue
to run until reset by the Reset qualifier.
If another Action qualifier resets the RLL, during
the delay, the reset has no effect because the
RLL has not yet been stored.
If the Step becomes inactive before the delay
completes the RLL is never stored and does not
run at all.

Delayed and Stored
(DS)

RLL to begin running after a delay* and
continue to run until reset by the Reset qualifier.
If an Action is reset during a delay, then the RLL
does not execute.

Stored and Time
Delayed (SD)

RLL to begin running and after the specified
time* stop.
A Reset qualifier is required to reset the RLL.
Otherwise, without the reset, the RLL does not
run again.
If the Step becomes inactive, the RLL continues
to run until the duration times out. A Reset
qualifier is not required, but one can be used to
stop the RLL execution.

Stored and Time
Limited (SL)

RLL begins running and stops after the specified
time* expires.
If the Step becomes inactive, the RLL continues
to run until the duration times out. A Reset
qualifier is not required, but one can be used to
stop the RLL execution.

Pulse Width (PW)

The RLL that was started by the Stored qualifier is terminated by the Reset
qualifier (R). You can use the Reset qualifier in another action that is
associated with the same step or in an action associated with another step.
The RLL continues to run between steps. If the action is associated with
another step, the action must have the same name as the action that is to be
reset.

66 • SFC Programming ASIC-200 User Guide

Time Duration
You can enter the duration directly or click on Specify Duration and enter
time intervals in the dialog box.

If you enter the duration directly, follow the IEC 1131-3 specification:

T#, TIME#, t#, time#, followed by time in days, hours, minutes, seconds.

Examples:

Time Format Time Format
14.7 days T#14.7d 4 seconds Time#4s
2 minutes 5
seconds

T#2m5s 1 day 29 minutes t#1d29m

74 minutes* Time#74m 1 hour 5 seconds
44 milliseconds

T#1h5s44ms

*The IEC 1131-3 specification allows overflow of the most significant unit in
a time duration.

If you prefer to use the dialog box, enter the time into each field as
appropriate.

 Notes:
1. If you specify a duration for an action and choose an action

qualifier that is not time dependent, the duration is ignored.
2. For an action that has both a program label and a duration

specified, duration does not begin timing down until after the
step code encounters the program label.

Action Name
Specify the name of the action. Use this name if you refer to the action from
another action, such as resetting an action that was stored in another action.

An action can have the same name as an RLL transition. However, the RLL
logic for actions and for RLL transitions is scoped differently. Therefore,
using the same name for an action does not mean that the same RLL logic is
executed for the RLL transition, and vice versa.

The action name appears within the action as shown in the following figure.

Action
Name

ASIC-200 User Guide SFC Programming • 67

Action Manager
Use the Action Manager to you manage the actions that are attached to SFC
steps. The Action Manager displays a list of all actions that in the active SFC
file and lets you rename and delete those actions.

About Transitions
A transition represents the condition that lets program flow to pass from one
or more steps preceding the transition to one or more steps following the
transition along the corresponding directed link. Each transition has an
associated transition condition that is the result of the evaluation of a single
Boolean expression. When the system evaluates the code of a transition, the
result must be either TRUE or FALSE.

A transition condition can be a:

• Boolean Transition - Boolean expression in the Structured Text
language. It is represented as an unlabeled horizontal line

• RLL Transition - named RLL object containing a single rung with an
output coil that has the same name as the transition object. It is
represented as a labeled line (RLL Transitions) containing the name of
the RLL output coil.

The step that follows a transition cannot execute until the transition before it
evaluates as true.

Boolean
Transition

RLL
Transition

 In this figure, program flow has passed the
Boolean Transition and Step2, which
follows it, and is currently at the RLL
Transition. Until the RLL Transition
evaluates to TRUE, Step3 cannot execute.

 Program flow into and out of the transition
is through a vertical line extending through
the horizontal line.

The IEC 1131-3 standard specifies that a SFC diagram must have a transition
between every step, and a step between every transition. As an extension to
the standard the SFC editor allows you to place one step immediately after

68 • SFC Programming ASIC-200 User Guide

another or one transition after another. However, at runtime the necessary
"dummy" steps or "dummy" transitions are inserted automatically.

For information about how transitions are solved, see "How Transitions are
Evaluated" on page 76.

Transition Parameters
This Transition: Has these parameter(s):
RLL Transition name

RLL Logic
Boolean Boolean expression containing operators and symbols

For more information, see "Working with Transitions" on page 85.

About RLL Transition Manager
Use the RLL Transition Manager to you manage the RLL transitions that are
embedded in a SFC program. The RLL Transition Manager displays a list of
all RLL transitions that are embedded in the active file and lets you rename
and delete those RLL transitions.

About Divergences
You can control multiple paths in an SFC using divergences. Divergences can
be a:
• select divergence .
• simultaneous divergence.

About Selected Divergences
A select divergence lets you choose from two or more control paths. Each
path begins with a transition condition that determines which control path is
activated. At some point in the SFC diagram, all paths within the select
diverge must converge into a single path. This figure shows a selected
divergence.

ASIC-200 User Guide SFC Programming • 69

Selected Divergence

About Simultaneous Divergences
A simultaneous divergence lets you execute multiple control paths
simultaneously in parallel. All the control paths in the simultaneous
divergence are activated as soon as power flow enters the divergence. At
some point in the SFC diagram, all paths within the diverge must converge
into a single path, but the convergence must wait until all the paths have:
• been executed.
• arrived at the point of simultaneous convergence.

The simultaneous diverge is represented as single control path entering at
the top and a double horizontal line with two or more control paths exiting
from below. Simultaneous convergence is represented as two or more control
paths at the top, a double horizontal line, and a single control path exiting at
the bottom.

70 • SFC Programming ASIC-200 User Guide

Simultaneous Divergence

To help ensure proper convergence, do not use labels to jump

• outside a simultaneous divergence.

• into a simultaneous divergence.

• to another path within a simultaneous divergence.

About Macro Steps
The macro step lets you call one SFC for execution from a step in another
SFC. Program flow transfers to the SFC that was called (child SFC). When the
child SFC has completed execution, program flow returns to the parent SFC
and resumes after the macro step.

In this figure, call_A is the macro step in the parent SFC that calls the child
SFC for execution. When the child SFC completes execution, program flow
resumes at Step_2 in the parent SFC.

ASIC-200 User Guide SFC Programming • 71

Parent SFC Parent SFCChild SFC

Representation of a macro step is similar to a step, multiple boxes containing
an identifier. Program flow into and out of the macro step is through a
vertical line entering the top and another line exiting from the bottom.

You can use another program element, called an action,. help coordinate the
execution of code within a macro step with other program code.

If a local symbol is defined in a parent SFC, the child SFC can see the local
symbol. However, you cannot see this local symbol when viewing the
Symbol Manager for the child SFC.

About Program Flow Control Features
You can use control loops and jump and label constructs to control flow
within an SFC diagram.

Control Loops
In an SFC, program flow usually proceeds from top to bottom. Control loops
let you go back to a previous location to repeat a Series of steps. A control
loop consists of two transitions: one to continue in the downward direction
and one on a directed link that loops back in the upward direction. An arrow
at the top of the control loop indicates the point at which power flow re-
enters the control path.

In the figure below, program flow continues to the End when Condition_A is
TRUE. When Condition_B is TRUE and Condition_A is FALSE, program
flow returns to the point above Step3. When Condition_C is TRUE and

72 • SFC Programming ASIC-200 User Guide

Condition_A and Condition_B are FALSE, program flow returns to the point
above Step2.

With multiple branches, logic evaluation takes place from left to right. If all
transitions are FALSE, program flow halts until one transition becomes
TRUE.

You can define the transitions for the loop by either of the following
methods.

• A Boolean Transition consisting of a Boolean expression that is
composed in Structured Text.

• An RLL Transition consisting of a single RLL rung with an output coil
having the same name as the transition itself.

For more information, see "Adding SFC Program Flow Controls" on page 90.

Jump and Labels
You can transfer flow to any part of an SFC using a jump and label construct.
The jump element is represented by two transitions: one to continue in the
downward and one to transfer to a label identifier. The label element is
represented by a directed arc to the left that identifies the point where power
flow re-enters the control path and a label identifier followed by a colon.

In the following figure, program flow continues to Step1 when Condition_A
is TRUE. When Condition_B is TRUE and Condition_A is FALSE, program
flow jumps to Label_B, bypassing Step1. When Condition_C is TRUE and
Condition_A and Condition_B are FALSE, program flow jumps to Label_C,
bypassing Step1 and Step2.

ASIC-200 User Guide SFC Programming • 73

With multiple branches, logic evaluation takes place from left to right. If all
Transitions are FALSE, program flow halts until one transition becomes
TRUE.

You can define the transitions for the jump by either of the following
methods.

• A Boolean Transition consisting of a Boolean expression that is
composed in Structured Text.

• An RLL Transition consisting of a single RLL rung with an output coil
having the same name as the transition itself.

For more information, see "Adding SFC Program Flow Controls" on page 90.

Jump/Label Parameters
 Field Description
 Jump Target
Label

 Specifies Label to which program flow is
transferred.

 Label Name Specifies point in SFC where program flow
resumes.

Labels must start with an alphabetical character and be followed by any
alphanumeric characters and/or an underscore.

74 • SFC Programming ASIC-200 User Guide

Exiting Loop Structures
There are times when you may wish to exit a looping structure, for example
upon an E-Stop condition. Refer to the following figure. In normal operation
the divergence loops are executed and continue to execute.

One way to exit from this looping is to use a transition coil in an RLL action.
Refer to the following figure. Since Exit_Req is a Stored Action, it continues
to run after program flow has exited the associated step. When
StopProgExecution is enabled, the transition coil forces execution to the
associated label, L5, where program execution continues.

ASIC-200 User Guide SFC Programming • 75

How SFCs are Solved
Program flow in an SFC moves from top to bottom. The code within each
Step is executed. When the code has completed, program flow moves to the
next program element.

 If the next element is a: Then:
 Step the code within that step is executed
 Transition program flow continues when the transition

becomes true

Any step in an SFC takes a minimum of two I/O scans to complete. In the
first scan, any actions attached to the step are evaluated. If there are no
looping structures (i.e. FOR, WHILE, REPEAT) any Structured Text logic is
solved to completion. The transition is tested after all the logic has been
solved.

If looping occurs in a Structured Text program, the program is solved to the
end and loops back at the start of the next I/O scan. A transition is not tested
until the Structured Text has been solved to completion.

You can use the Structured Text constructs END_FOR_NOWAIT and
END_WHILE_NOWAIT to finish looping in one I/O scan.

Even though the SFC editor lets you place one step immediately after
another, each step still takes a minimum of two I/O scans to complete,
because parsing the program creates “dummy” transitions between the
steps. These transitions are always evaluated true. These transitions are
required to be there per the IEC 1131-3 standard. The SFC editor helps
reduce your programming effort by automatically including these transitions
in the parsed program.

In the following example, one step follows another. Program flow still moves
from top to bottom, and execution of a program element does not begin until
the preceding element has completed. After the first transition becomes true,
Step2 becomes active. After the Step2 logic is complete Step3 becomes active.

76 • SFC Programming ASIC-200 User Guide

Step1

Step2

Step3

T-1

Code in Step1
executes.

Step1

Step2

Step3

T-1

When Step1
completes and T1
becomes true,
code in Step2
begins to execute.

Step1

Step2

Step3

T-1

Active

Active

When Step2
completes, code
in Step3 begins to
execute.

Active

T=True

The software lets you execute multiple programs of multiple types. For
example, you can run two RLL program at the same time as three SFC
programs. You can coordinate program execution through global symbols,
which are recognized by all program types.

How Transitions are Evaluated
All Structured Text or RS-274D logic within a steps must be completed
before the system evaluates a transition. This is a further enhancement to the
IEC-1131-3 specification, which only requires all preceding steps to be active
before a transition can be evaluated.

Transitions can follow transitions without steps in between. Once a transition
condition is satisfied, the transition is disabled, and next SFC element, step or
transition, is activated. At runtime a "dummy" step is inserted (per the IEC
standard) between two consecutive transitions. The dummy step performs
no logic;however,it takes two I/O scans for the dummy step to activate and
deactivate, just like a normal step.

Evaluation of a transition occurs as follows:

 For this transition: The transition becomes true when:
 RLL transition Power flow on the RLL rung reaches the output coil

and turns the coil on. Program flow moves to the
next Step.

 Boolean transitions The Boolean expression resolves to true. Program
flow moves to the next Step.

Transitions must be evaluated as true before program flow can continue to
the next step.

ASIC-200 User Guide SFC Programming • 77

 If the transition is: Then:
 True At the next I/O scan, the RLL associated with any

active actions is solved with power off to turn off
outputs.
 Then at the subsequent I/O scan, power flow
activates the next step.

 False The step remains active and any RLL logic is solved.
 As long as the step is active, any RLL logic is solved;
however, Structured Text logic is solved only once
at the first I/O scan.

If a transition is false and remains false, the system does not re-execute the
Structured Text or motion code in the steps that precede the transition.
However, RLL logic is re-executed. Program flow remains at the transition
until the transition becomes true.

Extensions to IEC 1131-3 SFCs (SFC+/M)
The ASIC-100 product includes several optional extensions to the IEC-1131-3
Sequential Function Charts.

• Step boxes can include RS-274D or Structured Text commands. These
commands within a step box are executed sequentially. The execution of
a step is not completed until all the commands within a step are
completed. The transition conditions following a step are not evaluated
until the contents of the step have been executed.

• Steps can be represented by a box containing the step name identifier, a
box containing the command list with the step, or an Icon, that consists
of a bit mapped picture and up to two lines of text.

• An Icon Palette contains a collection of predefined steps that consists of
an icon and a list of commands within the step. These predefined steps
can be used for library or canned routines.

• Motion Qualifiers have been added to the Action Qualifiers to
synchronize execution of the actions with the motion commands within
the Step.

• Files may be marked for inclusion into the command list within a step
box. Multiple files can be included. Program commands may be
intermixed with the file include statements.

• Steps can follow steps without a transition in between. As soon as the
contents of a step have been executed and no transition follows, the step
is deactivated, and the next step is activated. At runtime a "dummy"
transition is inserted (per the IEC standard) between two consecutive
steps. The dummy transitions is always evaluated true.

78 • SFC Programming ASIC-200 User Guide

• Transitions can follow transitions without steps in between. Once a
transition condition is satisfied, the transition is disabled, and next SFC
element, step or transition, is activated. At runtime a "dummy" step is
inserted (per the IEC standard) between two consecutive transitions.
The dummy step performs no logic however it takes two I/O scans for
the dummy step to activate and deactivate, just like a normal step.

• A Transition Coil (TRANS) has been added to the action logic elements
that terminate execution of any commands within a step, stop any
motion in progress, deactivate the step, and cause an immediate
transition to a label with the same identifier as the transition coil.

• Macro step boxes can be used to include an entire SFC diagram within a
SFC macro step. When the macro step is activated, the included SFC
diagram begins execution at the start step. When the included SFC
diagram executes the end step, the macro step is complete.

• Actions can be attached to macro steps and are be executed as long as the
macro step is active.

About Creating Sequential Function Charts
This section provides information about building an SFC program. Topics
include:

• "Creating an SFC Program" on page 79

• "Using the SFC Tool and Menu Bar" on page 80

• "Using the Keyboard

The following key combinations are useful when editing actions
without a mouse:

Ctrl+Tab Moves the focus from the parent SFC through all open
actions and back to the parent SFC.

Esc Closes the action having the focus.
Alt+<dash>
(the '-' key)

Displays the system menu in an open action. This allows
you to move, size, and close the actiion.

• Working with Steps" on page 81

• "Working with Transitions" on page 85

• "Working with Macro Steps" on page 86

• "Working with Actions" on page 87

• "Adding SFC Program Flow Controls" on page 90

• "Documenting an SFC Program" on page 98

ASIC-200 User Guide SFC Programming • 79

Creating an SFC Program
After starting the Program Editor, you can create a new SFC program or edit
an existing one.

To create a new SFC program
1. Click on the New File on the Program Editor tool bar.

2. The new program menu appears.

3. Select SFC+/M Program and click on OK.

4. A new SFC file appears, showing a starting step and an end step.

To edit an existing SFC program
1. Click on File Open tool on Program Editor tool bar.

2. The list of existing programs appears.

80 • SFC Programming ASIC-200 User Guide

3. Click on the program to open. You may need to select the SFC program
type in the Files of Type field first. The SFC program that you selected
appears.

4. Begin editing the program elements.

Using the SFC Tool and Menu Bar
The SFC toolbar contains all the tools needed to create an SFC program.

Icon Tool bar Option Function
— Lets you select program elements.

Insert/Step Adds a step to the program.

Insert/Macro Step Adds a macro step to the program.

ASIC-200 User Guide SFC Programming • 81

Insert/Action Adds an action to the program.

Insert/Transition Adds a transition to the program.

Insert/Label Adds a label to the program.

Insert/Jump Adds a jump to the program.

Insert/Loop Adds a loop to the program.

Insert/Select Diverge Adds a selected divergence to the program.

Insert/Simultaneous
Diverge

Adds a simultaneous divergence to the
program

Insert/ New App Icon... Adds a predefined program step from the
library to the program

Insert/Comment Lets you add comments to the program.

Using the Keyboard

The following key combinations are useful when editing actions
without a mouse:

Ctrl+Tab Moves the focus from the parent SFC through all open
actions and back to the parent SFC.

Esc Closes the action having the focus.
Alt+<dash>
(the '-' key)

Displays the system menu in an open action. This allows
you to move, size, and close the actiion.

Working with Steps
A step represents a condition in which the behavior of the system follows a
set of rules defined by the actions and functions associated with the step.
After adding a step to a program, you must configure it. For more
information about steps, see "About Steps" on page 59.

Adding a Step

1. Click on the Step Tool on the SFC toolbar. The cursor changes into the
step cursor.

2. Move the cursor to the location in the program where you want to place
the new Step and click. The new step appears in the program at the
location you specified.

82 • SFC Programming ASIC-200 User Guide

3. Configure the step by editing its properties and commands.

Edit Step Properties
To edit step properties, you must:
• Specify the programming language you want to use for the step.
• Select what information you want to display in the step (i.e. Step Name,

Step Description, Motion/Process Commands, or Icon).

1. Select Step Properties from the Edit or context menu. The Edit Step
Properties dialog box appears.

2. Refer to the following table when editing step properties. When done,
save your changes by clicking OK

 To: Do This:
 Select the RS-274D programming
language.

 Click RS-274D

ASIC-200 User Guide SFC Programming • 83

 To: Do This:
 Select the Structured Text
programming language.

 Click Structured Text.

 Display the step name within the
step.

1. Click Step Name.
2. Type a step name in the edit box.

 Display the code (motion control or
structured text) within the step.

Click Motion/Process Commands.
All the programming code for the step
appears within the step. For a long series of
commands, this can enlarge the size of the
step significantly.

 Display the step description within
the step.

1. Click Step Description.
2. Click Edit Description.
3. Enter a Step Description in the Edit
Description box.

 Set the width in pixels for the step
description.

 In the Width field, enter the number of pixels
for the step description.

 Display an icon within the step. Click Icon. Refer to Displaying a Step as an
Icon.

Access the Application Icon palette. Click Icon. . . .
Delete an icon from the step, if one
is assigned.

Click Remove.

Edit Step Commands
To edit step commands, do one of the following
• Double-click on the step.

• Select Edit Element from the Edit menu or Edit ST or Macro Step from the
context menu.

An editor appears in which you can enter commands. Refer to Structured
Text Programming for Structured Text commands and to Integrated Motion
for motion commands.

Displaying a Step as an Icon
1. Edit a step.

2. From the Edit Step dialog box, click Icon. The Icon palette appears.

84 • SFC Programming ASIC-200 User Guide

3. From the Icon Palette, click on the icon and enter a title when the system
prompts you for it.

4. Click OK to return to the Edit Step dialog box.

After you finish editing the step, the icon and title appear within the step
box.

Adding an Application Icon Step

An Application Icon Step is a step containing these components:
• a code template, which is predefined for a specific function
• an icon, which is appropriate for the function

The control software provides a library of several steps that can be used
within an SFC (or you can create your own).

To add an Application Icon Step
1. Access the application icons by clicking on the Icon Tool on the SFC

toolbar.

2. Drop the application icon into the SFC.

3. After placing an application icon step into an SFC, edit it in the same
way as you edit a normal step.

Since the code is a template, you need to modify the code to suit your
application. You can also make other changes to the step options. For more
information, see "Edit Step" on page 82.

Once you customize an application icon step, you can add this customized
step to the library. Then whenever you need to use a copy of the customized
step within an SFC, access it from the library.

ASIC-200 User Guide SFC Programming • 85

Working with Transitions
A transition condition is a graphical element in the SFC programming
language that represents a single Boolean condition that must be satisfied
before program execution continues. For information about transitions, see
"About Transitions" on page 67 and "How Transitions are Evaluated" on
page 76.

Adding an RLL Transition

1. Click Edit on the menu bar and if a check is next to Boolean Transition
deselect it by clicking.

2. Click on the Transition Tool on the SFC toolbar. The cursor changes into
the transition cursor.

3. Move the cursor to the location in the program where you want to place
the new transition and click. The new transition appears in the program
at the location you specified.

Editing an RLL Transition

1. Click the Select Tool and double click on the transition. The Select
RLL Transition Logic dialog box appears.

2. Enter a name for the transition and click OK.

An RLL transition can have the same name as an action. However, the
RLL logic for transitions and for actions is scoped differently. Therefore,
using the same name for a transition does not mean that the same RLL
logic is executed for the action, and vice versa.

A window appears containing an RLL rung with a coil of the same name
as the transition.

3. Add the RLL elements to the rung through the RLL editor, using the
same rules for contacts, coils, jumps, etc.

You can program only one rung for an RLL transition. For more
information, see "Creating Relay Ladder Logic Program" on page 46.

4. Save your work by clicking on the Control Menu box and selecting Close.

Adding a Boolean Transition

1. Click Edit on the menu bar and place a check next to Boolean Transition by
clicking.

2. Click on the Transition Tool on the SFC toolbar. The cursor changes into
the transition cursor.

86 • SFC Programming ASIC-200 User Guide

3. Move the cursor to the location in the program where you want to place
the new transition and click. The new transition appears in the program
at the location you specified.

Editing a Boolean Transition

1. To edit the transition, click on the Select Tool and then double click
on the transition. The Edit Transition Logic dialog box appears.

•

2. Enter the Boolean code for the transition. You can type it in directly or
click on the operator buttons and select from symbols that have been
defined.

3. Click on OK to save your work and close the dialog box.

4. You can access the Symbol Manager to configure local variables and to
see a list of all configured variables that you can use in the Boolean
expression.

Working with Macro Steps
A macro step provides a means of calling another SFC from the currently
executing SFC. For more information, see "About Macro Steps" on page 70.

Adding a Macro Step

ASIC-200 User Guide SFC Programming • 87

1. Click on the Macro Step Tool on the SFC menu bar. The cursor changes
into the Macro Step Tool cursor.

2. Move the cursor to the location in the program where you want to place
the new macro step and click. The new macro step appears in the
program at the location you specified.

Configuring a Macro Step

1. Click on the Select Tool and then double click on the macro step. The
Edit Macro Step dialog box appears.

2. Enter the appropriate information for configuring the macro step.

3. Click OK to save your changes and close the dialog box.

Working with Actions
An action consists of one or more sections of RLL code that are associated
with a step or a macro step. The system executes an action when its
associated step becomes active. For more information, see "About Actions"
on page 62.

88 • SFC Programming ASIC-200 User Guide

Note: Once you create an action, the only way to delete it is using the Action
Manager (from the Tools menu). Even if you delete the action from the SFC
step, the action remains present in the SFC program (as an unused action)
and is compiled along with it. If you get parse errors and cannot seem to
locate the problem, it may be in one of these unused actions.

Adding an Action

1. Click on the Action Tool on the SFC menu bar. The cursor changes into
the Action Tool cursor.

2. Move the cursor to the location in the program (either on top of a step or
on top of a macro step) where you want to place the new action and
click. The new action appears in the program at the location you
specified.

3. You can add more than one action to a step or macro step by placing the
cursor on top of an existing action.

Configuring an Action
Use the Edit Action Association dialog box to configure an action.

Edit Action Association Dialog Box

ASIC-200 User Guide SFC Programming • 89

Field/Button Description
Program Label (Optional) Action does not execute until label in the step

code is encountered. The action and the program label
must be in the same SFC. No cross-reference between
programs is allowed. The labels in a macro step SFC
cannot be referenced from the parent SFC, and the labels
in the parent SFC cannot be referenced by the macro SFC.
If no label is in the step with which the action is associated,
then the program label parameter is ignored.

Action Qualifier Specifies an action qualifier.
Motion Qualifier Specifies a motion qualifier. Select None for no qualifier.
Time Duration (Action qualifier only) Specifies the time duration for Limited

and Delay qualifiers. If the action qualifier does not actually
use the time duration, any value entered for this parameter
is ignored.

Specify Duration Accesses the Define Time Duration dialog box.
Action Name Specifies the name of the action.

Editing an Action

1. Click on the Select Tool and then double click on the action. The Edit
Action Association dialog box appears. Enter the information to configure
the Action

2. Click on OK to save your changes. The system closes the dialog box and
then displays an empty rung of RLL ready for editing.

3. Enter the RLL code.

Editing the RLL of an Action

1. Click on the Select Tool .

2. Double click on the right half of the action as shown.

The system displays the RLL code for the action.

3. Enter the RLL code.

90 • SFC Programming ASIC-200 User Guide

Editing a Configuration Parameter of an Action

1. Click on the Select Tool .

2. Double click on the left half of the action as shown.

The system displays the Edit Action Association dialog box for the Action.

3. Enter the information for configuring the action.

4. Click OK to save your changes.

Adding SFC Program Flow Controls
You can control program flow with jumps, loops, and divergences.

Adding a Jump
A jump-to-label combination is available that lets SFC execution to transfer
to any location indicated by a label element. For more information, see "Jump
and Labels" on page 72.

1. Click Edit on the menu bar and select Boolean Transition.

2. Click the Jump Tool on the SFC menu bar. The cursor changes into the
Jump Tool cursor.

3. Move the cursor to the location in the program where you want to place
the new jump and click. The new jump and two transitions appear in the
program at the location you specified.

4. To edit the jump, click on the Select Tool and then double click on
the arrow head of the jump.

ASIC-200 User Guide SFC Programming • 91

The Edit Jump Target dialog box appears.

5. Enter the label to which the jump transfers program flow. Then click OK
to save your changes and close the dialog box.

6. Edit the two transitions.

Adding a Label

1. Click on the Label Tool on the SFC menu bar. The cursor changes into the
Label Tool cursor.

2. Move the cursor to the location in the program where you want to place
the new label and click. The new label appears in the program at the
location you specified.

92 • SFC Programming ASIC-200 User Guide

3. Click on the Select Tool to edit and then double click on the label.
The Edit Label dialog box appears.

4. Enter a meaningful label and click OK to save your changes and close the
dialog box.

Adding a Loop
A loop lets the SFC program execution to go back to a preceding location in
the program in order to repeat a series of steps. For more information, see
"Control Loops" on page 71.

1. Click on the Loop Tool on the SFC menu bar. The cursor changes into the
Loop Tool cursor.

2. Move the cursor to the location in the program where you want to place
the lower end of the loop and click. The loop appears in the program at
the location you specified.

ASIC-200 User Guide SFC Programming • 93

3. Click on the Select Tool and then place the cursor over the loop
arrow.

4. Press and hold the left mouse button and move the loop arrow to the
point where the upper end of the loop is to be located.

Choose the points in
the SFC where the
loop connections are
to be located.

Place cursor on loop
arrow. Then press
and hold the left
mouse button.

Move the loop arrow to
the location of the upper
end of the loop.

5. Edit the loop transitions.

Moving a Loop
Dragging the top of a loop
1. Select the selector tool from the RLL Tool Bar or the SFC Tool Bar.

2. Move the cursor over the loop top arrow. Press and hold the left mouse
button. Drag the loop arrow to the desired location (the cursor will
change to a loop arrow cursor).

94 • SFC Programming ASIC-200 User Guide

3. Release the left mouse button to drop the loop arrow at the desired
location.

To cancel the drag operation press the Esc key.

If the target location for the loop
arrow is:

Then:

1. on the same diverge branch and is
not below the loop transition to
which this loop arrow is tied

2. not inside of any embedded loop

3. not outside of any nested loops

The dragged loop arrow is located at
the drop position, and the loop
transition remains in its current
position.

• on a different diverge

• below the loop transition to which
this loop arrow is tied

• or outside of a nested loop

The entire loop and all of its contents
both are moved to the target position.

inside of an embedded loop The drag fails

Dragging the bottom of the loop
1. Move the cursor over the loop transition. Press and hold the left mouse

button. Drag the loop transition to the desired location (the cursor will
change to a loop transition cursor).

2. Release the left mouse button to drop the loop transition at the desired
location.

To cancel the drag operation press the Esc key.

If the target location for the loop
transition is:

Then:

on the same diverge branch and is not
above any of the loop arrows tied to
the loop transition

not inside of any embedded loops

not outside of any nested loops

The dragged loop transition is located
at the drop position, and the loop
transition remains in its current
position.

on a different diverge

above any of the loop arrows tied to
the loop transition

or outside of a nested branch

The entire loop and all of its contents
is moved to the target position.

inside of an embedded loop The drag fails, and the loop returns to
its previous position.

ASIC-200 User Guide SFC Programming • 95

Adding a Select Divergence
A select divergence lets the SFC program execution to follow one of two or
more control paths. For more information, see "About Divergences" on page
68.

1. Click Edit on the menu bar and select Boolean Transition for the type of
transitions to use with the divergence: RLL or Boolean.

2. Click on the Select Diverge Tool on the SFC menu bar. The cursor changes
into the Select Divergence Tool cursor.

3. Move the cursor to the location in the program where you want to place
the select divergence and click. The select divergence appears in the
program at the location you specified.

4. Edit the two transitions.

To add another path
1. Highlight the top of the select divergence before adding another select

divergence.

2. Locate the cursor at the top of the divergence and click. Another
divergence path appears.

96 • SFC Programming ASIC-200 User Guide

Highlight top of
divergence.

Click on Select Diverge
Tool. Then place cursor
at top of divergence.

Click and another
divergence path
appears.

To delete a path
1. Highlight the path you want to delete.

2. Click the Cut tool .

Adding a Simultaneous Divergence
A simultaneous divergence lets the SFC program execution to follow two or
more control paths. Execution along each path must be completed for
program execution to proceed beyond the simultaneous divergence. For
more information, "About Divergences" on page 68.

1. Click on the Simultaneous Divergence Tool on the SFC menu bar. The
cursor changes into the Simultaneous Divergence Tool cursor.

2. Move the cursor to the location in the program where you want to place
the Simultaneous Divergence and click. The Simultaneous Divergence
appears in the program at the location you specified.

ASIC-200 User Guide SFC Programming • 97

To add another path
1. Highlight the top of the simultaneous divergence before adding another.

2. Locate the cursor at the top of the simultaneous divergence and click.
Another divergence path appears.

Highlight top of
divergence.

Click on Simultaneous
Divergence Tool. Then
place cursor at top of
divergence.

Click and another
simultaneous
divergence path
appears.

98 • SFC Programming ASIC-200 User Guide

To delete a path
1. Highlight the path you want to delete.

2. Click the Cut tool .

To delete an entire simultaneous divergence
1. Highlight either the top or the bottom of the divergence

2. Click on the Cut Tool.

Guidelines for Using Simultaneous Divergence
Observe the following guidelines when you create a simultaneous
divergence.

To ensure that proper convergence, do not use labels in the following ways:

• To jump outside a simultaneous divergence.

• To jump into a simultaneous divergence.

• To jump to another path within a simultaneous divergence.

Documenting an SFC Program
You can document a SFC program by adding program comments. This
section explains how to add, edit, and view program comments.

Adding Program Comments
A program comment can consist of any meaningful description that you
want to display adjacent to a program element. You can choose whether the
system displays the comments or hides them.

1. Click on the Comment Tool on the SFC menu bar. The cursor changes into
the Program Comment Tool cursor.

2. Move the cursor to the location in the program where you want to place
the comment and click. The Program Comments dialog box appears.

3. Enter the comment and click on OK. The comment appears in the
program at the location you specified.

Editing Program Comments
1. Double click on the comment you want to edit. The Program Comments

dialog box appears.

2. Edit the comment as desired.

Viewing a Comment
Click View and select Program Comments or click the view comments button
on the editor tool bar.

ASIC-200 User Guide SFC Programming • 99

To deactivate the view comments mode
Click View and select Program Comments or press the view comments button
again.

Note: The view comments mode is activated and deactivated for all
files.

When the view comments mode has been activated the view menu will
display a check mark next to the Program Comments command and the edit
tool bar will display the view comments button as depressed.

ASIC-200 User Guide Structured Text Programming • 101

Structured Text Programming

Introduction
The Structured Text programming language is an IEC 1131-3 textual
programming language. It is convenient for those who have experience with
structured BASIC, Pascal, C or other high-level programming languages.

You use the Structured Text editor to create stand-alone structured text
programs. The Structured Text editor features typical text-editing functions
such as cut, copy, and paste, find, and replace. It also has tools and
commands to automatically insert statement constructs such as IF and CASE
selections statements and FOR, REPEAT, and WHILE loops,

You can also incorporate structured text commands into a Sequential
Function Chart (SFC) step. A patented extension to the SFC language allows
the integration of Structured Text into an SFC step. When you create the
application code for an SFC step, you can choose to use Structured Text code.
When the SFC is executed, the Structured Text code that you incorporate
within each step is processed as the step becomes active. Except for certain
functions, the stand-alone and SFC step Structured Text editors operate the
same.

This section provides information on using the Structured Text Editor. It is
assumed that you are familiar with general Program Editor operation and
have some familiarity with the Structured Text language.

Note: Stand-alone Structured Text programs run once and exit.

Structured Text Editor Overview
Note: Refer to Customize Text Editor for information on setting tab, color,
and font options for the editor.

102 • Structured Text Programming ASIC-200 User Guide

Opening a Structured Text Document
To open an existing document
• Select Open Editor from the Program Editor File menu and locate the

document using the Open dialog box that appears.

To open a new document
• Select New Editor from the Program Editor File menu and choose

Structured Text Document from the New dialog box that appears.

Editing Structured Text in an SFC Step
To edit Structured Text in an existing SFC step
• Double-click on the step or select the step and choose Edit Element from

the Edit menu or Edit ST or Macro Step from the context menu.

Make sure that the Step Properties is set to Structured Text.

Entering Statements
Manual Entry
Statements can be entered by typing in the statement or function call and
associated parameters. Be sure to review the syntax of statements in
Language Overview and refer to the function call syntax in Language
Reference.

Accessory Bar
The accessory bar shows commands in graphic form. It is an alternative
method of entering statements. The accessory bar appears only when
enabled by toggling Accessory Bar on the View menu. The following figure
shows the accessory bar functions. The floating accessory bar can be
undocked and positioned at the user’s convenience.

ASIC-200 User Guide Structured Text Programming • 103

Insert ST Statements Menu
When the Structured Text editor is active, the Program Editor Edit menu has
an Insert ST Statements item that lists Structured Text statements. Select the
statement you need and it will automatically be entered at the cursor
position in the proper syntax. Replace the any parameters and expressions as
needed. Optional parts of the statement should be removed if they will not
be used.

Insert ST Functions Menu
When the Structured Text editor is active, the Program Editor Edit menu has
an Insert ST Function Calls item that lists standard functions that can be used
with in the Structured Text language. Select the function you need and it will
automatically be entered at the cursor position with the correct syntax.
Replace any parameters with ones you have defined in the Symbol Manager.

Refer to Language Overview for more information on using functions and
function blocks in the Structured Text language.

Editing Structured Text
The Structured Text editor supports the common editor functions such as
cut, copy, and paste, and find and replace. These commands are found on
the Edit and context menu.

104 • Structured Text Programming ASIC-200 User Guide

Bookmarks
Bookmarks allow you to quickly position the cursor at specified lines within
the editor. You can set and reset bookmarks and locate previously set
bookmarks.

To set or reset a bookmark
1. Position the cursor at any line within the editor at which you wish to set

a bookmark.

• Select Toggle Bookmark from the context menu or use the Ctrl-F2 key
combination. When a bookmark is toggled on, a blue dot marks its
position in the left-hand column of the editor.

To position the cursor at a bookmark
• With one or more bookmarks previously set, press F2. The cursor will

position (and the screen will scroll if necessary) at the bookmark.
Successively pressing F2 will cycle through all bookmark positions.

Printing
To perform printer setup
• Choose Print Setup from the File menu. The standard Windows print

setup dialog box appears. Make any changes and click OK to save the
print setup information and continue.

To view a print preview
• Choose Print Preview from the File menu or tool bar. The print preview is

displayed.

To print the structured text file
• Choose Print from the File menu or tool bar. The standard Windows

print dialog box appears. Make any changes to the print options and
click OK to print the Structured Text file.

Saving
To save editing changes
• Choose Save from the File menu or tool bar. The Structured Text file is

saved.

Exiting the Editor
To exit the editor
• Choose Exit from the File menu.

If there are any editing changes that need saved, a prompt appears
requesting to save the changes first.

ASIC-200 User Guide Structured Text Programming • 105

Language Overview

Expressions
An expression is defined as a combination of operators (mathematical,
logical, relational) and operands (constants, symbols, literal values, other
expressions) that can be evaluated, yielding a result in one of the supported
data types, e.g., integer, real number, etc.

Operators
The table below lists the operators that you can use within an expression.
The order of precedence determines the sequence in which they are executed
within the expression. The operator with the highest precedence is applied
first, followed by the operator with the next highest precedence. Operators of
equal precedence are evaluated left to right.

 Operator Symbol Precedence
 Structure Index . 1 (Highest)
 Array Index [] 1
 Pointer Reference & 2
 Pointer Dereference * 2
 Parenthesis () 3
 Function Evaluation Identifier (argument list)

e.g., LN (A), ABS (X)
 3

 Exponentiation **, POW 4
 Negate - 5
 Complement NOT 5
 Multiply * 6
 Divide / 6
 Modulo MOD 6
 Add + 7
 Subtract - 7
 Comparison <, >, <=, >= 8
 Equality = 9
 Inequality <> 9
 Boolean/Bitwise AND AND 10
 Boolean/Bitwise Exclusive OR XOR 11
 Boolean/Bitwise OR OR 12 (Lowest)

106 • Structured Text Programming ASIC-200 User Guide

These symbols have the following functions.

:= assigns an expression to a symbol

; required to designate the end of a statement

[] used for array indexing where the array index is an integer. For
example, this sets the first element of an array to the value j+10:
intarray[i] = j + 10;

:: used to designate a label. For example, this specifies a label:
spray_on:: Labels must be followed by a statement on the same line.

(* *) designates a comment. For example, (*This is a comment.*)

Pointer Operators
Structured text has two pointer operators: the pointer reference & operator
and the pointer dereference * operator. These operators are used in indirect
addressing operations.

Indirect Addressing Description
In programming languages, data values are typically referred to by symbolic
name. This is known as direct addressing. The data value is given a symbolic
name and that symbolic name is used to directly access that data value.

X := Y;
The data value known as X is assigned the value of the Y data value.

Indirect addressing is a common paradigm in programming languages.
When using indirect addressing, the symbolic name refers to the location
where the data value is stored. These indirect symbols are commonly called
pointer symbols. To get the actual data value using indirect addressing, the
symbolic name of the pointer symbol is used to obtain the location of the
data value, then the location of the data value is used to get the actual data
value (an indirect operation).

If pVar1 is a pointer symbol, then in the following assignment, pVar1 is
assigned the location of the X data value.

pVar1 := & X;
If pVar1 is a pointer symbol, then in the following assignment, Y is assigned
the value contained in Var1, since pVar1 contains the location of Var1.

Y := * pVar1;
If pVar1 is a pointer symbol, then in the following assignment,Var1 is
assigned the value contained in Y.

* pVar1 := Y;
When a pointer symbol is defined, it is defined as a pointer to a symbol of a
specific data type (REAL, INT, STRING, etc.) The pointer symbol pVar1
could be assigned the location of any symbol of its data type.

ASIC-200 User Guide Structured Text Programming • 107

Pointer Definition
As with other symbols, pointer symbols are defined in the Symbol Manager.
The following figure shows the definition of several pointer types.

Pointers to standard data types, user structures, and arrays can be defined.
Pointers to function blocks and system objects cannot be defined.

Note: Pointers cannot be passed into FILE functions, bit array
functions (SHL, AND_BITS, etc.), and STRING_TO_ARRAY
functions.

Structured Text Pointer Usage
Assume VarInt1 and VarInt2 are integer symbols and pInt is defined as a
pointer to integer.

To assign a location to a pointer symbol
pInt := & VarInt;

pInt is assigned the location of VarInt. & means “get the location of”.

To get the data value referenced by a pointer symbol
VarInt2 := * pInt;

VarInt2 is assigned the value of VarInt1 . * means “get the value located at”.

108 • Structured Text Programming ASIC-200 User Guide

To use an array pointer
Assume IntArray is an array of 10 integers (IntArray: ARRAY [1..10] OF INT)
and pArray is defined as a pointer to integer.

For array symbols, the name of the array (in this case IntArray) is similar to a
pointer to the array data values. However, the array name can never be
assigned to a different location, it will always point to the array.

pArray := &IntArray;
pArray is assigned the location of IntArray.

pArray[index] := VarInt1;
IntArray[index] is assigned the value of VarInt1.

pArray := & IntArray;
pArray points to the first element of the array.

pArray := & IntArray[index];
pArray points to the element of the array located at index.
To use a pointer to a user structure
Assume a user structure UserStruct1 is defined and pStruct1 is defined as a
pointer to this user structure.

For user structure symbols, the name of the user structure (in this case
UserStruct1) is a pointer to the user structure data values. However, the user
structure name can never be assigned to a different location, it will always
point to the user structure.

pStruct := UserStruct1;
pStruct is assigned the location of UserStruct1.

pStruct.intMember1 := VarInt1;
The intMember1 member of UserStruct1 is assigned the value of VarInt1.

To use a pointer to an array of user structures
Assume an array of user structures structArray (structArray : ARRAY [1..10]
OF USER_STRUCT1) is defined, and a pointer to the user structure
pStructArray is defined (pStructArray : PTR TO USER_STRUCT1).

pStructArray := &structArray;
pStructArray is assigned the location of structArray.

pStructArray[5].intMember1 := VarInt1;
The intMember1 member of structArray[5] is assigned the value of VarInt1.

To use an array of pointers which point to an INT
Assume an array of pointers ArrayPtr (ARRAY [1..10] OF PTR TO INT) is
defined.

ArrayPtr[index] := VarInt1;

ASIC-200 User Guide Structured Text Programming • 109

ArrayPtr[index] is assigned the address of VarInt1.

*ArrayPtr[index] := VarInt2;
VarInt1 is assigned the value of VarInt2.

To use an array of pointers which point to an array of INT
Assume an array of integers intArray (ARRAY [1..10] OF INT) and an array of
pointers ArrayPtr (ARRAY [1..10] OF PTR TO INT) are defined.

ArrayPtr[index] := &IntArray;
ArrayPtr[index] is assigned the address of the first element in intArray.

*ArrayPtr[index] := VarInt1;
IntArray[1] is assigned the value of VarInt1.

To assign a null value to a pointer symbol
pInt := NULL;

pInt is assigned the NULL pointer value. Pointer symbols can be assigned to
and compared (equal and not equal to) NULL. NULL is a system keyword.

To use an array of pointers to arrays of INT
Assume arrays of integers intArray1, intArray2, IntArray3 (ARRAY [0..10] OF
INT) and an array of pointers ArrayPtr (ARRAY [1..3] OF PTR TO INT) are
defined.

ArrayPtr[1] := &IntArray1[0];
ArrayPtr[2] := &IntArray2[0];
ArrayPtr[3] := &IntArray3[0];

Refer to the following figure.

110 • Structured Text Programming ASIC-200 User Guide

Then the following syntax can be used:

ArrayPtr[1] [0] := VarInt1; (*IntArray1[0] = VarInt1*)
ArrayPtr[1] [1] := VarInt2; (*IntArray1[1] = VarInt2*)
ArrayPtr[1] [2] := VarInt3; (*IntArray1[2] = VarInt3*)

ArrayPtr[2] [0] := VarInt1; (*IntArray2[0] = VarInt1*)
ArrayPtr[2] [1] := VarInt2; (*IntArray2[1] = VarInt2*)
ArrayPtr[2] [2] := VarInt3; (*IntArray2[2] = VarInt3*)

ArrayPtr[3] [0] := VarInt1; (*IntArray3[0] = VarInt1*)
ArrayPtr[3] [1] := VarInt2; (*IntArray3[1] = VarInt2*)
ArrayPtr[3] [2] := VarInt3; (*IntArray3[2] = VarInt3*)

Structured Text Syntax
If you use the built-in editor tools (ST accessory bar and insert menus) to
insert Structured Text statements and functions, the correct syntax is
automatically entered for you. Keywords appear in all upper case, user-
replaceable expressions and parameters appear in mixed case, and options
appear in brackets []. Refer to the Language Reference for more information
on using the Structured Text language, functions, and function blocks.

 Notes:
1. Structured Text statements must end in a semi-colon (;).
2. Structured Text symbols must be declared in the Symbol

Manager.

Assignment Statement
The assignment statement replaces the value of a variable with the result of
evaluating an expression (of the same data type).

Format
Variable := Expression;
Where:

Variable is a symbol, array, array element, etc.

Expression is a single value, expression, or complex expression.

Example 1
Boolean assignment statements:

VarBool1 := TRUE;
VarBool2 := (val <= 75);

ASIC-200 User Guide Structured Text Programming • 111

Example 2
Array element assignment:

Array_1[13] := (RealA /RealB)* PI;
Example 3
String assignment. String literals must be enclosed in single quotation marks.

String_Val := ‘This is a string constant’;
Example 4
Function value assignment:

Result := SQRT(2);
Example 5
Function block value assignment: Assume the counter function block
instance CTU1 is located in an RLL diagram, then the following assignment
in the structured text program gets the current value of the counter.

CurrentValue:=CTU1.CV;
Example 6
Pointers:

pVar1 := & X;
If pVar1 is a pointer symbol, then pVar1 is assigned the location of the X data
value.

Example 7
Pointers:

Y := * pVar1;
If pVar1 is a pointer symbol, Y is assigned the value contained in Var1 , since
pVar1 contains the location of Var1.

Example 8
Pointers:

* pVar1 := Y;
If pVar1 is a pointer symbol, Var1 is assigned the value contained in Y.

BREAK Statement
The BREAK statement stops program execution if debugging is enabled (the
program was started with the Run with Debug command).

Format
BREAK;
Example

112 • Structured Text Programming ASIC-200 User Guide

If debugging is enabled, program execution stops at the BREAK statement.
The statements in StatementList2 and succeeding program statements can be
executed by single-stepping through the program.

StatementList1;
BREAK;
StatementList2;

CASE Statement
The CASE construct offers multiple-choice conditional execution of
statement lists. It conditionally executes one of multiple statement lists in
which the condition is determined by the value of an integer variable.

Format
CASE IntExpression OF

Int: (*Singular*)
StatementList;

Int,Int,Int: (*Enumerated*)
StatementList;

Int..Int: (*Range*)
StatementList;

[ELSE (*Optional*)
StatementList;]

END_CASE;

Where:

IntExpression A variable or expression having a data type of ANY_INT.

Int An integer. Zero or more of each of the singular,
enumerated, or range forms can be used.

StatementList Zero or more Structured Text statements.

Operation
The Int values are compared to IntExpression. The StatementList following
the first Int value that matches IntExpression is executed. If no Int value
matches IntExpression, the StatementList following ELSE is executed;
otherwise, no StatementLists are executed. The ELSE part of the CASE
construct is optional.

Example
This code fragment assigns a value to a string variable.

CASE ColorSelection OF
0:

ColorString := 'Red';
1:

ColorString:='Yellow';

ASIC-200 User Guide Structured Text Programming • 113

2,3,4:
ColorString:='Green';

5..9:
ColorString:='Blue';

ELSE
ColorString:='Violet';

END_CASE;

Comments
Comments let you incorporate useful annotations into your program code to
document program operation. The compiler ignores anything between a
(*…*) pair. A comment can be placed after a line of code or on a separate line.

Format
(*free-form text*)

Example
Result := SQRT(x); (*Uses the square root function*)

Exit Statement
The EXIT statement is used to terminate and exit from a loop (FOR, WHILE,
REPEAT) before it would otherwise terminate. Program execution resumes
with the statement following the loop terminator (END_FOR, END_WHILE,
END_REPEAT).

Format
ConditionForExiting EXIT;
Where:

ConditionForExiting An expression that determines whether to terminate
early.

Example
The following code fragment shows the operation of the EXIT statement.
When the variable number exceeds 500, the FOR loop is exited and
execution continues with the statement immediately following END_FOR.

number:=1
FOR counter := 1 TO 100 DO

number := number * counter;
IF number > 500 THEN EXIT;

END_FOR;

114 • Structured Text Programming ASIC-200 User Guide

IF Statement
The IF construct offers conditional execution of a statement list. The
condition is determined by result of a Boolean expression. The IF construct
has two optional parts: One option provides conditional execution of an
alternate statement list as determined by a second Boolean expression.
Another option provides unconditional execution of a third statement list if
neither condition is satisfied.

If neither Boolean expression is TRUE and you have included an ELSE
statement, the statements following the ELSE are executed. If an ELSE
statement is not present, no statements are executed.

Format
IF BooleanExpression1 THEN

StatementList1;
[ELSEIF BooleanExpression2 THEN (*Optional part*)

StatementList2;]
[ELSE (*Optional part*)

StatementList3;]
END_IF;
Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation
The following sequence of evaluation occurs if both optional parts are
present:

If BooleanExpression1 is TRUE, then StatementList1 is executed. Program
execution continues with statement following the END_IF keyword.

If BooleanExpression1 is FALSE and BooleanExpression2 is TRUE, then
StatmentList2 is executed. Program execution continues with statement
following the END_IF keyword.

If both Boolean expressions are FALSE, then StatmentList3 is executed.
Program execution continues with statement following the END_IF
keyword.

If an optional part is not present, then the sequence of evaluation skips to the
next

Example
The following code fragment puts a text message into the string variable
Message, depending on the value of I/O point input value.

IF Input01 < 10.0 THEN
Message := 'Low Limit Warning';

ELSEIF Input02 > 90.0 THEN

ASIC-200 User Guide Structured Text Programming • 115

Message := 'Upper Limit Warning';
ELSE

Message := 'Limits OK';
END_IF;

INCLUDE
The INCLUDE statement incorporates statements from an external file when
the structured text file is parsed. The external file can contain either
Structured Text or Instruction List statements.

Format
INCLUDE FullFilePath;
Where:

FullFilePath A string that specifies the path and file name
of the external file.

Example
INCLUDE 'C:\ST_Files\ST_File1.TXT';

FOR Statement
The FOR loop repeatedly executes (iterates) a statement list contained within
the FOR…END_FOR construct. It is useful when the number of iterations
can be predicted in advance, for example to initialize an array. The number
of iterations is based on the value of a control variable which is incremented
(or decremented) from an initial value to a final value by the FOR statement.
You can use an expression for the control variable, but the value must be 0 or
greater. By default, each iteration of the FOR statement increments the value
of the control variable by 1. An optional BY portion of the construct can be
used to specify an increment or decrement of the control variable by
specifying a (non-zero) positive or negative integer or an expression that
evaluates to a positive or negative integer.

The FOR statement checks the control variable before each iteration, and the
statements within the FOR…END_FOR construct are only executed if the
current value of the control variable has not exceeded the specified final
value.

The END_FOR keyword causes the system to do an I/O scan at the end of
each iteration of the FOR loop. Alternatively, you can use the
END_FOR_NOWAIT keyword to loop without an I/O scan.

Format
FOR Int_Variable := Expression TO Expression [BY Expression] DO

Statement list;
END_FOR;

116 • Structured Text Programming ASIC-200 User Guide

Where:

Int_Variable An integer variable.

Expression A single value, expression, or complex expression of the
same data type as Int_Variable.

Statement list Any list of structured text statements.

Example 1
The following code fragment initializes an array (of 100 elements) by putting
10 in all array elements. Since this operation is not dependent on I/O, the
END_FOR_NOWAIT keyword is used.

FOR index := 1 TO 100
Array01[index] := 10;

END_FOR_NOWAIT;
Example 2
The following code fragment assigns the values of an I/O point to array
elements over ten I/O scans. The latest entry is put in the array element with
the smallest index. Since it is desired to perform an I/O scan after each loop,
the END_FOR keyword is used.

FOR index := 10 TO 1 BY -1 DO
ArrayInput[index] := Input01;

END_FOR;

Function Call
The Structured Text function call executes a predefined algorithm that
performs a mathematical, string, bit string or other operation. The function
call consists of the name of the function followed by any required input or
output parameters enclosed in parentheses.

Function Format
FunctionName(Parameter1, Parameter2, . . .); (*Un-named parameters*)

or
FunctionName(P1:=Parameter1, Parameter1, . . .); (*Named parameters*)
Example 1
This code fragment shows the TAN function call.

Result := TAN(AnyReal);
Example 2
This code fragment shows a function with named parameters.

StringB := LEFT(IN:= StringA, L:= VarI);

ASIC-200 User Guide Structured Text Programming • 117

LABEL
The label statement is used within SFC steps only. If an action label has an
associated label statement in the SFC step, then the action does not run until
the label is encountered.

Format
ActionLabel:: Statement;
Where:

ActionLabel The name of an action label.

Statement Any Structured Text statement.

Example 1
The following code fragment causes an action with a label of ActionLabel to
start running.

ActionLabel:: VarString1:= "Action should be running";

REPEAT Statement
The REPEAT loop repeatedly executes (iterates) a statement list contained
within the REPEAT…END_REPEAT construct until an exit condition is
satisfied. It executes the statement list first, then checks for the exit condition.
This looping construct is useful when the statement list needs to be executed
at least once.

Format
REPEAT

StatementList;
UNTIL BooleanExpression END_REPEAT;
Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation
The StatementList is executed. If the BooleanExpression is FALSE, then the
loop is repeated; otherwise, if the BooleanExpression is TRUE, the loop is
exited. The statement list executes at least once, since the BooleanExpression
is evaluated at the end of the loop.

The END_REPEAT keyword causes the system to do an I/O scan at the end
of every iteration of the REPEAT loop. Alternatively, you can use the
END_REPEAT_NOWAIT keyword to loop without an I/O scan.

Note: It is possible to create an infinite loop that (since the control
system runs at the highest priority) does not return control to the
operating system, especially when using the

118 • Structured Text Programming ASIC-200 User Guide

END_REPEAT_NOWAIT keyword. Avoid infinite loops by insuring
that the BooleanExpression provides a determinate exit condition.

Example
The following code fragment reads values from an array until a value greater
than 5.0 is found (or the upper bound of the array is reached). Since at least
one array value must be read, the REPEAT loop is used.

REPEAT
Value:=Array01[Index];
Index:=Index+1;

UNTIL Value > 5.0 OR Index >= UpperBound END_REPEAT_NOWAIT;

SCAN
The SCAN statement suspends program execution while an I/O scan takes
place.

Format
SCAN;
Example
Statement1;
SCAN; (*Statements 2 & 3 do not execute until after an I/O scan.*)
Statement2;
Statement3;

WHILE Statement
The WHILE loop repeatedly executes (iterates) a statement list contained
within the WHILE…END_WHILE construct as long as a specified condition is
TRUE. It checks the condition first, then conditionally executes the statement
list. This looping construct is useful when the statement list does not
necessarily need to be executed.

Format
WHILE BooleanExpression DO

StatementList;
END_WHILE;
Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation
If BooleanExpression is FALSE, then the loop is immediately exited;
otherwise, if the BooleanExpression is TRUE, the StatementList is executed

ASIC-200 User Guide Structured Text Programming • 119

and the loop repeated. The statement list may never execute, since the
Boolean expression is evaluated at the beginning of the loop.

The END_WHILE statement causes the system to do an I/O scan at the end
of every cycle of the WHILE loop. Alternatively, you can use the
END_WHILE_NOWAIT statement to loop back without an I/O scan.

Note: It is possible to create an infinite loop that (since the control
system runs at the highest priority) does not return control to the
operating system, especially when using the END_WHILE_NOWAIT
keyword. Avoid infinite loops by insuring that the
BooleanExpression provides a determinate exit condition.

Example
The following code fragment asserts an output I/O point as long as the input
I/O point EndLimit remains FALSE. A WHILE loop is used since there is no
reason to process the statement list if EndLimit is TRUE. The END_WHILE
loop keyword is used since the I/O points should be scanned.

WHILE NOT EndLimit DO
MoveForward := TRUE;

END_WHILE;
MoveForward := FALSE;

ASIC-200 User Guide Instruction List Programming • 121

Instruction List Programming

Introduction
The Instruction List (IL) programming language is an IEC 1131-3 textual
programming language. Its format is similar to an assembly language. You
use the Instruction List editor to create stand-alone instruction list programs.
The Instruction List editor is accessed from the Program Editor and features
typical text-editing functions such as cut, copy, and paste, find, and replace.
It also has tools and commands to automatically insert Instruction List
statements and functions.

This section provides information on using the Instruction List editor writing
Instruction List programs. It is assumed that you are familiar with general
Program Editor operation and have some familiarity with the Instruction List
language.

Note: Instruction List programs are continuously running programs (once
each scan).

Instruction List Editor Overview
Note: Refer to Customize Text Editor for information on setting tab, color,
and font options for the editor.

Opening an Instruction List Document
To open an existing document
• Select Open Editor from the Program Editor File menu and locate the

document using the Open dialog box that appears.

To open a new document
• Select New Editor from the Program Editor File menu and choose

Instruction List Document from the New dialog box that appears.

122 • Instruction List Programming ASIC-200 User Guide

Entering Instructions
Manual Entry
Instructions can be entered by typing in the operator or function call and
associated operands or parameters. Be sure to review the syntax, operators,
and operator modifiers in Language Overview and the refer to the function
call syntax in the Language Reference.

Accessory Bar
The accessory bar shows commands in graphic form. It is an alternative
method of entering IL statements. The accessory bar appears only when
enabled by toggling Accessory Bar on the View menu. The following figure
shows the accessory bar functions. The floating accessory bar can be
undocked and positioned at the user’s convenience.

Insert IL Statements Menu
When the Instruction List editor is active, the Program Editor Edit menu has
an Insert IL Statements item that lists instruction list statements (operators).
Select the statement you need and it will automatically be entered at the
cursor position.

Insert IL Functions Menu
When the Instruction List editor is active, the Program Editor Edit menu has
an Insert IL Functions item that lists standard functions that can be used with
in the Instruction List language. Select the function you need and it will
automatically be entered at the cursor position with the correct syntax.
Replace any parameters with ones you have defined in the Symbol Manager.

Refer to Language Overview for more information on using functions and
function blocks in the Instruction List language.

Editing Instructions
The Instruction List editor supports the common editor functions such as cut,
copy, and paste, and find and replace. These commands are found on the
Edit and context menu.

Bookmarks
Bookmarks allow you to quickly position the cursor at specified lines within
the editor. You can set and reset bookmarks and locate previously set
bookmarks.

ASIC-200 User Guide Instruction List Programming • 123

To set or reset a bookmark
1. Position the cursor at any line within the editor at which you wish to set

a bookmark.

• Select Toggle Bookmark from the context menu or use the Ctrl-F2 key
combination. When a bookmark is toggled on, a blue dot marks its
position in the left-hand column of the editor.

To position the cursor at a bookmark
• With one or more bookmarks previously set, press F2. The cursor will

position (and the screen will scroll if necessary) at the bookmark.
Successively pressing F2 will cycle through all bookmark positions.

Printing
To perform printer setup
• Choose Print Setup from the File menu. The standard Windows print

setup dialog box appears. Make any changes and click OK to save the
print setup information and continue.

To view a print preview
• Choose Print Preview from the File menu or tool bar. The print preview is

displayed.

To print the instruction list file
• Choose Print from the File menu or tool bar. The standard Windows

print dialog box appears. Make any changes to the print options and
click OK to print the instruction list file.

Saving
To save editing changes
• Choose Save from the File menu or tool bar. The instruction list file is

saved.

Exiting the Editor
To exit the editor
• Choose Exit from the File menu.

If there are any editing changes that need saved, a prompt appears
requesting to save the changes first.

124 • Instruction List Programming ASIC-200 User Guide

Language Overview

Instruction List Syntax
An Instruction List program consists of a list of instructions. Each instruction
starts on a new line and can contain a label, operator, operator modifiers,
operands, and comment fields as shown below:

Label Operator Operand Comment
Example: LD Sym01 (*Load Sym01 value into accumulator*)

ADD Sym02 (*Add Sym02 to it*)
(*The sum is now the current result*)

Comments can only be at the end of the line. Blank lines are allowed between
the instruction lines. The current result is maintained in an accumulator.
Instructions work in the following manner:

current_result:= current_result OPERATOR operand

where the current_result is always to the left of the operator.

Operators
The table below lists the Instruction List language operators.

 Operator Modifier Operand Description
LD N Set current result equal to operand.
ST N Store current result to operand location.
S Note 1 BOOL Set Boolean operand to 1.
R Note 1 BOOL Reset Boolean operand to 0.
AND N, (BOOL Boolean AND.
OR N, (BOOL Boolean OR.
XOR N, (BOOL Boolean Exclusive OR.
ADD (Addition.
SUB (Subtraction.
MUL (Multiplication.
DIV (Division.
GT (Greater Than comparison (>).
GE (Greater Than or Equal To comparison (>=).
EQ (Equal To comparison (=).
NE (Not Equal To comparison (<>).
LE (Less Than comparison (<).
LT (Less Than or Equal To comparison (<=).

ASIC-200 User Guide Instruction List Programming • 125

 Operator Modifier Operand Description
JMP C, N LABEL Jump to label.
CAL C, N NAME Function and function block call.
) Evaluate deferred operation.
Note
1. Performed only if the current result value is Boolean 1.
Table Source: IEC 1131-3 (Part 3 of IEC Standard 1131 for programmable
controllers), International Electrotechnical Commission.

Modifiers
Operators can take the following modifiers:

N Boolean negation of the operand. For example,

ORN Bool1
is equivalent to result:= result OR NOT Bool1.

C The instruction is performed only if the current_result value is
Boolean 1. (Or Boolean 0 if the N modifier is also used. For example,

LD Value
JMPC Sort

is equivalent to "IF Value is TRUE, jump to Sort, else continue with
execution."

(Defers evaluation of the operator until encountering a right
parenthesis operator ")". For example,

MUL(Num1
ADD Num2
)

is equivalent to result:= result * (Num1 + Num2).

Functions and Function Blocks
Function Calls
Function calls can be done using the following forms:

CALC calls a function if the current result (accumulator value) is TRUE
(1).

CAL always call the function.
CALCN only call the function if the current result (accumulator value) is

FALSE (0).

Function call syntax using CALC is shown below:

Function Example1:
CALC ROL(OUT:= VarBit, IN:= BitString, N:= RotateNum)

126 • Instruction List Programming ASIC-200 User Guide

FunctionExample2:

CALC ADD(OUT:= VarNum, Num1, Num2)
Function Block
Function blocks are called using the following form of the call:

CAL always call the function block.

The following are examples of the syntax used for a standard function block,
where ctu1 and ton1 are named instance of CTU and TON function blocks.

LD 10
ST ctu1.PV
LD TRUE
ST ctu1.EN
LD In3
ST ctu1.CU
CAL ctu1
LD ctu1.Q
ST Out3

LD TRUE
ST ton1.IN
ST ton1.EN
LD t#30s
ST ton1.PT
CAL ton1
LD ton1.Q
ST Out2

Refer to the Language Reference for standard function block descriptions
and parameters (PV, EN, CU, Q, etc.).

Accumulator Relationships
For function blocks, there is no relationship between the accumulator and the
function block. The function block is always called, the accumulator is not
passed into the function block, and after the function block returns, the
accumulator has the same value as it had before the function block was
called.

For functions the accumulator has no effect on the function inputs. When
using CALC, the function will not be called if the accumulator is FALSE.

 When using CALCN, the function will not be called if the accumulator is
TRUE. When the function returns, if the return value is a BOOL, the return
value is automatically loaded into the accumulator. If the function return
value is a non BOOL, the return value can be saved into a variable using the
func1 (OUT:=outvar1) syntax. In this case the return value is only saved into
outvar1 if the function is actually called (CAL, CALC with TRUE
accumulator, or CALCN with FALSE accumulator). If the function return
value is a non-BOOL, the accumulator should be automatically loaded with
the inverted value of the BOOL system error symbol (RTERROR). If the
function is called and an error is flagged by the function, the accumulator
will be loaded with a FALSE value after the function returns. If the function
is called and no error is flagged by the function, the accumulator will be
loaded with a TRUE value.

ASIC-200 User Guide Instruction List Programming • 127

Program Examples
The following program segments show examples of using the various
Instruction List operators:

LD 1 (* LOAD *)
S VarBool1 (* SET *)
R VarBool2 (* RESET *)

LDN VarTrue (* LOAD NOT *)
S VarBool1
STN VarBool2 (* STORE NOT *)

LD VarBool1 (* AND *)
AND VarBool2
ST VarBool3

LD VarBool1 (* AND NOT *)
ANDN VarBool2
ST VarBool3

LD VarInt1 (* ADDITION OF INTEGERS *)
ADD VarInt2
ST VarInt3

LD VarInt1 (* GREATER THAN *)
GT VarInt2
ST VarBool1

JMP Label (* JUMP *)
LD 55
ST VarNum

Label: LD 100 (* LABEL *)
ST VarNum

LD VarBool (* JUMP CONDITIONAL *)
JMPC Go
LD 12
ST VarNum

Go: LD 250

LD VarBool (* JUMP CONDITIONAL NOT *)
JMPCN Go2
LD 2877
ST VarNum

128 • Instruction List Programming ASIC-200 User Guide

Go2: LD 0

(* Nesting*)
(* Equivalent to the following:*)
(* VarBool2:= VarBool1 AND (VarInt1 > (VarInt2 + VarInt3)) *)

LD VarBool1
AND(VarInt1
GT(VarInt2
ADD VarInt3
)
)
ST VarBool2

(* GENERAL OPERATIONS EXAMPLE *)
LD Format (* 0: CONVERT F TO C, 1: CONVERT C TO F *)
JMPC CtoF (* JUMP TO CORRESPONDING FUNCTION *)

LD .555 (* LOAD THE MULTIPLIER *)
MUL(Fahrenheit (* THIS EVALUATES TO: (Farenheit-32)*.555) *)
SUB 32
)
ST Celsius (* STORE THE RESULT IN Celsius *)

JMP Done (* OPERATION COMPLETE, GOTO END OF FILE *)
CtoF: LD 32 (* LOAD OPERAND *)

ADD(Celsius (* THIS EVALUATES TO: (Celsius * 1.8)+32 *)
MUL 1.8
)
ST Fahrenheit (* STORE THE RESULT IN Fahrenheit *)

Done: LD 1 (* CONVERSION COMPLETED *)

LD Run_Timer (* LOAD TRUE INTO THE REGISTER *)
ANDN FALSE (* THIS EVALUATES TO: TRUE AND NOT FALSE *)
ST Enable (* STORE IN Enable *)

(* CALL TO FUNCTION BLOCK EXAMPLE *)
LD Enable (* LOAD Enable INTO THE REGISTER *)
ST ton1.IN (* STORE REGISTER VALUE IN ton1.IN *)
ST ton1.EN (* STORE REGISTER VALUE IN ton1.EN *)
LD t#30s (* LOAD t#30s INTO THE REGISTER *)

ASIC-200 User Guide Instruction List Programming • 129

ST ton1.PT (* STORE REGISTER VALUE IN ton1.PT *)
CAL ton1 (* CALL ton1, IT WILL RUN FOR 30s *)
LD ton1.Q (* Load Output Boolean Into The Register *)
ST Enable_Out (* STORE THE REGISTER VALUE IN Enable_Out *)

ASIC-200 User Guide Motion Programming • 131

Motion Programming

Motion Programming Overview
The control system supports both tightly-coupled motion (integrated
motion) and loosely-coupled motion (motion direct). One major difference in
the two is: in integrated motion, you program motion in RS-274D or
structured text; in motion direct, the programming is done in the card's
native programming language. For more information refer to:

• Integrated Motion

• Motion Direct

• Refer to a the driver help file for additional information on a specific
motion card.

Motion Card Support
The following lists supported motion cards:

Delta Tau Data Systems, Inc.

• PMAC-PC

• PMAC2-PC

• PMAC2-PC-UltraLite

• PMAC/PMAC2-Lite

• Mini-PMAC

Motion Engineering, Inc.

• SL/DSP : 4-Axis Motion Card

• PCX/DSP: 8-Axis Motion Card

Compumotor

• AT6250 : 2-Axis Motion Card (No Steppers)

• AT6450 : 4-Axis Motion Card (No Steppers)

Galil Motion Control, Inc.

• DMC-1700 : 1 to 8-Axis Motion Card

132 • Motion Programming ASIC-200 User Guide

Hardware Setup of a Motion Control System
The following lists the general hardware requirements for motion control:

• IBM Compatible PC

• ISA Bus Motion Controller Card

• Cables (Ribbon or Fiber Optic or RJ-45)

• Breakout Boxes (May be Optically Isolated)

• Drives or Amplifiers

• Feedback Devices (Encoders, Resolvers, etc)

• Additional Accessories as Necessary

Software Setup of a Motion Control System
The following lists general software requirements for motion control:

• Windows NT 4.0 Workstation with SP3 or Higher

• ASIC-200 ver. 3.10 or Higher

• ASIC-200 Motion Drivers

• Motion Controller Specific Software:

• PEWIN32, P1Setup, P2Setup, PMACPlot (Delta Tau)

• Motion Console (MEI)

• Motion Architect (Compumotor)

• WSDK, VB Toolkit, G-code-to-DMC, CAD-to-DMC (Galil)

Architecture of a PC Based Motion Control System
Refer to the following figure for an example of a PC-based motion
control system.

ASIC-200 User Guide Motion Programming • 133

Relative Roles of ASIC-200 and the Motion Card

ASIC-200 Motion Controller Card

• Interpret RS-274D and
Structured Text Functions and
Send Appropriate Commands
to the Card

• Does Not Translate Motion
Programs to Card’s Native
Language

• Implement G04 (Dwell)

• Send Passthrough Commands
without Error Checking to the
Card (G66)

• Execute Commands Sent by
ASIC-200 (Host PC)

• Calculate Motion Trajectory

• Close Servo-loop for Position,
Velocity, Torque, and/or
Current Control

• Perform Commutation

ASIC-200 User Guide Integrated Motion • 135

Integrated Motion

Integrated Motion Drivers
The following lists driver support for integrated motion:

• All PMAC, PCDSP, and Compumotor ISA Boards.

• Programming support includes Structured Text motion commands and
the RS-274D language.

Integrated Motion Features
The following lists integrated motion control features:

• Ability to synchronize moves with discreet logic.

• Ladder Logic actions using action qualifiers.

• Structured Text mixed with RS-274D.

• Better control over motion.

• Better error reporting.

• Ability to skip or abort motion.

• Ability to run NC Files.

 About the Motion Control Language
The Motion Control programming language is an RS-274D compliant set of
text-based instructions that is designed for motion control operations. The
language lets you design for 2- and 3-dimensional motions by using
parameters such as:
• coordinate positions
• feed rates
• movement between positions with controlled acceleration and

deceleration

Motion Control programming consists of a series of single-letter commands,
which are followed by numerical parameters to these commands. The
commands are organized into individual lines of text, which are called

136 • Integrated Motion ASIC-200 User Guide

blocks. The blocks form execution units that are executed sequentially.
Program execution pauses on each block until all the functions in the block
are completed, then program flow continues with the next block.

You can add motion control to an SFC and Embed Structured text into
motion control code.

For more information, see "Using Motion Control Statements" on page 137.

Adding Motion Control to an SFC
When you create the application code for an SFC step, you can choose to use
Motion Control code, as illustrated below. When the SFC is executed, the
Motion Control code that you incorporate within each step is processed as
the step becomes active. You can enter the Motion Control code directly into
a step, or you can link a file containing the Motion Control code to the step
when you configure the step. The type of information in the file should be in
the same format as the type of information entered directly into a step.

N001G00X0Y0F1000
N002G00X50Y75
N003G00X150
N004G00X220Y150
N005G00X300
N006G00Y75
N007G00X500

Step1

Step2

Step3

T-1

For information about how the CONTROL SYSTEM software enhances the
RS-274D specification, see "Software Enhancements to RS-274D" on page 136.

Software Enhancements to RS-274D
The control system software provides the following enhancements to the RS-
274D specification.

• You can embed Structured Text assignments and expressions within the
Motion Control code. See "Embedding Structured Text into Motion
Control Code" on page 158.

• You can use step actions to synchronize I/O operations with Motion
Control execution. You can also use motion qualifiers to synchronize
action logic with motion.

• The control system software provides motion symbols that are mapped
to the I/O. For example, axis.CMDPOS is a real number symbol that
contains the current commanded position of an axis.

ASIC-200 User Guide Integrated Motion • 137

• M flags are associated with the Motion Control M codes and are set on or
off depending on the M code being used. This lets you monitor the M
flags from other programs and allow other actions to begin after an M
code is encountered during program execution.

• You can improve your control over program flow by using WHILE and
IF-GOTO commands with the Motion Control commands.

• You can call a macro (subroutine) for execution by using a preparatory
command G65.

Using Motion Control Statements

Using Motion Control Commands
The control system software converts RS-274D commands into the
appropriate commands specifically generated for the servo-motion card that
you have selected.

Motion commands must be structured in a specific format. See "Motion
Control Block Format" on page 138. The motion commands are:

Command Function
A Rotary A motion command in predefined engineering units.
B Rotary B motion command in predefined engineering units.
C Rotary C motion command in predefined engineering units.
D Tool function for selection of tool compensation.
F Feed rate function or speed command in predefined engineering

units.
G Preparatory function. See "Using G Codes" on page 140.
I Interpolation parameter or thread lead parallel to X axis.
J Interpolation parameter or thread lead parallel to Y axis.
K Interpolation parameter or thread lead parallel to Z axis.
M Miscellaneous function. See on page 142.
N Block number (optional)
S Spindle speed function.
T Tool Function. Range 01-32.
X Linear X motion command in predefined engineering units.
Y Linear Y motion command in predefined engineering units.
Z Linear Z motion command in predefined engineering units.

138 • Integrated Motion ASIC-200 User Guide

Motion Control Block Format
The format for a Motion Control block (single line of code) is described
below.

N If you use a sequence number, it must be first in the block. Optional for
the control system.

G The preparatory function(s) G must follow N.

X The linear dimension words follow G. Specify the X axis first.

Y The linear dimension words follow G. Specify the Y axis second.

Z The linear dimension words follow G. Specify the Z axis third.

A The rotary dimension words follow G. Specify the X axis first.

B The rotary dimension words follow G. Specify the Y axis second.

C The rotary dimension words follow G. Specify the Z axis third.

I The interpolation words follow the dimension words. Specify the X axis
first.

J The interpolation words follow the dimension words. Specify the Y axis
second.

K The interpolation words follow the dimension words. Specify the Z axis
third.

D The selection of tool compensation must follow K.

F If you specify a feed rate that applies to more than one axis, F must follow
the last dimension word (and interpolation) to which it applies.

T The tool function selection follows S.

M Any miscellaneous function(s) that you specify must be last in the block,
just ahead of the end of block character.

End of Block Indicate the end of a block with the carriage return / line feed
character. Make sure that there are no extra spaces, tabs, or other characters
between the last command and the End of Block.

Motion Control Block Examples
Example 1
N009G01X-3.0Y-7.0Z+1.0F95

• N009 Ninth block in the program.

• G01 Positions a tool to the next point along a straight line path.

• Sets the X axis position.

• Sets the Y axis position.

• Sets the Z axis position.

• F95 Sets the feed rate at 95 units.

ASIC-200 User Guide Integrated Motion • 139

Example 2
N011G02X+0.5Y+1.0I0.75J0.0

• N011 Eleventh block in the program.

• G02 Positions a tool in a circular motion.

• Sets the X axis position.

• Sets the Y axis position.

• I0.75 Sets the X axis position for the arc.

• J0.0 Sets the Y axis position for the arc.

Example 3
N003G70X+1.3Y-7.0Z+2.1M08

• N003 Third block in the program.

• G70 Sets mode for programming in units of inches.

• Sets the X axis position.

• Sets the Y axis position.

• Sets the Z axis position.

• M08 Causes coolant number 1 to turn on.

140 • Integrated Motion ASIC-200 User Guide

Using G Codes

The control system software supports RS-274D G codes to control many
motion control operations. The G code support is driver dependent. Not all
G codes are supported by all drivers. If a driver is marked with a bullet (•), it
supports that G code.

The available G codes are listed in the following table:

 Code Description Notes PMAC PCDSP Compu
motor

 G00 Rapid point to point motion 1) G00 motions must either
have an axis.RAPID speed set
or a feedrate on the block for
the motion to occur.
 2) Axes may not arrive at the
endpoint at the same time.

 • • •

 G01 Coordinated Linear motion The speed of the motion is
controlled and all the axes
move in a coordinated manner.

 • •

 G02 Circular Motion, Clockwise The axes are moved in a
coordinated circular motion
clockwise when viewed from
the top.

 • First two
axis only

 G03 Circular Motion, Counter-
Clockwise

 The axes are moved in a
coordinated circular motion
counter-clockwise when viewed
from the top.

 • First two
axis only

 G04 Dwell Execution of the program is
suspended for a programmed
length of time. The duration is
specified by an F word in the
same block. i.e. G04F2.5 =
delay for 2.5 seconds.

 • • •

 G05 Spline move This is a PMAC style SPLINE1
MOVE. Refer to G05 Spline
Move Notes for more
information.

 •

 G09 Exact Stop This can be used to insure that
axes moves are complete prior
to evaluating a parametric
expression. Example:
 G01X10F100
 G09
 {Parametric Expression}

 •

ASIC-200 User Guide Integrated Motion • 141

 Code Description Notes PMAC PCDSP Compu
motor

 G17 XY plane selection •
 G18 ZX plane selection •
 G19 YZ plane selection •
 G40 Cancels Radius

Compensation
 •

 G41 Cutter diameter
compensation (left)

 •

 G42 Cutter diameter
compensation (right)

 •

 G43 Tool Length Offset (Plus) Offset is applied to the normal
axis to the plane.

 •

 G44 Tool Length Offset (Minus) Same as G43 •
 G45 Tool Offset Increase Applies only if system is

configured for “Lathe” setting.
This setting is estblished from
the axis group dialog in the
config file.

 •

 G46 Tool Offset Decrease Same note as G45 •
 G47 Tool Offset Double Increase Same note as G45 •
 G48 Tool Offset Double Decrease Same note as G45 •
 G52 Local Offsetting Coordinate

Zero Point
 Application Specific. •

 G53 Motion in Machine
Coordinate System

 • •

 G54 Workpiece Coordinate
System 1

 •

 G55 Workpiece Coordinate
System 2

 •

 G56 Workpiece Coordinate
System 3

 •

 G57 Workpiece Coordinate
System 4

 •

 G58 Workpiece Coordinate
System 5

 •

 G59 Workpiece Coordinate
System 6

 •

 G61 Exact Stop Mode •
 G64 Cutting Mode •
 G65 Macro Call • • •
 G66 Pass thru function Driver specific • •

142 • Integrated Motion ASIC-200 User Guide

 Code Description Notes PMAC PCDSP Compu
motor

 G70 Inch Mode Defined during configuration,
not available during runtime.

 Not in
Runtime

 Not in
Runtime

 G71 Metric Mode Defined during configuration,
not available during runtime.

 Not in
Runtime

 Not in
Runtime

 G90 Absolute Positioning Mode • •
 G91 Incremental Positioning

Mode.
 • •

 G92 Position Preset Axis Commanded positions and
Relative positions (
axis.CMDPOS ans
axis.RELPOS) are set to the
values specified in the block.

 • •

 G93 Inverse Time Feed Mode •
 G94 Feed-Per-Minute Mode • Feed-

per-min
only

G05 Spline Move Notes
G05 supports a PMAC style SPLINE1 move. The syntax of G05 is as follows:

G05 F<time in milliseconds>
X100 Y200 A40 B90
X50 Y205 A60

While using G05, the following restrictions must be observed:

1. The G05 F<milliseconds> command must appear on a line by itself.

2. The G05 command can be terminated by simply going into any other
mode (G00, G01, G02, or G03).

3. A move before SPLINE1 mode’s first move and the move immediately
after SPLINE1 mode’s last move will NOT be blended. This is a PMAC
limitation and cannot be resolved within ASIC-200.

4. It is highly discouraged to change the F<milliseconds> value in the
middle of a spline move. It will not have any effect on the ASIC-200
program, but it will be interpreted as the next feedrate for a non-
SPLINE1 move. For example, avoid the following:

G05 F5000
X300 Y100
F2000
X200 Y230
G01 X0 Y0 F30

5. In single step mode using a PRGCB, SPLINE1 moves will be executed
like a linearly interpolated (G01 style) moves.

ASIC-200 User Guide Integrated Motion • 143

Using M Codes
M Codes are user-defined operations supported in RS-274D and SFC. Valid
M codes are M0 to M99. M codes execute in RS-274D and signal supporting
logic in SFC or RLL programs to execute. For each M code, corresponding
control system symbols Mflag0 to Mflag98 exists. Even numbered M codes
turn off the M flags, while odd numbered codes turn on the corresponding
flag. For example:

 RS-274D Statement Result
 M10 Mflag10 set false
 M11 Mflag10 set true
 M96 Mflag96 set false
 M97 Mflag97 set true

 Notes:
1. Special purpose M codes must be on a line by themselves. This

includes M00, M01, M03, M04, M05, M58, and M59.
2. M codes on a line with motion execute before the motion.

Predefined M Codes
The control system software predefines several M codes for internal
operations, these cannot be used to turn on or off M flags:

Code: Description:
M0 Program Stop
M1 Optional Program Stop
M2 Program End
M3 Spindle positive
M4 Spindle negative
M5 Spindle stop
M30 Program End and Rewind
M99 Macro Function End

 Wait and Continue M Code
The control system software has the ability to wait on RS-274D M Codes.
Once the M code processing is done, the control system software lets the
application program wait for your logic to inform the system that the
operation has completed and for execution to resume with the next
sequential RS-274D block. To enable this feature, you must check the "Wait
on All M Codes" box in the Motion Options Configuration Page.

144 • Integrated Motion ASIC-200 User Guide

These control system symbols apply to the Wait and Continue M codes:

 Cleared (C) by/
Set (S) by

 Variable Name Type Use Read (R)
& Write

(W)

 Control
S/W

 User

 AxisGroup.MWAIT BOOL Waiting for M
code
processing

 R S/C ____

 AxisGroup.MCODE INT Value of M
code

 R S/C ____

 AxisGroup.MCONT BOOL M code
processing
complete -
resume
 execution

 R/W C S

Using the Define M Flag Symbols Feature
If you want to the control system software to generate 46 global symbols of
type BOOL, select the "Define M Flag Symbols" option box available in the
config file. The symbols are generated when this option is selected and the
configuration is saved and activated. These symbols appear in the Symbol
Manager, and their symbol names are be Mflag6 through Mflag96, counting
by even numbers.

Using the Wait on All M Codes Feature
If you want you application program to suspend execution of RS-274D until
your M code logic indicates that the action is complete, select the "Wait on
All M codes" option box. The remainder of the program can then be
executed. When an M code is executed, the motion program is suspended
and the axis_group.MWAIT flag is activated until the application program
sets the axis_group.MCONT flag, which causes the motion program to
resume and the axis_group.MWAIT and axis_group.MCONT flags to be
reset by the controller. The application programmer is responsible for
supplying logic that sets the axis_group.MCONT flag after the
axis_group.MWAIT flag is activated.

The axis_group.MCODE is an integer value the contains the value of the M
code. The axis_group is the name of the axis group to which the M code is
associated. Define axis group names in the project configuration file.

ASIC-200 User Guide Integrated Motion • 145

Using the Do Not Process M Codes Feature
The control system software supports the special M code functionality as
described in the RS-274D specification. Clicking this check causes the
application program to ignore the following M codes:
• M3 (spindle positive)
• M4 (spindle negative)
• M5 (spindle stop)

Predefined Integrated Motion Control Symbols
The control system software provides predefined symbols that you can use
to monitor and control some of your motion control operations. You link the
symbols to the appropriate functions when you configure the I/O.

The predefined symbols are grouped as follows:

• Axis Output Symbols
• "Axis Group Output Symbols" on page 146
• "Axis Input Symbols" on page 147
• "Axis Group Input Symbols" on page 148

Note: Not all predefined axis symbols are supported by all motion
drivers. Check the motion driver help for supported axis symbols.

Axis Output Symbols

 Symbol Data Type Function
 axis.ACTPOS real Contains actual position of axis.
 axis.ACTVEL real Contains actual velocity of axis.
 axis.CMDPOS real Contains commanded position of axis.
 axis.TPOS real Contains current move target position of axis.
 axis.AXSFE real Contains following error of axis.
 axis.A Boolean Indicates if axis is enabled.
 axis.IP Boolean Indicates if axis is in position.
 axis.MC Boolean Indicates if axis motion is complete.
 axis.ESTPO Boolean Indicates if axis ESTOP is activated.
 axis.RELPOS real Contains relative position of axis.
 axis.HOME Boolean Indicates axis is at the HOME position.
 axis.STATUS real Indicates axis status - bit definitions depend on

driver. Refer to the driver help.
 axis.CMDSPD real Contains commanded speed of axis.

146 • Integrated Motion ASIC-200 User Guide

Axis Group Output Symbols

 Symbol Data
Type

 Function

 AxisGroup.ESTPO Boolean Indicates if emergency stop (ESTOP) is
activated.

 AxisGroup.TOOL integer Contains active tool offset.
 AxisGroup.INTPL integer Contains active interpolation mode for group.

0=point to point
1=linear
2=circular clockwise
3=circular counter clockwise.

 AxisGroup.CIR Boolean Indicates if circular interpolation is activated
(clockwise or counter clockwise).

 AxisGroup.PTP Boolean Indicates if point to point interpolation is
activated.

 AxisGroup.LIN Boolean Indicates if linear interpolation is activated.
 AxisGroup.CIRCW Boolean Indicates if clockwise circular interpolation is

activated.
 AxisGroup.CIRCCW Boolean Indicates if counter clockwise circular

interpolation is activated.
 AxisGroup.DWL Boolean Indicates if dwell is activated.
 AxisGroup.DWLTIM integer Contains dwell time, counted down in ms.
 AxisGroup.ENG Boolean Indicates if English (inches) units are

activated.
 AxisGroup.METRIC Boolean Indicates if metric units are activated.
 AxisGroup.ABSDIM Boolean Indicates if absolute programming is

activated.
 AxisGroup.INCDIM Boolean Indicates if incremental programming is

activated.
 AxisGroup.WAIT Boolean Indicates program is suspended for tool

change.
 AxisGroup.CONT Boolean Indicates if program has resumed after tool

change.
 AxisGroup.MWAIT Boolean Indicates waiting for M code processing.
 AxisGroup.MCODE integer Contains value of the M code.
 AxisGroup.PLANE integer Active plane for circular interpolation.

0=G17
1=G18
2=G19

ASIC-200 User Guide Integrated Motion • 147

 Symbol Data
Type

 Function

 AxisGroup.CUTMOD integer Active cutting mode.
0=Cutting mode (G64).
1=Exact stop mode (G61).

 AxisGroup.FEDMOD integer Active feedrate mode.
0=Feedrate programming IPM, DPM (G94).
1=Inverse time programming (G93).

Axis Input Symbols

 Symbol Data Type Function
 axis.JP Boolean Causes jog in plus direction. See "Using the .JM

and .JP Axis Input Symbols" on page 147.
 axis.JM Boolean Causes jog in minus direction. See "Using the

.JM and .JP Axis Input Symbols" on page 147.
 axis.HLD Boolean Causes axis motion to stop until bit is reset.
 axis.STP Boolean Causes axis motion to stop.
 axis.JSPD real Sets jog speed for axis.
 axis.JINCR real Sets jog increment for axis.
 axis.JTYPE integer Sets jog type for axis (0=home, 1=cont, 2=incr).
 axis.SOVR real Sets speed override for axis (100.0=100%).
 axis.TOOLOFF[x] real An array of tool offsets for axis. x = 0-9. See

"Using the .TOOLOFF Axis Input Symbols" on
page 150.
 (Not for MEI.)

 axis.FIXOFF[x] real An array of fixture offsets for axis. x = 0-5.
See also, "Using the .FIXOFF Axis Input
Symbols" on page 149.
 (Not for MEI.)

 axis.RAPID real G00 speed.

Using the .JM and .JP Axis Input Symbols
The axis.JP and axis.JM axis input symbols are Boolean symbols that cause
an axis to jog in the plus and minus directions, respectively. These symbols
have the following requirements:

• The axis.JP and axis.JM symbols are not functional until you assign
values to the axis.JSPD and axis.JTYPE axis input symbols to specify the
jog speed and type.

• The axis referenced by the axis.JP and axis.JM symbols must be either in
a group with no other axes; or if other axes are in the group, they cannot

148 • Integrated Motion ASIC-200 User Guide

be under the control of another motion control program when a jog
command is issued to the axis referenced by the axis.JP and axis.JM
symbols.

To send an axis home
1. Set .JTYPE = 0.

2. Set .JSPD = homespeed.

3. Activate either .JP or .JM.

4. Wait until .HOME = TRUE for more than 1 second.

5. Reset .JP or .JM.

Axis Group Input Symbols

Symbol Data
Type

Function

AxisGroup.ESTP Boolean Activates emergency stop (ESTOP). The
axis.ESTP axis input symbol is a Boolean
that causes all defined axes to stop
motion. Note that this includes all axes in
all groups, regardless of which axis is
referenced by the symbol.

AxisGroup.HLD Boolean Causes group motion to stop till bit is
reset.

AxisGroup.STP Boolean Causes group motion to stop.
AxisGroup.SOVR real Overrides speed for group (100.0=100%).
AxisGroup.MCONT Boolean M code processing is complete.
AxisGroup.TOOLRAD[x] real Value used for tool radius compensation

(G41 and G42). x = 0-31. For more
information, see "Using the .TOOLRAD
Axis Group Input Symbols" on page 149

AxisGroup.TOOLLEN[x] real Value used for tool length compensation
(G43 and G44). x = 0-31. For more
information, see "Using the .TOOLLEN
Axis Group Input Symbols" on page 150.

AxisGroup.RESTP Boolean Resets ESTOP until bit is reset.
NOTE: this input should only be pulsed
on, if left on the system will not respond
to other inputs..

AxisGroup.OPSTP Boolean Activates optional stop (M01).
AxisGroup.TSTRUN Boolean Activates test run mode.

ASIC-200 User Guide Integrated Motion • 149

Using the .FIXOFF Axis Input Symbols
The preparatory commands G-55 to G-59 select fixture offsets. G-54 cancels
fixture offsets. The axis.FIXOFF axis input symbols contain the offset values
used by these commands. The relationship between the commands and the
symbols containing their respective offsets is shown in the following
example.

 G Command Symbol
 G-54 axis.FIXOFF[0]
 G-55 axis.FIXOFF[1]
 G-56 axis.FIXOFF[2]
 G-57 axis.FIXOFF[3]
 G-58 axis.FIXOFF[4]
 G-59 axis.FIXOFF[5]

Assign values to the array elements in a Structured Text Step that precedes
the Motion Control Step containing the G commands.

Using the .TOOLRAD Axis Group Input Symbols
The preparatory commands G-41 and G-42 apply cutter or radius
compensation to the tool path. Both commands require the D command be
used in the same block. The D command specifies which
axisGroup.TOOLRAD[] element to select. The axisGroup.TOOLRAD axis
group input symbols contain the actual compensation values used by the D
commands. The relationship between the D commands and the symbols
containing their respective compensation values is shown in the following
example. Preparatory commands are G codes. For more information, see
"Using G Codes" on page 140.

D Command Symbol
D-0 axisGroup.TOOLRAD[0]
D-1 axisGroup.TOOLRAD[1]
D-2 axisGroup.TOOLRAD[2]
. .
. .
. .
D-29 axisGroup.TOOLRAD[29]
D-30 axisGroup.TOOLRAD[30]
D-31 axisGroup.TOOLRAD[31]

150 • Integrated Motion ASIC-200 User Guide

Assign compensation values to the array elements in a Structured Text Step
that precedes the Motion Control Step containing the G and D commands.

Code G40 cancels compensation.

Using the .TOOLOFF Axis Input Symbols
This offset is applied if tool setting, as defined in the configuration axis
group dialog window, is set to lathe.

The preparatory commands G-45 to G-48 select tool offsets. All four
commands require the D command be used in the same block. The
D command specifies which axis.TOOLOFF[] element to select. The
axis.TOOLOFF axis input symbols contain the actual offset values used by
the D commands. The relationship between the D commands and the
symbols containing their respective offset values is shown in the following
example.

 D Command Symbol
 D-0 axis.TOOLOFF[0]
 D-1 axis.TOOLOFF[1]
 . .
 D-8 axis.TOOLOFF[8]
 D-9 axis.TOOLOFF[9]

Assign tool offset values to the array elements in a Structured Text Step that
precedes the Motion Control Step containing the G and D commands.
Example:

{X.TOOLOFF[1] := 0.25}
{Y.TOOLOFF[1] := 1.1}
{Z.TOOLOFF[1] := 1.25}
G90F100
G45X1Y1Z1D1
X2Y2Z2
X5Y5Z5
M30

Using the .TOOLLEN Axis Group Input Symbols
The preparatory commands G-43H and G-44H apply tool length offset to the
tool path. The offset is applied to the normal axis to the plane. H specifies the
which axisGroup.TOOLLEN element to select. The axisGroup.TOOLLEN
axis group input symbols contain the actual compensation values used by H.
The relationship between H and the symbols containing their respective
compensation values is shown in the following example. Preparatory
commands are G codes. For more information, see "Using G Codes" on page
140. Example

ASIC-200 User Guide Integrated Motion • 151

G17
G90G01
X0Y0Z0F100
{Machine.TOOLLEN[1] := 1.25 }
G43Z1H1F50
X5Y5Z5
M30

D Command Symbol
H0 axisGroup.TOOLLEN[0]
H1 axisGroup.TOOLLEN[1]
H2 axisGroup.TOOLLEN[2]
. .
. .
. .
H29 axisGroup.TOOLLEN[29]
H30 axisGroup.TOOLLEN[30]
H31 axisGroup.TOOLLEN[31]

Assign compensation values to the array elements in a Structured Text Step
that precedes the Motion Control Step containing the G commands. G40
cancels compensation.

Configuring Motion Options
The control system software contains these features that help you configure
motion options:

• "Using the Suspend on Spindle Commands Feature" on page 151

• "Using the Suspend on Tool Changes Feature" on page 152

• "Using the Define M Flag Symbols Feature " on page 144

• "Using the Wait on All M Codes Feature" on page 144

• "Using the Do Not Process M Codes Feature" on page 145

Using the Suspend on Spindle Commands Feature
If you want an RS-274D program to suspend motion execution whenever
spindle (S, M3, M4 or M5) commands are executed, select the "Suspend on
Spindle Commands" option box. This option lets the application program
suspend RS-274D execution until your application logic indicates that the
spindle command has completed. The remainder of the program can then be
executed. When a spindle command is executed, the motion program is
suspended and the S.WAIT flag is activated until the application program
sets the S.CONT flag, which causes the motion program to resume and the

152 • Integrated Motion ASIC-200 User Guide

S.WAIT and S.CONT flags to be reset by the controller. The application
programmer is responsible for supplying logic that sets the S.CONT flag
after the S.WAIT flag is activated and the spindle command has been
completed.

Example:
 S.WAIT Spindle AtSpeed S.CONT

Using the Suspend on Tool Changes Feature
If you want an RS-274D program to suspend motion execution whenever a
tool (T) command is executed, select the "Suspend on Tool Changes" option
box. This option lets the application program suspend RS-274D execution
until your application logic indicates that the tool change has completed. The
remainder of the program can then be executed. When a tool change is
executed, the motion program is suspended and the axis_group.WAIT flag is
activated until the application program sets the axis_group.CONT flag;
which causes the motion program to resume and the axis_group.WAIT and
axis_group.CONT flags to be reset by the controller. The application
programmer is responsible for supplying logic that sets the
axis_group.CONT flag after the axis_group.WAIT flag is activated and the
tool change has completed.

The axis_group is the name of the axis group to which the tool is associated.
Define axis group names are defined in the project configuration file.

Using Program Flow Control in Motion Applications
As an enhancement to the RS-274D specification, the control system software
lets you use the WHILE and IF-GOTO commands with other Motion
Control commands to enhance program flow control. See:

• "Using the WHILE Command" on page 152

• "Using the IF-GOTO Command" on page 153

Using the WHILE Command
The commands within the WHILE loop are executed repeatedly until a <
Boolean expression > evaluates to FALSE. Then, program flow continues with
the next RS-274D command that follows the END_WHILE command.

ASIC-200 User Guide Integrated Motion • 153

WHILE Command Format
WHILE (Boolean_expression) DO

RS-274_commands
END_WHILE

Where:

Boolean_expression is any Structured Text expression that evaluates to a
Boolean value

RS-274_commands consists of normal RS-274D commands.

WHILE Command Example
The following is an example of the WHILE command.

N0010X0.59Y-5.5F100
N0020X0.63Y-5.5
N0030X0.67Y-5.4
N0040X0.71Y-5.4
N0050X0.74Y-5.39
N0060X0.78Y-5.35
N0070X0.81Y-5.3

Step9

Step10

Step11

T5

N0080X0.84Y-5.25
N0090X0.88Y-5.2
WHILE (T13) DO
N0100X0.91Y-5.14
N0110X0.95Y-5.09
N0120X0.99Y-5.21
N0130X1.03Y-4.9
N0140X1.07Y-4.88
N0150X1.11Y-4.8
END_WHILE
N0160X1.13Y-4.71
N0170X1.15Y-4.6
N0180X1.15Y-4.53
N0190X1.16Y-4.41
N0200X1.16Y-4.31

When step10 is active and T13 is TRUE, continuous motion pauses at the
WHILE command. Blocks N0100-N0150 execute continually until T13
evaluates to FALSE. Then, block N0160 executes.

Using the IF-GOTO Command
When program flow reaches the IF-GOTO command and the < Boolean
expression > evaluates to TRUE, program flow continues with the RS-274D
command corresponding to the value contained in < Block Number >. If the <
Boolean expression > evaluates to FALSE, program flow continues with the
RS-274D command following the IF-GOTO command.

154 • Integrated Motion ASIC-200 User Guide

Format:
IF Boolean_expression IF-GOTO Block_Number
Where:

Boolean_expression is any Structured Text expression that evaluates to a
Boolean value

Block_Number is the line number of the next block to execute. The
value in < Block Number > must match the line
number of the RS-274D command exactly, including
all leading zeroes and not including the N
designator.

IF-GOTO Example
The following is an example of the IF-GOTO command.

N0010X0.59Y-5.5F100
N0020X0.63Y-5.5
N0030X0.67Y-5.4
N0040X0.71Y-5.4
N0050X0.74Y-5.39
N0060X0.78Y-5.35
N0070X0.81Y-5.3

Step2

Step3

Step4

N0080X0.84Y-5.25
N0090X0.88Y-5.2
IF (T59) GOTO 013
N0100X0.91Y-5.14
N0110X0.95Y-5.09
N0120X0.99Y-5.21
N0130X1.03Y-4.21

When step3 is active, program flow continues at block N0130 when T-59 is
TRUE. Otherwise, blocks 100-130 execute.

Using the G65 Macro Calls with Motion
As an enhancement to the RS-274D specification, the control system software
lets you call macros, sometimes called subroutines, by using the G65
command within RS-274D motion code. There are two simple steps to
programming a G65 subroutine:

1. Design your macros; see "Designing the Macro" on page 154.

2. Call the macros for execution; see "Calling the Macro for Execution" on
page 155.

Designing the Macro
You can place the macro anywhere within your program. The G65 macro
calling function can appear before or after the macro.

ASIC-200 User Guide Integrated Motion • 155

The structure of the macro has the following syntax:

O< x >
< RS-274 commands >
M99

Where:

< x > is an integer identifier for the macro to be called

< RS-274 commands > is the macro code, consisting of normal RS-274D
commands

M99 is an M code block that declares the end of the
macro

The RS-274D commands between the O< x > identifier and the M99 code
block are only executed when called from the G65 command. In other
words, program execution skips over the code between the O-word block
and the M99 block unless a G65 block has explicitly called it.

Here is an example of an .SFC program in the control system software that
demonstrates G65 functionality:

Calling the Macro for Execution
You call a macro within a G65 block. Use the following command syntax to
call the macro for execution:

G65P< label >L< loop >

Where:

< label > is the integer identifier for the macro. This integer identifier
must match the identifier in the O-word.

156 • Integrated Motion ASIC-200 User Guide

< loop > is an integer that indicates the number of times to execute
the macro

The < label > parameter must match the O< label > identifier in the macro.
Both parameters < label > and <loop > must be specified. For example, if
macro 22 were to be called one time, the syntax is: G65P22L1.

The following is an example of a macro call.

N001O48
N002G4F2
N003G4F2
N004M99
N005G4F2
N006G65P48L5
N007G4F2

Step5

Step6

Step7

T99

When step6 is active, program flow skips the first four blocks, which consist
of the macro, and begins executing at block N005. Then block N006 is
executed, which calls the macro (blocks N001-N004) a total of five times.
After the fifth execution of the macro, program flow resumes at block N007.

Monitoring and Running Motion Application Programs
This section describes how to use the Jog Panel, Single-Axis and Multi-Axis
Status Panel, and how to monitor the axis plot.

Note: These panels only display the first three characters of an axis
name. They are also limited to the first eight axes.

Using the Jog Panel
Use the Jog Panel to home and jog configured axes. The jog axis panel
contains buttons that let you select the:
• jog axis
• jog type (home, continuous, or incremental)
• jog speed
• jog increment

The selected axis is displayed at the top of the Jog Panel and is jogged or
homed in the desired direction by pressing and holding the jog+ or jog-
button. If the jog+ or jog- button is released, the jog or home is cancelled. For
incremental jogs, the axis stops when the increment is completed. To jog
another increment, release and press the jog+ or jog- button. The Jog Panel is
automatically set up for the number of configured axes.

ASIC-200 User Guide Integrated Motion • 157

The Jog Panel also displays:
• absolute position
• commanded position
• following error and velocity status for the selected axis

An axis fault indicator shows when a fault has occurred on the selected axis.
When an axis fault occurs, the indicator turns red and the fault button is
enabled. If no fault has occurred the indicator is green.

To view detailed information on the axis fault, press the fault button. When
the axis fault is cleared the indicator turns green.

Monitoring Axis Plot
Use the View\Axis Plot menu command to view axis information plotted
with respect to time. This command activates a status box that plots selected
status information for a selected axis over time. The selected axis and status
information is displayed at the top of the status box.

To change the selected axis and/or status information, press the button with
the desired axis and/or status information. Use the Zoom In, Zoom Out,
Shift Up, Shift Down, Speed Up, and Slow Down buttons to position the axis
plot to the desired location. Multiple copies of axis status plot can be
activated at the same time.

Using the Single Axis Panel
To view single action motion status, use the View/Single/Axis Status menu
command. The Single Axis Status Panel displays the status for a single axis.
The Single Axis Status Panel is automatically set up for the number of
configured axes.

To display the status for an axis, select the axis by pressing the desired axis
button on the panel. The title of the selected axis is displayed at the top of the
panel.

The status displayed for the selected axis consists of:

• absolute position

• commanded position

• following error

• velocity

An axis fault indicator shows when a fault has occurred on the selected axis.
When an axis fault occurs, the indicator turns red and the fault button is
enabled. If no fault has occurred the indicator is green.

To view detailed information about an axis fault, press the fault button.
When the axis fault is cleared the indicator turns green.

158 • Integrated Motion ASIC-200 User Guide

You can activate multiple copies of the single axis motion status to view
complete axis status on more than one axis at the same time.

Using the Multi-Axis Status Panel
To view multi-axis motion status, use the View\Multi-Axis Status menu
command. The Multi-Axis Status Panel displays the specified status of all
configured axes at the same time. The specific status that is displayed is
selected from any of the following:
• absolute position (POS)
• commanded position (CMD)
• following error (FE)
• velocity (VEL)

Select desired status by pressing the specific status button on the panel. The
title of the selected status is displayed at the top of the panel.

For each axis, a fault indicator indicates when a fault has occurred on that
axis. If no fault has occurred the indicator is green. When an axis fault occurs,
the indicator for that axis turns red, and the fault button for that axis is
enabled.

To view detailed information on the axis fault, press the fault button. When
the axis fault is cleared the indicator turns green. The Multi-Axis Status Panel
is automatically set up for the number of configured axes.

Multiple copies of the multi-axis motion status can be activated at the same
time.

 Embedding Structured Text into Motion Control Code
As an enhancement to the IEC-1131-3 specification, the control system
software lets you embed assignments and expressions of the Structured Text
language within Motion Control code. For example, in the following figure,
block 1 of Step2 causes the X axis to move to HomePos at a speed of
RapidSpeed. The symbols HomePos and RapidSpeed are assigned values in
Step1 by Structured Text assignment statements. Blocks 3 and 4 of Step2
show examples of Structured Text assignment statements that have been
embedded in Motion Control code.

ASIC-200 User Guide Integrated Motion • 159

numHoles := 10;
firstPos := 1.356;
distBetweenHoles := 0.5;
HomePos := 0.0;
RapidSpeed := 600;
TraverseSpeed := 200;
LowerDrill := 40;
RaiseDrill := 41;

N001X{HomePos}F{RapidSpeed}
N002 G4F1
N003{postn := firstPos}
{I := 0}

SFC Step1

SFC Step2

Start

Guidelines for Embedding Structured Text in a Motion
Control Step
Follow these guidelines when you embed Structured Text in a Motion
Control step:

• Enclose all embedded Structured Text code within braces { } as shown in
blocks 1, 3, and 4 of Step2 in the previous figure.

• On a block containing embedded Structured Text, the N command is
optional.

• The semicolon, which is usually used to terminate Structured Text code
lines, is also optional.

• You can use Structured Text as a parameter for all Motion Control
commands except for the N and G commands.

• For example, N016 G4F{pause_time} is a valid block and pause_time is a
Structured Text symbol that contains a duration for the F command.

• N100 G{prep_command} is not valid. The Structured Text symbol
prep_command cannot contain the parameter for the G command.

• You can use either local or global symbols within the Structured Text
expressions. They can be simple symbols or elements of arrays. You can
set values within the program itself (Step1 in the figure) or download
values using Dynamic Data Exchange (DDE).

• You can use assignment statements in separate blocks (Step2, blocks 3
and 4 in the figure).

• Three Structured Text function blocks are available for issuing motion
commands from an SFC Structured Text step:

• "AXSJOG" on page 161

• "MOVEAXS" on page 161

160 • Integrated Motion ASIC-200 User Guide

• "STOPJOG" on page 161

How the Embedded Structured Text Code is Evaluated
When program flow encounters a block containing Structured Text, program
execution and all motion activity pauses briefly. Program flow then
continues with the next block that follows the Structured Text.

Expressions are evaluated at the time of execution (when the block is
executed) and can represent the result of real-time inputs, such as sensor
data. They are evaluated as integers or real numbers as appropriate for the
Motion Control word.

Because the control system software has a “read-ahead” capability,
Structured Text assignment statements are read and executed before
program flow encounters the block containing them. You can control the
execution of a Structured Text assignment by placing a G04 command in the
block that precedes the block containing the assignment. The “read-ahead”
feature does not extend beyond a G04 command.

For example, in the following figure, the assignment statement in the fifth
block of Step2 is not executed until program flow encounters the statement.
Without the G04 command in the fourth block, symbol I may be set to zero
before the second or third block is executed.

numHoles := 10;
firstPos := 1.356;
distBetweenHoles := 0.5;
HomePos := 0.0;
RapidSpeed := 600;
TraverseSpeed := 200;
LowerDrill := 40;
RaiseDrill := 41;

N001X{HomePos}F{RapidSpeed}
N002 G4F1
N003{postn := firstPos}
N004 G4F.1
{I := 0}

SFC Step1

SFC Step2

Start

Structured Text Motion Functions
These Structured Text Motion Functions are available:
• AXSJOG
• MOVEAXS

ASIC-200 User Guide Integrated Motion • 161

• STOPJOG

AXSJOG
The AXSJOG function starts a jog command on a specified axis.

Format:
AXSJOG(axis, JOGDIR:= direction , JOGTYPE:= type, JOGSPD:= speed,
JOGDIST:= distance);

Where:

axis is the axis name (X, Y, Z, etc.)
direction is the jog direction (JOGPLUS or JOGMINUS)
type is the type of jog (JOGCONT for a continuous job, JOGINCR for

an incremental position jog, or JOGHOME for a home position
speed,
distance

are real numbers, symbols, or expressions that resolve to real
number data types and specify the jog speed and distance.

Example:
AXSJOG (X, JOGDIR:=JOGMINUS, JOGTYPE:=JOGCONT,
JOGSPD:=10.0);

MOVEAXS
The MOVEAXS function starts a move command on a specified axis.

Format:
AXSJOG(axis, POSTN:= position, VEL:= velocity, ACCEL:= acceleration);

Where:

axis is the axis name (X, Y, Z, etc.)
position,
velocity,
acceleration

are real numbers, symbols, or expressions that resolve to
real number data types and specify the move position,
velocity, and acceleration.

Example:
MOVEAXS (X, POSTN:= positionA, VEL:= velocityA, ACCEL:=10.0);

STOPJOG
The STOPJOG function stops a jog command on a specified axis.

Format:
STOPJOG(axis);

162 • Integrated Motion ASIC-200 User Guide

Where:

axis is the axis name (X, Y, Z, etc.).
Example:
STOPJOG (Z);

ASIC-200 User Guide Motion Direct • 163

Motion Direct

Motion Direct Overview

Motion Direct Notes:
1. For every motion direct program that you write in the motion cards's

native language, you can (and should) define 3 bits in the card
configuration:

• Download program

• Start program

• Stop program

You can use these as coil symbols in RLL or set them from structured
text commands. If you do not define them, then you do not have control
over the motion program.

2. Feedback variables are available. Refer to Predefined Motion Direct
Symbols.

3. You have the ability to look at registers and read parameters on the
motion card. To do so, you define symbols corresponding to the
registers.

4. Depending on the motion card, you can define the I/O in the
configuration if the card supports or maps symbols to registers on the
card.

5. The control product drivers do not check for any errors in the motion
program (because the motion program is written in the card's native
language). The driver may generate a log file (located in the project
folder) and may also set a bit indicating there is a parse error.

Motion Direct Driver Support
• All PMAC boards.

• Galil’s DMC-1700 board.

164 • Motion Direct ASIC-200 User Guide

• Programming and debugging in the motion card’s native language.

• Ability to download, start, and stop programs.

• Comprehensive feedback in ASIC-200.

Motion Direct Features
• No need to learn a new language or know the idiosyncrasies of a motion

card.

• Use all the features of a card rather than artificially limiting them from
control system.

• Use existing programs in the card’s native language.

• Provide a higher level control with ASIC-200.

Predefined Motion Direct Symbols
The control system software provides predefined symbols that you can use
to monitor and control some of your motion control operations. You link the
symbols to the appropriate functions when you configure the I/O.

Note: Not all predefined axis symbols are supported by all motion
drivers. Check the motion driver help for supported axis symbols.

Axis Output Symbols

 Symbol Data Type Function
 axis.ACTPOS real Contains actual position of axis.
 axis.ACTVEL real Contains actual velocity of axis.
 axis.CMDPOS real Contains commanded position of axis.
 axis.AXSFE real Contains following error of axis.
 axis.A Boolean Indicates if axis is enabled.
 axis.IP Boolean Indicates if axis is in position.
 axis.MC Boolean Indicates if axis motion is complete.
 axis.HOME Boolean Indicates axis is at the HOME position.
 axis.CMDSPD real Contains commanded speed of axis.

ASIC-200 User Guide Motion Direct • 165

Axis Group Input Symbols

Symbol Data
Type

Function

AxisGroup.SOVR real Overrides speed for group (100.0=100%).
AxisGroup.RESTP Boolean Resets ESTOP until bit is reset.

NOTE: this input should only be pulsed
on, if left on the system will not respond
to other inputs..

ASIC-200 User Guide Running Application Programs • 167

Running Application Programs

Runtime Subsystems
The runtime subsystems consist of the Program Manager, Program
Execution, I/O Scanner, and the Event Log subsystems. The Run Time icon
visually represents the Program Manager, Program Execution, and the I/O
Scanner subsystems. The Event Log has its own icon.

The Program Execution and I/O Scanner subsystems are given real-time
process priority, which means they are given CPU time before all normal
applications as well as mouse update and disk access.

To start the runtime subsystems, do one of the following
• Select Startup Runtime Subsystems from the Program Editor or Operator

Interface Editor Execute menu.

• Select Runtime Engine from the ASAP Applications menu on the Windows
Start menu.

Running an Individual Program
To run a program, you must be running under the Windows NT operating
system and have the Runtime Subsystems installed and active. If the
Runtime Subsystems are not active, a startup prompt for the runtime
subsystems appears.

Running the Active Program
To run the active program
• Select Run from the Program Editor Execute menu.

After an RLL or SFC program begins running, the program display will
highlight using the active highlight colors to show the status of the running
program.

To run the active file with debug enabled
• Select Run with Debug from the Program Editor Execute menu.

168 • Running Application Programs ASIC-200 User Guide

To run one step of the active file
• Select Single Step from the Program Editor Execute menu.

If the step contains more than one command line, the next command line
within the step is executed.

To run the active file with restart
A program running with restart will automatically start running when the
Runtime Subsystems start up.

• Select Run with Restart from the Program Editor Execute menu.

Canceling a Running Program
To cancel a running program
• Select Abort from the Program Editor Execute menu.

The program is cancelled and reset to the start of the program.

Note: To cause a program break point in an SFC step, use the
Structured Text BREAK function in that step.

Configuring Programs to Execute Automatically
In some applications, it is necessary to start an SFC program running
automatically every time the controller is powered up or every time the
Runtime Subsystems are started. You can accomplish the first option by
making a batch file with the appropriate commands and adding the batch
file to the Windows NT Startup folder. The second option is accomplished
using the Run with Restart command.

Starting Programs with a Batch file

Note: Only one SFC application program can be started using this
method.

1. From Windows NT, launch a text editor to create a text file. Once created
you will need to save the file with a .BAT extension. Enter the following
two lines in the text file:

start c:\asic\bin\runtime.exe/RUN c:\asic\MyProject\Main.sst
start c:\asic\bin\oicfg.exe

Make sure that the /RUN command above is entered in all CAPITAL
letters.

2. Edit the two lines to make sure the path to the \bin directory is correct for
your machine.

ASIC-200 User Guide Running Application Programs • 169

3. Edit the first line to make sure that the path to your project folder and
the name of the SFC program is correct. Use an .SST extension for the
SFC file instead of .SFC because this is the Structured Text version of the
SFC file that the Runtime compiler needs (instead of the binary SFC file
that the Program Editor requires).

4. Using the Program Editor, make sure that the current project and active
configuration are correctly selected for this application. Parse the SFC
file to make sure that the corresponding .SST file exists and is current.

5. Use the Operator Interface Editor to select the appropriate .OPI file to
use at power up.

6. Follow the instructions in your Windows NT help files to add the batch
file to your NT Startup folder.

7. Reboot your system to test the configuration.

Starting Programs with the Run With Restart Command
To run the active file with restart
• Select Run with Restart from the Program Editor Execute menu.

A program running with restart will automatically start running when the
control system software Runtime Subsystems start up. A program that has
been Aborted or is Faulted will no longer be marked to run with restart.

After an SFC or RLL program begins running, the program display will
highlight using the active highlight colors to show the status of the running
program.

Monitoring Power Flow
When an RLL or SFC program is running, the program display will highlight
using the active highlight colors to show the status of the running program.

Active RLL Programs
When an RLL program is running, or an embedded action and/or RLL
transition program window is open in a running SFC program, the contacts,
coils, and function blocks in the program will begin highlighting. A normally
open contact will highlight when the BOOL symbol attached to it is TRUE. A
normally closed contact will highlight when the BOOL symbol attached to it
is FALSE. A positive transition sensing contact will highlight when a positive
transition occurs on the attached symbol. A negative transition sensing
contact will highlight when a negative transition occurs on the attached
symbol. All output coils will highlight when the attached BOOL symbol is
TRUE (coil highlighting reflects the state of the coil symbol). All function
blocks will highlight when the function block is active.

170 • Running Application Programs ASIC-200 User Guide

Note: If the BOOL symbol attached to a contact is TRUE the contact
will highlight regardless of its position on a rung. In other words, a
contact being highlighted does not necessarily mean the other
contacts in front of it are also TRUE.

Active SFC Programs
When an SFC program is running, any active steps and/or transitions will be
highlighted. If an active step is displayed with motion/process commands
an active command indicator will be displayed to the left of the command
that is currently executing.

Viewing the Status of Application Programs
To view program status
• Select Program Status from the View menu.

The Program Status window is displayed with a list of active programs and
their status.

To view the program
• Double-click on a program.

To issue a program command
• Select the desired program from the list box and push the button with

the desired program command: View, Run, Abort, Stop, or Step.

Monitoring and Testing Application Programs

Parsing a Program
In order to parse a program you must be running under the Windows NT
operating system.

To parse the active file
• Select Parse from the Program Editor Execute menu.

If any parse errors are encountered, the Parse Errors Window appears with the
list of error messages. You can double-click on the error in the Parse Errors
Window to display more information about the error or to highlight the
location of the error in the program. Once the program parsing is complete
the active file window title is updated with the parsing status.

Watching and Forcing Symbols
The Watch window displays local and global symbols and their status at
runtime.

ASIC-200 User Guide Running Application Programs • 171

To display or hide the Watch window
• Select Watch/Force Variables from the View menu or click the Watch

window icon .

At runtime, this window displays variables and their current values. You can
specify (force) new values for them to help in debugging your program.

Note: In the RLL editor, the force state of contact and coil symbols are
indicated by colorization (depending on whether the contact or coil is also
selected). Default colors are:

Light purple/dark purple — Forced to 0.

Light blue/dark blue — Forced to 1.

Run with Debug
The Run with Debug program option lets you to execute an SFC program
continuously until a BREAK statement is encountered. When the BREAK
statement is encountered the program is stopped. From that point you can
single step or abort the program.

Single Stepping a Program
The Single Step Program option lets you to execute an SFC program one
complete scan at a time. The program that you are testing must be stopped
before you can step it. The mode of any other programs in the project does
not matter.

To Step a Program
1. Select the program in the Program Editor. If the program is running, stop

it by selecting Stop from the Execute menu.

2. Open a Watch window for the program and add any symbols that you
need to monitor as the program runs. This step is optional.

3. Select Single Step from the Execute menu. The program enters the Run
mode for one scan, then enters the Break mode. Any I/O controlled by
the program is updated during the program scan.

4. Continue single-stepping as long as needed.

Clearing Fault Mode and Error Conditions
Reset Estop and clear I/O faults from the Execute menu clears the emergency
Estop and any I/O faults. In a system with motion, the axis feedback loops
are closed and the commanded position for all axes is set to the current
position.

ASIC-200 User Guide Program Operation Overview • 173

Program Operation Overview

Activate Configuration
Activating a configuration causes the following actions:

• Initialize global memory.

• If outputs are configured disabled, enable interface sets outputs to
disabled state (force won't work) and starts scanning.

• If outputs are configured enabled, sets default state and starts scanning.

First Scan with Active Configuration
The following occurs on the first scan:

• Local and function block variables are initialized.

• RT_FIRST_SCAN set high for first scan of first running program.

• Logic is solved.

• I/O is updated and the sequence repeats.

Power-Down Sequence
The following occurs on the last scan :

• The program does not receive any advance notification of an impending
shutdown and cannot take any specific action.

• Interface modules set disable state of I/O according to individual design.

Normal Operation
The following occurs during normal operation:

• All actions associated within a step are solved once each scan a step is
active (depends on the action qualifier).

• Actions are solved before the structured text within a step is solved.

174 • Program Operation Overview ASIC-200 User Guide

• If a transition associated with a step becomes TRUE, the I/O is updated
again after which all the appropriate actions (not pulsed, or inactive
delayed, or limited (inactive)) are solved by turning off all output coils
except latched coils. Function blocks are not solved. The I/O is updated
and then the next active steps are solved the following scan.

• If structured text is used within a step, then the transition is not
evaluated until all structured text statements have been completed.

• All structured text statements within a FOR loop are executed one
iteration per scan unless a NOWAIT statement is encountered which
causes the loop to complete all iterations in a single scan.

• All structured text statements in a step are executed once during the first
scan the step is active and are not repeated during subsequent scans.

• All statements within a WHILE loop will continue to be executed until
the WHILE condition becomes FALSE.

• The normal execution sequence is: update I/O, solve logic, then repeat.

Initialization of Variables
• Inputs cannot be initialized; they take their value from the hardware.

• Global memory symbols are initialized when the configuration is
activated or re-activated.

• Local memory symbols are initialized each time the program is executed.

• Function block inputs are initialized as local or global symbols according
to the type of symbol assigned.

• Function block outputs cannot be written by the user.

• Function block internal variables are local symbols and are initialized as
such.

Program Execution Order
• There is no guaranteed order of program execution; the user must

assume simultaneous execution.

• SFC branches: In a simultaneous diverge there is not guaranteed order;
the user must assume simultaneous branching.

• SFC actions: There is no guaranteed order; the user must assume
simultaneous execution.

Note: Refer to On-Line Editing Operation for information on how on-line
editing affects program operation.

ASIC-200 User Guide Transferring Project to RunTime • 175

Transferring Project to RunTime

Transferring Project to RunTime Procedure

Depending on your circumstance, you may develop and run your
application on the same industrial computer, or you may develop on one
computer and wish to transfer the files to another computer to run and
operate your application. The following procedure discusses how to do this.

Note: Please read this entire procedure and make sure you understand and
have all the files you need to transfer before attempting to transfer a project.

Licensing Note: You can license your runtime system either before or after
you transfer your project. Be aware that if you license your runtime system,
and you need to access the development mode, you must use the Temporary
Authorization to do so. (The license provides 30 minutes of Temporary
Authorization. Additional Temporary Authorization can be purchased.) You
must access the development mode to activate the configuration and only if
you install the project to a different path than on your development system.
Typically, this takes only a minute. However, if the system is unlicensed, you
can start in Demo mode to perform this.

Active X Controls Note: If your operator interface contains Active X
controls, you must have the Active X controls installed and registered on the
target before opening the OPI containing them, otherwise the ActiveX
controls will be removed from the OPI file when it is opened.

Note: Refer to File Types for a complete list and description of project files.

To transfer your project files
1. All the files you need to transfer are in your project directory. You first

need to determine your transfer method: floppy disk, network, or other
means.

Note: If you use a (recordable) CD-ROM, be aware that the copied files
may be marked read-only when transferred to the target computer.

2. Current project information is stored in a data file (active.DAT in the
/bin folder). If you are transferring project files to another path (for
example, from drive D: on the development system to drive C: on the

176 • Transferring Project to RunTime ASIC-200 User Guide

runtime system), you must account for this. Refer to the following table
for files to transfer.

Same Path Different Path

New Project
Transfer

Transfer the entire project
folder.

Transfer only the source files
(SFC, RLL, ST, CFG, OPI,
user files) and reparse.

Existing
Project
Transfer
(i.e., update a
file)

Copy over the source and
parsed files (e.g., SFC and
SST for an SFC program).
(Otherwise, you will be out of
sync and the system will
think you are in on-line edit
mode.)

Copy only the source file (and
CFG if global symbols have
changed) and reparse.

3. After determining which files to copy and the method, use Windows
Explorer to copy the files to the floppy disk or network destination. If
using a floppy disk to copy the files, and the total file size is too large,
you can use a file compression utility.

4. At the runtime station, copy the files to the local hard disk (or other
media) in a project directory.

5. If you have installed your runtime license, you can start the program
editor, activate the configuration, and run your programs (and use your
operator displays if you have any developed).

Refer to Managing Projects, Activating a Configuration, and Application
Programs if you need more information on these topics.

Installing to a Different Path
If you have installed to a different path (and copied only the source files),
you will need to use the temporary authorization to open the project and
activate the configuration (since without the DAT file, this information has
been lost):

1. After starting the Program Editor, select Temporary Authorization from
the License menu. You can then open the project and activate the
configuration, etc. This typically only takes a minute.

2. Be sure to reset to the original authorization using Reset Original
Authorization from the License menu.

Alternatively, if you have not installed the license, you can use demo mode.

Refer to the Getting Started manual for complete information on Demo
Mode, Temporary Authorization, and license information in general.

ASIC-200 User Guide Transferring Project to RunTime • 177

Note: If you have not already licensed the run-time system, you must do so.
Refer to the Getting Started manual or the help file for licensing information.

Other Considerations
You may also wish to do the following:

1. Setup password access level codes. You can create the codes as described
in the Getting Started manual, or if you have an existing password code
file (in installationfolder/bin/password.dat) you can copy it to the
runtime only system installationfolder/bin folder.

2. Secure HMI access. Refer to the HMI Guide for information.

3. Backup the project, refer to Backup and Restore Project.

ASIC-200 User Guide Backup and Restore Project • 179

Backup and Restore Project

Backup and Restore Project Overview
You should backup your project so that in the event of accidental erasure or
disk failure, you can quickly restore and begin running your control
application.

Note: Refer to File Types for a complete list and description of project files.

Project Backup
To backup your project, you need to copy the following files to a secure
location:

Your project folder and all files
installationfolder/bin/active.dat
installationfolder/bin/oiactive.dat
installationfolder/bin/password.dat
installationfolder/bin/peactive.dat

Where installationfolder is typically c:/program files/ASIC-200. A secure
location means a diskette or other removable media or network location. If
needed, a file compression utility can be used. For file descriptions, refer to
File Types.

In addition, you may have other files that are needed in the application, such
as ActiveX controls, that should be backed up as well.

Project Restore
To restore a project, copy the backed-up files to the their original location.

Note: In the event of a hard disk failure, you may also lose the product
license and need to reinstall the software. Refer to the installation
instructions to re-install the software. Contact your vendor for information
on restoring a license.

180 • Backup and Restore Project ASIC-200 User Guide

If you did not back up the dat files in installationfolder/bin, you must do the
following:

1. Re-enter the password level codes.

2. Select the active project. (To do so, you must use Temporary
Authorization on a run-time only system.)

3. Select the active OPI file.

If you have saved only your source files (CONFIG, OPI, RLL, ST, SFC, IL)
you will need to parse each program.

ASIC-200 User Guide File Types • 181

File Types

File Type Descriptions
The following table lists and describes the file types you may find in the
project directory.

File Created
By

Notes

Configuration Files
_gprog.bbn Binary configuration file Parser
_gprog.st Structured text version of configuration file Parser
CFG Configuration file containing global symbols

and IO data
User 2, 3

DAT Files
active.DAT Contains the current active project Editor 1, 3
environ.DAT Environment information (active

configuration)
Editor 3

oiactive.DAT Contains the current active OPI file Editor 1, 3
oienv.DAT HMI open document information Editor 3
password.DAT Contains password data Editor 1, 3
peactive.DAT Editor settings Editor 1, 3
peenv.DAT Editor open document information Editor 3

Instruction List Files
BBN Binary file executed by the runtime engine Parser
IL Source Instruction List file User 2, 3
ILT Structured Text version of the IL program Parser
ILX Online edit cancel information Parser
IWC Names of symbols added to watch window Editor

Operator Interface Files
OPI Operator Interface File User 2, 3

182 • File Types ASIC-200 User Guide

File Created
By

Notes

Relay Ladder Logic Files
RBN Binary file executed by the runtime engine Parser
RLL Source RLL file User 2, 3
RLR Redo info for RLL file Editor
RLX Online edit cancel information Editor
RLU Undo info for RLL file Editor
RST Structured Text version of the RLL program Parser
RWC Names of symbols added to watch window Editor
SAVERLX Temporary file used for on-line edit Editor
SAVERST Temporary file used for on-line edit Editor

Sequential Function Chart Files
SAVESFX Temporary file used for on-line edit Editor
SAVESST Temporary file used for on-line edit Editor
SBN Binary file executed by the runtime engine Parser
SFC Source SFC file User 2, 3
SFR Redo info for SFC file Editor
SFU Undo info for SFC file Editor
SFX Online edit cancel information Editor
SST Structured Text version of the SFC Parser
SWC Names of symbols added to watch window Editor

STructured Text Files
BBN Binary file executed by the runtime engine Parser
ST Source Structured Text file User 2, 3
STT Structured Text version of the ST program Parser
STX Online edit cancel information Editor
TWC Names of symbols added to watch window Editor

Notes:
1. Located in bin/ folder. All other files are in the project folder.

2. These are the files that you create. You should never attempt to edit any
of the other files.

• These are the files that you should back up to protect your work.

ASIC-200 User Guide Trace • 183

Trace

Trace Overview
The Trace utility allows you to log the changes in value of a symbol and
graph these changes in real time.

Logging Symbol Data
The first step in tracing is to select symbols and begin logging their data
values.

To log symbol data
1. Activate your configuration.

2. Start the runtime system.

3. Start the Data Logger by selecting Trace Logging from the Tools menu.
The Data Logger screen appears similar to the following figure.

• Refer to the table for field descriptions.

• When you have selected the symbols you would like to log (and graph),
click Start Logging to begin.

Note: When you start logging, the Data Logger icon appears next to the
Runtime icon in the system tray. You can click on the icon (with the
secondary mouse button) for menu items.

• The symbol data is written to a log file. To view the graph, refer to Trace
Symbol Data.

Note: The Data Logger uses a maximum of ten, 100 KB files (1 MB
total disk space). Each time you start the Data Logger or when a file
reaches the 100 KB limit, a new log file is created (or overwritten).
When the tenth file reaches the 100 KB limit, the first file is
overwritten with new data, and so on. The log file is in the same
path as your configuration file, but has a log extension. As each new
log file is created, the log file name is appended with a numeral
(config1.log, etc.).

184 • Trace ASIC-200 User Guide

Field Description
Log File The file to which the logger saves data. It is the same path

as your configuration with a log extension. You cannot edit
the log file path.

Logger Status Indicates whether the data logger is active or not.
Available Symbols Lists available symbols from the current active

configuration.
Log Symbol List Lists the symbols to be logged.
Add Symbol To add a symbol to the log list, select the symbol from the

available symbols list and click Add Symbol.
Remove Symbol To remove a symbol from the log list, select it and click

Remove Symbol.
Remove All Symbols Click to remove all symbols from the Log Symbol List.
Start Logging Click to begin logging symbol values to the log file. This

means that for every value change in a symbol, the old and
new values are logged. When Start Logging is selected, you
can no longer add or remove symbols from the log list.
Logging continues even if the Data Logger is exited. When
symbol values are being logged, the data logger icon
appears in the tray next to the run-time icon.

Stop Logging Stops logging.
Exit Exits the Data Logger; however, if Start Logging is enabled,

symbols continue to be logged.

ASIC-200 User Guide Trace • 185

Trace Symbol Data
Once you have selected symbols to log and started logging, you can select
and trace (graph) these symbol data values.

To trace symbol data

Note: Make sure you have activated your configuration, started the
run-time system, selected symbols and started the Data Logger
(started logging).

1. Select Trace Graphing from the Tools menu.

2. The Trace Graph window appears as shown in the figure (however a
graph will not appear until you select a symbol to graph).

186 • Trace ASIC-200 User Guide

3. Select the file in which the symbols are located that are to be graphed. Do

so by selecting Open from the File menu or use the tool bar . A Symbol
File to Load dialog box appears. Navigate to your symbol (SYM) file and
open it.

4. A Symbols dialog appears, displaying the symbols you have selected in
the Data Logger for the configuration file you opened. Select a symbol to
graph.

5. A Range dialog box appears. Enter the X and Y limits and a time range to
display. Click OK to start graphing the symbol, as shown in the figure.

6. You can graph additional symbols from the same configuration file by

clicking New Graph .

• You can configure the display of the graph by positioning the mouse
pointer in the graph and using the context menu (right-click mouse
button). For information on using the graph configuration features, refer
to the help file accessed from the context menu.

• Refer to the tables for menu descriptions and to the tool bar figure for all
Trace operations.

File Menu Description
Open Opens a new Symbol File.
Print Prints selected graph.
Print Setup Standard Windows print setup dialog box.
Recent File List Opens recent symbol files.
Exit Closes Log Graph.

View Menu Description
Tool Bar Toggles display of tool bar on and off.
Status Bar Toggles display of status bar on and off.

Trace Menu Description
Change Scale Displays the Range dialog box to let you change the X and

Y limits and time range for the graph display.
Go to Beginning Goes back to the first point graphed.
Go Back Moves display along the X axis.
Go Forward Moves display along the X axis.
Go to End Goes to the end of the graph displaying the most recently

graphed data.

ASIC-200 User Guide Trace • 187

Tool Bar Description
Open Symbols File Opens a new Symbol File.
New Graph Graph additional symbols from the same symbol file.
Print Print selected graph.
About Displays about box.
Rewind Goes back to the first point graphed.
Go Back Moves display along the X axis.
Most Recent Data Goes to the end of the graph displaying the most recently

graphed data.
Go Forward Moves display along the X axis.
Change Scale Displays the Range dialog box to let you change the X and

Y limits and time range for the graph display.

ASIC-200 User Guide On-Line Editing • 189

On-Line Editing

On-Line Editing Operation
On-line editing refers to making editing changes to a running program.
There are two on-line editing modes: seamless and non-seamless. The on-line
editing mode entered depends on the type of editing changes made as
discussed in Rules.

Seamless on-line editing allows editing changes to be made to a program and
have those changes seamlessly reflected in the running program; that is,
without disturbing run-time operation. Assume a program is running and
the user makes a change to the program: if the change can be seamlessly
online edited, the editor goes into seamless online edit mode. The online edit
control appears with four buttons active:

Restart Program Restarts the program and resets the I/O. It aborts the
current program and runs the new program, shutting
down I/O in the process.

Activate Changes Seamlessly replaces the old version of the program with
the new version; I/O scanning continues seamlessly. It
parses the changes first if needed. The program is only
parsed if the SFC or RLL file date is later than the
program which has been parsed. The file is
automatically saved if it has been changed.

During Activate Changes, the online edit box is
displayed with all buttons disabled (while the changes
are being parsed).

If the Activate Change is successful, the online edit box
is removed. If parsing the changes is not successful, the

190 • On-Line Editing ASIC-200 User Guide

parse error message is displayed and the online edit
buttons are enabled again.

Parse Changes Parses the new program changes without running them.
If the Parse Changes is successful, the online edit box
buttons are re-enabled. If a parse error occurs, the parse
error message is displayed and the online edit box
buttons are re-enabled.

During Parse Changes, the online edit box is displayed
with all buttons disabled (while the changes are being
parsed).

Cancel Changes Converts the source back to the running program and
resumes highlighting the active program.

When a program is running and the user makes a change to the program
which cannot be seamlessly implemented, the online edit box appears with
only the Restart Program and Cancel Changes button active.

The user is prompted the first time a non-seamless edit is about to be
implemented. After the user agrees to this, there is no further notification
and the Activate Changes and Parse Changes buttons are disabled. If a seamless
change was made earlier, the non-seamless change will force the program to
be restarted.

Rules

The following paragraphs list the rules for seamless on-line editing. If editing
changes are made that cannot be seamlessly updated in the running
program, then non-seamless on-line editing operation applies.

General
Assume editing changes are made to an active program, the changes are
saved without activating them (seamless changes or non-seamless changes),
and the editor is closed. When the editor is started again, it will go directly to
non-seamless online edit mode (the on-line edit box will appear with the
Activate Changes and Parse Changes buttons disabled). This means that
seamless online edits are not remembered across edit sessions but the
changes themselves are identified by the file dates (SST file compared with
SFC file, or RST file compared with RLL file).

Symbols
You can seamlessly add new global memory variables. To do so, add new
global memory variables from the Symbol Manager and click Apply - the
new global memory variables seamlessly become active in the run-time
engine. Any deletion or modification of global memory variables or

ASIC-200 User Guide On-Line Editing • 191

modification or addition of global user structures will require the
configuration to be re-activated, aborting all programs and shutting down
the I/O. When the user attempts to delete or modify a global memory
variable or make changes to the global user structures, a notification appears
that this edit will force all programs to be aborted.

• Global and local symbols can be added.

• Deleting or modifying symbols forces the program to restart.

• Modifying local user structures forces the program to restart.

I/O
• Modification to the I/O drivers will require the configuration to be re-

activated.

RLL Programs
• When editing RLL programs, any change can be made. The full program

is re-parsed and the program is seamlessly swapped. Symbols maintain
their current value. I/O scanning continues seamlessly.

Note: Positive and negative transition sensing contacts are
prohibited from causing a transition the first time the element is
evaluated. For on-line edit this means that after the online edit, the
first scan will never sense the transition (since for the edited
program, this is its initial scan). The place where this can cause an
apparent problem is when the element is low and during the scan of
the online edit, the element goes high. This transition would not be
sensed.

SFC Programs
• When editing SFC programs, the contents of steps, actions and

transitions can be freely changed. The structure of the SFC (the SFC net)
cannot be changed (this will force a program restart), including changing
the name of an element (step, action or transition). During a seamless
online edit, the full SFC (including any macro SFC) is re-parsed, the
program segments representing the steps, actions and transitions are
seamlessly swapped, the symbols maintain their current values, and
steps, actions, and transitions which are active remain active. I/O
scanning continues seamlessly.

• For SFC action qualifiers, only the duration can be changed. Any other
change will force the program to be restarted.

• For SFC steps which contain Structured Text or RS-274, if the step is
complete (the Structured Text or RS-274 has finished executing) it will
remain complete with any active actions still scanning. If the step is not

192 • On-Line Editing ASIC-200 User Guide

complete (the Structured Text or RS-274 are still executing) the
Structured Text or RS-274 will start over from the beginning.

• On-line editing of motion is not supported.

File Operations
Online Edit and File operation features have some basic incompatibilities.
The nature of Online Edit ensures that all variables including File Control
blocks maintain their current state during the online edit. During Online
Edit, the Structured Text inside of a step is restarted. If a set of Structured
Text file commands are executing during an Online Edit, the commands will
be restarted but the file will not be closed and reset to the start. The file
operations will fail or execute incorrectly after the online edit.

Example 1

STEP1:
FILE_OPEN (fcb, "test.dat");
WHILE (NOT fcb.EOF) DO

FILE_READ (fcb, struct1);
END_WHILE;

If an online edit is executed during the WHILE loop, STEP1 will be reset and
the FILE_OPEN command will fail because the file is already open.

Example 2

STEP1:
FILE_OPEN (fcb, "test.dat");
STEP2:
WHILE (NOT fcb.EOF) DO

FILE_READ (fcb, struct1);
END_WHILE;

If an online edit is executed during the WHILE loop, STEP2 will be reset and
the FILE_READ will work correctly. There will probably be a timing
problem in this case because the FILE_READ is not aborted and may still be
active when the online edit is executed.

Structured Text Programs
• Structured Text does not support seamless on-line editing. If changes to

the Structured Text file are made while the program is running and the
file is saved, the non-seamless on-line editing buttons are enabled.

ASIC-200 User Guide On-Line Editing • 193

Instruction List Programs
• If changes to the Instruction List file are made while the program is

running and the file is saved, the on-line editing buttons are enabled.

ASIC-200 User Guide System Options • 195

System Options

System Options Dialog Box
System options let you set preferences that affect the behavior and
appearance of the control system.

196 • System Options ASIC-200 User Guide

Adjust Memory Sizes Tab
Field Description
Display Style Displays memory size options in Decimal or Hex.
Free Physical Memory The current free physical memory available on the

computer. This cannot be edited, but depends on the type
and number of open Windows applications.

Current Heap Size This shows the current Heap setting and cannot be edited.
The Heap is memory allocated (on start-up) for the control
system. The Heap is used up by open application programs
and symbols. As it is used up, this setting may need to be
increased. However, the larger the Heap size, the less
memory will be available for other Windows applications

Requested Heap Size If the Heap needs to be increased (or can be decreased),
provide a new Heap size here. The Heap can be larger than
physical memory, as it will use virtual memory from the
swap file. If you run out of control system memory during an
editing session, you will get a message suggesting to
increase the Heap Size.

Current Data Table Size This is memory used for symbols and depends on the
symbol data type. For example, large arrays use more data
table memory. If you run out of data table memory during an
editing session, you will get a message suggesting to
increase the data table size.

Requested Data Table
Size

If necessary, provide a new data table size.

Lock Heap in Memory If this field is set, it will improve the determinism of the
control system. When the control system is started, it will
attempt to lock the Heap into physical RAM; otherwise, it
can use virtual memory. You are not given an indication of
whether locking the Heap in memory was successful or not;
therefore, it is best to start the control system run-time
system before any other application to allow as much
physical memory for the Heap as possible.

Software Watchdog
Timeout

This option can be used to prevent your application from
getting stuck in an endless loop. You can set the timeout to
be from 2-times the scan rate up to 10 seconds. The default
value of 0 disables the software watchdog timeout.
In operation, the execution time of each instruction is
checked, and if it exceeds the timeout value, a fault is
generated. If a timeout fault does occur, and the problem is
in an SFC step, you are notified of the step name causing
the fault.
Note: This option is for development and debugging
purposes only. Do not leave this enabled in normal control
operation as it can impact performance.

ASIC-200 User Guide System Options • 197

Properties Tab
Field Description
Runtime Tray Icon If set, displays the Runtime icon in the tray; otherwise, it is

also displayed in the task bar. If it is displayed in the task
bar, you can access it using keyboard operations; however,
if it is displayed in the tray, it is necessary to use the mouse
to access it.

Number of Decimal
Places

This controls the number of decimal places displayed in the
function block details in an RLL program. The more decimal
places displayed, the more space is used.

Number of FB Symbol
Characters

This controls the length of space for displaying characters in
the function block details in an RLL program (not
necessarily the actual number of characters). A standard
character size of an upper case X is assumed. If characters
take up less space (e.g., lower case I), then more
characters will appear.

Editor Display Update
Time

This controls how often the Program Editor is updated; for
example, the values in the Watch Window.

Show IEC Style Locations If set, displays I/O points in IEC 1131-3 syntax rather than
by symbol name.

Display non-fatal error
messages

Controls the display of non-fatal error messages. When
checked, non-fatal error messages are logged to
EVENTS.EXE (Event logger) but it is NOT displayed. When
unchecked, the message is both displayed and logged.
Non-fatal error messages are messages that are generated
by the Runtime Subsystem or by any installed driver.
Typically, Non-fatal error messages indicate that a non-
critical recoverable error has occurred.

Display fatal error
messages

Controls the display of fatal error messages. When
checked, fatal error messages are logged to EVENTS.EXE
Event logger) but it is NOT displayed. When unchecked, the
message is both displayed and logged. Fatal error
messages are messages that are generated by the Runtime
Subsystem or by any installed driver. Typically, Fatal error
messages indicate that a severe, unrecoverable error has
occurred. The error usually results in the specified
subsystem's software being halted.

Note: The reason for disabling error messages is: Some drivers can produce large
volumes of non-fatal error messages (PMAC, Modbus+, etc.), which can become
annoying when they pop up over your MMI. This allows you to decide if you wants to be
informed of fatal and/or non-fatal error messages. If you choose to disable error
messages, it is your responsibility to monitor the system for errors.

Fonts & Colors Tab
Field Description
Text Editor Options Refer to Customize Text Editor.
RLL & SFC Editor Fonts Sets the fonts in the program editors.

198 • System Options ASIC-200 User Guide

Fonts & Colors Tab
Field Description
Colors - RLL & SFC Sets various editor colors.
Reset to Default Colors Restores all colors to their defaults.

Symbol Enumeration Tab
Field Description

Enumerations refer to the elements of a complex symbol.
That is, a symbol that has elements that can be individually
accessed: structures, function blocks, etc. The following
check boxes work with the Show Symbol Enumerations
command on the editor View menu. If the associated check
box is set and Show Symbol Enumerations is enabled, then
the respective enumerations are visible in symbol lists. If the
check box is reset or Show Symbol Enumeration is
disabled, the enumerations are not visible in symbol lists.
Showing symbol enumerations (depending on the number
of symbols) can affect performance as you are using the
editors, since more symbols will need to be loaded into the
symbol lists.
Note: Even with enumerations off, if you drag a symbol from
the Symbol Manager and drop it, a list box appears with that
symbol's enumerations from which you can select the
enumeration you want to use.

Show Function Block
Enumerations

Shows the function block instance inputs and outputs.

Show User Type
Enumerations

Shows elements within an instance of a user type.

Show Axis Enumerations Shows axis element symbols.
Show Axis Group
Enumerations

Shows axis group element symbols.

Show System Object
Enumerations

Shows the variables associated with instances of timers
(TMR), PIDs, and PRGCBs.

Customize Text Editor
Editor customization allows you to set tab, color, and font options for the
editor.

To customize the editor

ASIC-200 User Guide System Options • 199

• Choose System Options from the Tools menu, then choose Text Editor
Options from the Fonts & Colors tab. The Editor Options dialog box
appears. Refer to the following tables for descriptions of the options.

Editor Options
Item Description
Syntax
coloring

Opens the Syntax Coloring dialog box from which you can set
background and various text color preferences.

Font Displays a standard Windows font selection dialog box from which
you can set the editor's font characteristics.

Tabs Tab size - the number of spaces for which a tab is equivalent.
Show tabs - if checked, presence of tabs are indicated by a tab
character (»).
Insert spaces - inserts the tab equivalent number of spaces when
the tab key is pressed, rather than a tab.
Keep tabs - tabs are inserted as tabs, not spaces.

200 • System Options ASIC-200 User Guide

Syntax Coloring
Item Description
Use syntax
coloring

Check this item to use syntax coloring; if unchecked, all text is
displayed in the Default Text color.

Case
sensitive

If checked, keywords are considered case-sensitive within the
editor.

Current
Colors

Clicking the Change button for the respective text type displays a
standard Windows color selection dialog box that allows you to set
a color for the text or background.

IEC Style Locations
The following figure shows an example of normal and IEC 1131-3 style
locations for I/O points. (Display Symbol Locations must be enabled.) If a
symbol is memory mapped variable, then Memory appears for the symbol
location.

ASIC-200 User Guide System Options • 201

The IEC 1131-3 symbol location syntax is as follows:

% Directly represented variable

I Input point

Q Output point

X BOOL

B BYTE

W WORD

D DWORD

ASIC-200 User Guide UPS Configuration • 203

UPS Configuration

Configuring the UPS
The control system can work in conjunction with an uninterruptible power
supply (UPS). The control system can receive signals from the UPS in order
to prepare an orderly shutdown. The signals appear in the Symbol Manager
as:

RT_POWER_FAIL Power failure detected.

RT_LOW_BATTERY Low battery detected.

To use the UPS
• Locate the ASAP Applications menu from the Windows Start menu and

choose UPS Monitor.

The UPS Monitor icon appears in the tray. Configure the UPS by double-
clicking on the icon. The Memory retention UPS monitor dialog box appears.

204 • UPS Configuration ASIC-200 User Guide

Item Description
Memory Retention UPS is
installed on:

Select the serial port to which the UPS is connected.

UPS Configuration Refer to your UPS documentation to fill in these fields.
Power failure signal
UPS Interface Voltage

Check this option if the UPS provides a power failure
signal. If checked, select whether it is a negative or
positive voltage.

Low battery signal
UPS Interface Voltage

Check this option if the UPS provides a low battery
signal. If checked, select whether it is a negative or
positive voltage.

UPS Characteristics If the UPS does not provide a low battery signal, you
can enter UPS characteristics by referring to the UPS
documentation.

UPS Service You can set these preferences as needed for your
system.

To shutdown the UPS
• Right-click on the UPS Monitor icon and choose Shutdown Memory UPS.

ASIC-200 User Guide Dynamic Data Exchange (DDE) • 205

Dynamic Data Exchange (DDE)

About the DDE Interface
The control system software allows a DDE interface option to third-party
software to communicate with the control system software through a DDE
interface. When the DDE interface is enabled, the control system software
accepts external program commands and read/write requests from/to the
control system I/O and global memory variables.

With NetDDE, these external program commands and read/write requests
can be made from a remote network node. When using NetDDE, the DDE
server name must be prefixed by the server network node address.

DDE Communication with Microsoft's Excel
You can use Microsoft Excel's DDE features to transfer data to and from
global symbols. Using Excel you can transfer data from the control system
for summary and analysis. You can also transfer data from Excel to the
control system for controlling control system program execution or to
provide features such as a low level recipe management system.

Transferring Data to Excel
To transfer the value of a global symbol to a cell in a Excel Spreadsheet, enter
a formula like the following into the cell that is to receive the value:

=ProgMgr|'_main _main'!VariableName
or

=ProgMgr|'_main _main'!'ArrayName[4]'
The string '_main _main' is the DDE topic and will allow you to fetch global
variables. Make sure that you type one and only one space between the two
"_main" as shown in the formula above. Replace the VariableName with the
name of the global variable that you wish to transfer. The VariableName
must use the same case and spelling as used in the control system
application. Array elements can be accessed by using the second format to
address the appropriate element in any array, but because of the square
brackets ([]), the element name must be enclosed within single quotes.

206 • Dynamic Data Exchange (DDE) ASIC-200 User Guide

This formula will establish a Hot DDE link to the control system that will
update the value in the Excel spreadsheet whenever the variable in the
control system is changed.

Excel DDE Example
The value of the global variable RT_AVG_SCAN is monitored in cell A1.

The formula in A1 is: =ProgMgr|'_main _main'!RT_AVG_SCAN
Where:

 = is the Excel operator Equal To

ProgMgr is the application name (capitalization is important)

| is the pipe symbol used to separate the application name
from the topic name

'_main _main' is the topic name (Make sure that you type one and only
one space between the two "_main" as shown.)

! is an exclamation mark and is the delimiter between the
topic name and the variable name

RT_AVG_SCAN is the name of the symbol being monitored. You can list
any global symbol name here.

ASIC-200 User Guide Dynamic Data Exchange (DDE) • 207

This formula is dynamic and updates the value in A1 continually. For more
information about entering formulas in an Excel spreadsheet, refer to the
Excel user documentation.

Transferring Data to the Control System
Transferring a value from Excel to a control system global variable requires a
DDE transaction routine coded in an Excel macro similar the following:

Sub transfer()
Dim x
x = Application.DDEInitiate("ProgMgr", "_main _main")
Set rangeToPoke = Sheets("Sheet1").Cells(7, 11)
Application.DDEPoke x, "VariableName", rangeToPoke
Application.DDETerminate x

 End Sub
This routine, when executed, will transfer the value of the cell in row 7,
column 11 (K7) to the global variable called VariableName. Make sure that
you type one space between _main and _main as mentioned above. Replace
Sheet1 with the name of your worksheet that contains the value to be
transferred.

Transferring Values to the Control System upon Request
Transferring values from Excel to the control system upon request from the
control system requires a DDE transaction routine coded in an Excel macro
similar the following:

Dim TimeSet As Double
Sub RunMeFirst()
 TimeSet = Now + TimeValue("00:00:05")
 Application.OnTime TimeSet, "Transfer"
End Sub
Sub Transfer()
 Dim x, y
 Dim z As Variant
 x = DDEInitiate("ProgMgr", "_main _main")
 z = DDERequest(x, "Trans1")
 y = Val(z(1))
 If y = 1 Then
 Set rangeToPoke = Sheets("Sheet1").Cells(2, 3)
 DDEPoke x, "Data1", rangeToPoke
 Set rangeToPoke = Sheets("Sheet1").Cells(3, 3)
 DDEPoke x, "Data2", rangeToPoke

208 • Dynamic Data Exchange (DDE) ASIC-200 User Guide

 Set rangeToPoke = Sheets("Sheet1").Cells(4, 3)
 DDEPoke x, "Data3", rangeToPoke
 Set rangeToPoke = Sheets("Sheet1").Cells(1, 3)
 DDEPoke x, "Trans1", rangeToPoke
 End If
 DDETerminate x
 RunMeFirst
End Sub

When executed, this macro will check a global variable called Trans1 every 5
seconds. If Trans1 is set to 1 it will then transfer the value of the cell in row
2, column 3 (C2) to the global variable called Data1, likewise C3 to Data2,
and C4 to Data3. It will then transfer C1, which was preset to 0, to Trans1
resetting the transfer request. Make sure that you type one space between
_main and _main as mentioned above. Replace Sheet1 with the name of
your worksheet that contains the values to be transferred. The time interval
may be changed from 5 seconds by changing the TimeValue in the
RunMeFirst function.

Network DDE Communication
A Network DDE Link consists of two parts; the DDE server application and the
DDE client application. The DDE server application contains the data to be
shared. The DDE client requests the data from the DDE server, thus creating a
DDE Link. Network DDE requires the server application to make the data
accessible on the network. The server Application creates a Network DDE share,
available over the network, which the client application can connect to.

To create a Network DDE link under Windows NT 4.0
Use the DDE Share Manager (%SYSTEMROOT% \SYSTEM32 \ DDESHARE.
EXE) to create a share on the DDE server:

1. Select Add a Share in the SHARES/DDE Shares menu.

2. Enter a share name. The share must end with a dollar sign ($), for example
DDEShare$.

Note: This share is not a directory. You cannot see it in Explorer.

3. Under Application Name, enter the following:

Old Style: ProgMgr
New Style: ProgMgr
Static: ProgMgr

4. Under Topic Name, enter the following:

Old Style: _main _main

ASIC-200 User Guide Dynamic Data Exchange (DDE) • 209

New Style: _main _main
Static: _main _main

Note: Make sure there is a blank space between _main and _main.

5. Select Allow Start Application.

6. Choose Permissions and then set permissions for the share the same way
you would set permissions on files using Explorer. Click OK.

7. Select the share you just created and choose Trust Share. Choose Set.

8. Enable the two set boxes (Start Application Enable and Initiate to
Application Enable). Choose OK.

9. Launch Excel on the client.

10. Create a link to the share that you just created.

This example assumes a machine name of UNIVERSE.

Go to any cell in Excel and enter:

=’ \ \UNIVERSE\NDDE$’ |’ DDEShare$’!’Counter1’
where:

Counter1 is a valid global variable

Note: You may be prompted for a password. If so, enter a valid user
account and password which exists in the DDE server’s domain or a trusted
domain.

The linked data should appear in the cell when you press enter. If the
cell shows N/A, choose Links from the Edit menu. The link should be
listed as follows:

Source File: DDEShare$

Item: Counter1
Type: \ \UNIVERSE\NDDE$
Status: Automatic

To update the link, select Update Now. The link should activate and the
date should be linked to the client spread sheet.

Note: Under Windows 95 - Requires NetDDE.exe to be running. Run
NetDDE.exe.

ASIC-200 User Guide OLE for Process Control (OPC) • 211

OLE for Process Control (OPC)

OPC Server Overview
An OPC server is included in the control system product. OPC stands for
OLE for Process Control and provides a standard means of transferring
symbol data. Support is for OPC 2.0 and earlier.

Using OPC
The following provides a general procedure for using the control system's
OPC server. Each client will have its own interface, refer to your client
application product for specific information.

To use OPC
1. Start the run-time system.

2. Open your HMI application that supports OPC.

3. There should be a tag browser or similar feature. Use it to view the OPC
servers running on the computer.

4. Choose the server: ASAPInc.OPC200
5. You should then have access to a list of tags.

6. Select one or more tags of interest. Make sure the data type is correct, if
not and there is a feature to change it, do so.

Note: You may also need to make a group. These are tags that are
updated at the same rate.

7. Use the tag by assigning it a symbol name or putting it into a control, as
determined by your HMI application.

ASIC-200 User Guide Import/Export Configuration • 213

Import/Export Configuration

Import/Export Introduction
The import/export features provide the following capabilities:

• For drivers that do not allow cut and paste capabilities, you can export
the configuration; use a text editor to cut and paste the configuration;
and then import the configuration back into the control system.

• Offline editing of the configuration. Instead of using the control system
to edit configurations, you can use a text editor or CSV compatible utility
(such as Microsoft Excel) to edit the configuration. Or, you can write
your own dialog based configuration software (using VB, VC++, etc.) to
create CSV files. You can then import the CSV into the control system.

• You can create your own application to automate the generation of
customer specific configurations.

Import/Export Support
Currently, the following configuration information types are supported for
CSV import and export:

• Global symbols.

• Yaskawa I/O driver.

• GE 90/30 driver.

• PCIM driver.

Format
The configuration is exported as a comma separated file that can be read by a
text editor or spreadsheet. The format specification is available upon request.

Exporting a CSV File
To export a configuration to a CSV file
1. Open the configuration to be exported.

214 • Import/Export Configuration ASIC-200 User Guide

2. Select Export Config to CSV from the File menu. A file selection dialog box
appears.

3. Select or type a file name for the export and click Open to continue. The
Export Config to CSV dialog box appears.

ASIC-200 User Guide Import/Export Configuration • 215

4. Select export options as needed and click OK to proceed. The
configuration is saved to the designated file.

Importing a CSV File
To import a CSV file to a configuration
1. Select Import CSV to Config from the File menu. You are prompted to

close the currently open configuration.

2. A file selection dialog box appears.

3. Select or type the file name of the configuration file to be imported and
click Open to continue. The Import CSV to Config dialog box appears.

216 • Import/Export Configuration ASIC-200 User Guide

4. Select import options as needed. You can choose to import either global
symbols and/or driver information, use the global symbols or driver
information from the active configuration, or start the configuration
without global symbols or driver information.

5. Click OK to proceed. The configuration data is imported and becomes
the active configuration.

ASIC-200 User Guide Index • 217

Index

1
1131-3 Extensions 46, 77

A
Action Function 62
Action Manager 67
Action Name 66
Action Parameters 63
Action Qualifier 64
Actions 62, 87

Adding 88
Configuring 88
Editing 89
Editing the RLL of an Action 89

Actions, description 62
Activate configuration 173
Activating a Configuration File 12
Add a Function Block 52
Adding a Boolean Transition 85
Adding a Branch 50
Adding a Coil 48
Adding a Contact 47
Adding a Jump Coil 51
Adding a Jump, SFC 90
Adding a Label, SFC 91
Adding a Loop 92
Adding a Loop, SFC 92
Adding a Macro Step 86
Adding a Select Divergence 95
Adding a SFC Transition Coil 51
Adding a Simultaneous Divergence 96
Adding a Step 81
Adding an Action 88
Adding an Application Icon Step 84
Adding an RLL Transition 85
Adding Function Blocks 52
Adding Program Comments, SFC 98
Adding Rung Comments 56
Adding Symbol Descriptions 57

Assignment 110
Axis Group Input Symbols 148

.TOOLLEN Axis Group Input Symbols 150

.TOOLRAD Axis Group Input Symbols 149
Motion direct 165

Axis Group Output Symbols 146
Axis Input Symbols 147

.FIXOFF Axis Input Symbols 149

.JM and .JP Axis Input Symbols 147

.TOOLOFF Axis Input Symbols 150
Axis Output Symbols 145

Motion direct 164
AXSJOG 161

B
Backup and Restore Project 179

Overview 179
Backup Project 179
Block Format 138
Bookmarks

ST 104, 122
Branch

Deleting 56
Moving 55

BREAK 111

C
Canceling a running program 168
CASE 112
Clearing fault mode and error conditions 171
Closing a program 36
Comment 113
Configuration

Activating 12
Editing 11
New 11
Saving 12

Configuration files 11
Configuration utility 9, 13
Configuring a Macro Step 87
Configuring programs to execute automatically 168
Configuring the UPS 203
Connector dialog box 16
Control Loops 71
Copying a project 5
Copying a Symbol 22
Creating a new Configuration 11
Creating a new program 31
Creating a new project 3
Creating a user-defined data type 24
Creating an Array of Symbols 18

218 • Index ASIC-200 User Guide

Creating an SFC Program 79
Creating Relay Ladder Logic Programs 46
Creating Symbols 21
Customize editor

ST 198
Editor Options 199
Syntax Coloring 200

D
Data port 10
DDE 205
Define Board dialog box 15
Define M Flag Symbols 144, 151
Deleting a Branch 56
Deleting a Symbol 22
Display property options 197
Divergences 68

Selected 68
Simultaneous 69

Do Not Process M Codes Feature 145
Documenting an SFC Program 98

Adding Program Comments 98
Editing Program Comments 98
Viewing a Comment 98

Documenting RLL Application Programs 56
Dynamic data exchange 205

E
Edit Action Parameters 63
Edit step commands 83
Edit step properties 82
Editing

On-line 189
Editing a Boolean Transition 86
Editing a Configuration Parameter of an Action 90
Editing a Macro Step 87
Editing a Symbol 21
Editing an Action 89
editing an existing SFC program 79
Editing an RLL Transition 85
Editing configurations 11
Editing Program Comments, SFC 98
Editing Rung Comments 56
Editing Symbol Descriptions 57
Editing the RLL of an Action 89
Editor Options

ST 199
Error conditions 171
Execution order, program 174
EXIT 113
Exiting 104, 123

Expressions
Structured Text 105

Extensions to IEC 1131-3 46, 77
Extensions to SFC 77

F
File Types 181

Descriptions 181
First scan 173
Font and color options 197
FOR 115
Function call 116

G
G Codes 140
G56 Macro Calls with Motion 154
G65 Macro Calls

Designing the Macro 154
Execution 155

H
Hardware conflicts 10

I
I/O configuration 9

Overview 9
I/O Points 11, 16
I/O points, description 18
I/O Scan Rate 13
I/O Scanner 13
IEC style locations 200
IF 114
IF-GOTO Command 153
IF-GOTO Command Example 154
Import/export configuration 213

Capabilities 213
Exporting a CSV file 213
Format 213
Importing a CSV file 215
Support 213

INCLUDE 115
Initialization of variables 174
Inserting a New Rung 49
Integrated motion programming 135
Interrupt 10

ASIC-200 User Guide Index • 219

J
Jog Panel 156
Jump and Labels 72
Jump Coil/Label 44
Jump/Label Parameters 73

K
Keyboard use

SFC 78, 81

L
LABEL 117
Language

Structured Text 101
Language Overview 124
Logging symbol data

Trace 183

M
M Codes 143

Predefined 143
Wait and Continue 143

Macro Step
Adding a Macro Step 86
Configuring 87

Macro Step Function 70
Macro Steps 70
Magnify 36
Managing application programs 31
Managing projects 3
Memory Address 10
Memory size options 196
Memory Usage 29
Monitoring

Application program 170
Symbols 170

Monitoring Axis Plot 157
Monitoring motion applications 156
Monitoring Multi-Axis Motion Status 158
Monitoring Power Flow 169
Motion Commands 137
Motion Control

Block Examples 138
Block Format 138
Define M Flag Symbols 144, 151
Do Not Process M Codes Feature 145
Embedding Structured Text 136, 158, 159
G56 Macro Calls 154
Guidelines for motion in structured text 159

How the Embedded Structured Text Code is
Evaluated 160

IF-GOTO Command 153
IF-GOTO Command Example 154
Jog Panel 156
Monitoring 156
Monitoring Axis Plot 157
Monitoring Multi-Axis Motion Status 158
Multi-Axis Status Panel 158
Predefined Symbols 145
Program Flow Control 152
Running 156
Single Axis Motion Status 157
Single Axis Panel 157
Suspend on Spindle Commands Feature 151
Suspend on Tool Changes Feature 152
Wait on All M Codes Feature 144
WHILE Command 152
WHILE Command Example 153

Motion Control Language 135
Motion Control to an SFC 136
Motion direct programming 163
Motion Functions

Structured Text 160
Motion options 14
Motion programming

Integrated 135
Motion direct 163

Motion Qualifier 64
Move contact points of a branch 50
MOVEAXS 161
Moving a Branch 55
Moving a Loop, SFC 93
Moving Program Elements 55
Multi-Axis Status Panel 158

N
Naming a Bit in a Symbol 23
Negated Output Coils 42
Negative Transition Sensing Coil 43
Negative Transition Sensing Contact 42
NetDDE 208
Normal operation 173
Normally Closed Contacts 41
Normally open contacts 41

O
On-line editing 189

Operation 189
Rules 190

General 190

220 • Index ASIC-200 User Guide

I/O 191
IL Programs 193
RLL Programs 191
SFC Programs 191
ST Programs 192
Symbols 190

Opening 121
Opening a program 32
Opening a project 4
Operators 124

Structured Text 105
Output Coils 42
Overview of Relay Ladder Logic Diagrams 39

P
Pan 36
Parameters, Step 61
Parsing a program 170
Pointer operators 106
Positive Transition Sensing Coil 43
Positive Transition Sensing Contact 41
Power-down sequence 173
Predefined Motion Control 145
Predefined Motion Direct Symbols 164
Predefined System Symbols 28
Print and title block setup 34
Print preview 104, 123
Print setup 104, 123
Printer setup 34
Printing 104, 123
Printing a program 34
Printing a program cross-reference 35
Program

Closing 36
Creating 31
Opening 32
Printing 34
Saving 33
Viewing 32

Program comments
Displaying 37

Program element selection 37
Program Elements

Editing 56
Moving 55

Program execution order 174
Program Flow Control 59, 71

Control Loops 71
Jump and Labels 72

Program Flow Control in motion applications 152
Program Label 63
Program operation

Activate configuration 173
First scan 173
Normal operation 173
Power-down sequence 173

Program operation overview 173
Programming

Structured Text 101
Programs

Managing 31
Project

Activating configuration 6
Copying 5
Creating 3
Management 3
New 3
Opening 4
Renaming 6

Project Backup 179
Project Restore 179
Projects 3

R
Redoing 56
Relay Coils 42
Relay Contacts 41
Relay Ladder Logic Program

Add a Function Block 52
Adding a Branch 50
Adding a Coil 48
Adding a Contact 47
Adding a Jump Coil 51
Adding a SFC Transition Coil 51
Adding Function Blocks 52
Inserting a New Rung 49

Relay Ladder Logic Programs
Creating 46

Renaming a project 6
REPEAT 117
Reset (Unlatch) Coil 43
Restore Project 179
RLL Application Programs Solved 45
RLL Logic Solved When Function Blocks Are

Used 46
RLL Transition Manager 68
RS-274-D, Enhancements 136
Run one step of the active file 168
Run the active file with debug 167
Run the active file with restart 168, 169
Run with debug 167
RUN with Debug 171
Rung Comments

Adding 56

ASIC-200 User Guide Index • 221

Editing 56
Running motion applications 156
Running the active program 167

S
Save a program with a new name 33
Saving 104, 123
Saving a Configuration File 12
Saving a program 33
SCAN 118
Scan Rate 29
Scroll bars 36
Selected Divergences 68
Selecting elements 54
Selecting multiple elements 54
Selecting program elements 37
Sequential Function Charts 59
Set (Latch) Coil 43
SFC

Motion Control 136
SFC Menus 78, 80
SFC Program Flow Controls

Adding a Jump, SFC 90
Adding a Label, SFC 91
Adding a Loop 92
Adding a Select Divergence 95
Adding a Simultaneous Divergence 96
Moving a Loop 93

SFC Toolbars 78, 80
SFC Transition Coil 44
SFC’s Solved, description 75
SFC+/M 77
Sharing data 205
Simultaneous Divergence

Guidelines, using 98
Simultaneous Divergences 69
Single Axis Motion Status 157
Single Axis Panel 157
Single stepping a program 171
Starting 121

Runtime 167
Status of application programs 170
Status Symbols 29

Average Scan 29
First Scan 29
Last Scan 29
Max Scan 29
Memory Usage 29
Scan Overrun 29
Scan Rate 29

Step Functions 59
Step Parameters 61

Step System Symbols 61
Steps 59, 81

Adding 81
Adding an Application Icon 84
Edit commands 83
Edit properties 82

STOPJOG 161
Structured Text

Accessory bar 102
Editing 103
Editing in an SFC Step 102
Editor 101
Entering statements 102
Expressions 105
Insert function menu 103
Insert statements menu 103
Introduction 101
Language 101
Language Overview 105
Opening a Structured Text Document 102
Operators 105
Pointer operators 106

Indirect addressing description 106
Pointer definition 107
Pointer usage 107

Programming 101
Statements

Assignment 110
CASE 111, 112
Comment 113
EXIT 113
FOR 115
Function call 116
IF 114
INCLUDE 115
LABEL 117
REPEAT 117
SCAN 118
WHILE 118

Structured text language 121
Structured Text Motion Functions 160

AXSJOG 161
MOVEAXS 161
STOPJOG 161

Structured text syntax 110
Structuring RLL Application Programs 39
Suspend on Spindle Commands Feature 151
Suspend on Tool Changes Feature 152
Symbol 17

Copying 22
Creating 21
Creating an Array 18
Deleting 22

222 • Index ASIC-200 User Guide

Editing 21
Global 17
Local 17
Naming a bit 23
Predefined 28
System Status 29

Symbol Data Types
User-Defined Data Type 18

Symbol description 17
Symbol Descriptions

Adding 57
Editing 57

Symbol enumeration options 198
Symbol Manager 19

Opening 20
Symbols

Defining 19
Syntax 124

Structured Text 110
Syntax Coloring

ST 200
System Configuration dialog box 13
System options 195

Display properties 197
Font and color options 197
Memory size options 196
Symbol enumeration options 198

T
Testing

Application programs 170
Symbols 170

Time Duration 66
Tool bar 122
Trace 183

Logging symbol data 183
Overview 183
Trace symbol data 185

Trace symbol data
Trace 185

Transfering data 205
Transfering Project to RunTime 175
Transfering your project files 175

Other considerations 177
To a different path 176

Transition Functions 76
Transition Parameters 68
Transitions 67, 85

Adding a Boolean Transition 85
Adding an RLL Transition 85
Editing 85, 86

Transitions Evaluated, description 76

Transitions, description 67

U
UPS configuration 203
User-defined data type

Creating 24
User-Defined Data Type 18

V
Variable initialization 174
View Comments 37
Viewing a Comment, SFC 98
Viewing programs 32

W
Wait on All M Codes Feature 144
Watching and forcing symbols 170
WHILE 118
WHILE Command 152
WHILE Command Example 153

Z
Zoom 36

139837(B)

Xycom Automation, LLC

750 North Maple Road

Saline, MI 48176

http://www.profaceamerica.com

 Phone: 734-429-4971

 Fax: 734-429-1010

	Contents
	Introduction
	Projects
	Managing Projects
	Creating a New Project
	Opening a Project
	Copying a Project
	Renaming a Project
	Activating a Configuration

	I/O Configuration
	Overview
	Help with Hardware Conflicts
	Data Port
	Memory Address
	Interrupt

	Configuration Files
	Elements of a Configuration
	Creating a New Configuration
	Editing an Existing Configuration File
	Activating a Configuration File
	Saving a Configuration File

	Configuration Utility
	System Configuration
	I/O Scan Rate
	Motion Options

	Using the Define Board Dialog
	Using the Connector Dialog

	Symbol Configuration
	Symbols
	User-Defined Data Type
	Arrays
	Pointer Symbols
	Symbol Manager
	Opening the Symbol Manager
	Creating a Symbol
	Editing a Symbol
	Copying a Symbol
	Deleting a Symbol
	Symbol Details
	Naming a Bit in a Symbol

	Editing User-Defined Data Structure Types
	Using Symbols
	Drag-and-Drop
	Enumerations

	System Symbols
	Predefined System Symbols
	Run-Time Symbols

	Application Programs
	Managing Application Programs
	Creating a New Program
	Opening a Program
	Viewing Programs
	Saving a Program
	Printing a Program
	Printing Program Cross-References
	Closing Application Programs
	Panning and Zooming
	Turning Comments On and Off
	Selecting Program Elements in SFC and RLL Editors

	RLL Programming
	About Structuring RLL Application Programs
	Relay Ladder Logic Instructions
	Relay Contacts
	Normally Open Contacts
	Normally Closed Contacts
	Positive Transition Sensing Contact
	Negative Transition Sensing Contact

	Relay Coils
	Output Coils
	Negated Output Coils
	Set (Latch) Coil
	Reset (Unlatch) Coil
	Positive Transition Sensing Coil
	Negative Transition Sensing Coil
	Jump Coil/Label
	SFC Transition Coil

	How RLL Application Programs are Solved
	How Relay Logic is Solved
	How Function Blocks Are Solved

	Extensions to IEC 1131-3 Ladder Diagrams
	Creating Relay Ladder Logic Programs
	Creating an RLL Program
	Adding Program Elements
	Adding a Contact
	Adding a Coil
	Inserting a New Rung
	Adding a Branch
	Adding a Jump Coil
	Adding an SFC Transition Coil
	Adding Function Blocks

	Moving and Editing Program Elements
	Selecting Program Elements
	Moving a Branch
	Moving Program Elements
	Editing Program Elements
	Deleting a Branch
	Undoing/Redoing Edits

	Documenting RLL Application Programs
	Adding and Editing Rung Comments
	Adding and Editing Symbol Descriptions

	SFC Programming
	About Structuring Sequential Function Charts
	About Steps
	Step Parameters
	Using the Step System Symbols

	About Actions
	Action Function
	Action Parameters
	Program Label
	Motion Qualifier
	Action Qualifier
	Time Duration
	Action Name
	Action Manager

	About Transitions
	Transition Parameters
	About RLL Transition Manager

	About Divergences
	About Selected Divergences
	About Simultaneous Divergences

	About Macro Steps
	About Program Flow Control Features
	Control Loops
	Jump and Labels
	Jump/Label Parameters
	Exiting Loop Structures

	How SFCs are Solved
	How Transitions are Evaluated

	Extensions to IEC 1131-3 SFCs (SFC+/M)
	About Creating Sequential Function Charts
	Creating an SFC Program
	Using the SFC Tool and Menu Bar
	Using the Keyboard
	Working with Steps
	Adding a Step
	Edit Step Properties
	Edit Step Commands
	Displaying a Step as an Icon
	Adding an Application Icon Step

	Working with Transitions
	Adding an RLL Transition
	Editing an RLL Transition
	Adding a Boolean Transition
	Editing a Boolean Transition

	Working with Macro Steps
	Adding a Macro Step
	Configuring a Macro Step

	Working with Actions
	Adding an Action
	Configuring an Action
	Editing an Action
	Editing the RLL of an Action
	Editing a Configuration Parameter of an Action

	Adding SFC Program Flow Controls
	Adding a Jump
	Adding a Label
	Adding a Loop
	Moving a Loop
	Adding a Select Divergence
	Adding a Simultaneous Divergence
	Guidelines for Using Simultaneous Divergence

	Documenting an SFC Program
	Adding Program Comments
	Editing Program Comments
	Viewing a Comment

	Structured Text Programming
	Introduction
	Structured Text Editor Overview
	Opening a Structured Text Document
	Editing Structured Text in an SFC Step
	Entering Statements
	Editing Structured Text
	Bookmarks
	Printing
	Saving
	Exiting the Editor

	Language Overview
	Expressions
	Operators
	Pointer Operators
	Indirect Addressing Description
	Pointer Definition
	Structured Text Pointer Usage

	Structured Text Syntax
	Assignment Statement
	BREAK Statement
	CASE Statement
	Comments
	Exit Statement
	IF Statement
	INCLUDE
	FOR Statement
	Function Call
	LABEL
	REPEAT Statement
	SCAN
	WHILE Statement

	Instruction List Programming
	Introduction
	Instruction List Editor Overview
	Opening an Instruction List Document
	Entering Instructions
	Editing Instructions
	Bookmarks
	Printing
	Saving
	Exiting the Editor

	Language Overview
	Instruction List Syntax
	Operators
	Functions and Function Blocks

	Program Examples

	Motion Programming
	Motion Programming Overview
	Motion Card Support
	Hardware Setup of a Motion Control System
	Software Setup of a Motion Control System
	Architecture of a PC Based Motion Control System
	Relative Roles of ASIC-200 and the Motion Card

	Integrated Motion
	Integrated Motion Drivers
	Integrated Motion Features
	About the Motion Control Language
	Adding Motion Control to an SFC
	Software Enhancements to RS-274D
	Using Motion Control Statements
	Using Motion Control Commands
	Motion Control Block Format
	Motion Control Block Examples

	Using G Codes
	G05 Spline Move Notes
	Using M Codes
	Predefined M Codes
	Wait and Continue M Code

	Using the Define M Flag Symbols Feature
	Using the Wait on All M Codes Feature
	Using the Do Not Process M Codes Feature

	Predefined Integrated Motion Control Symbols
	Axis Output Symbols
	Axis Group Output Symbols
	Axis Input Symbols
	Using the .JM and .JP Axis Input Symbols

	Axis Group Input Symbols
	Using the .FIXOFF Axis Input Symbols
	Using the .TOOLRAD Axis Group Input Symbols
	Using the .TOOLOFF Axis Input Symbols
	Using the .TOOLLEN Axis Group Input Symbols

	Configuring Motion Options
	Using the Suspend on Spindle Commands Feature
	Using the Suspend on Tool Changes Feature

	Using Program Flow Control in Motion Applications
	Using the WHILE Command
	WHILE Command Format
	WHILE Command Example

	Using the IF-GOTO Command
	IF-GOTO Example

	Using the G65 Macro Calls with Motion
	Designing the Macro
	Calling the Macro for Execution

	Monitoring and Running Motion Application Programs
	Using the Jog Panel
	Monitoring Axis Plot
	Using the Single Axis Panel
	Using the Multi-Axis Status Panel

	Embedding Structured Text into Motion Control Code
	Guidelines for Embedding Structured Text in a Motion Control Step
	How the Embedded Structured Text Code is Evaluated

	Structured Text Motion Functions
	AXSJOG
	MOVEAXS
	STOPJOG

	Motion Direct
	Motion Direct Overview
	Motion Direct Driver Support
	Motion Direct Features
	Predefined Motion Direct Symbols
	Axis Output Symbols
	Axis Group Input Symbols

	Running Application Programs
	Runtime Subsystems
	Running an Individual Program
	Running the Active Program
	Canceling a Running Program

	Configuring Programs to Execute Automatically
	Starting Programs with a Batch file
	Starting Programs with the Run With Restart Command

	Monitoring Power Flow
	Active RLL Programs
	Active SFC Programs

	Viewing the Status of Application Programs
	Monitoring and Testing Application Programs
	Parsing a Program
	Watching and Forcing Symbols
	Run with Debug
	Single Stepping a Program
	Clearing Fault Mode and Error Conditions

	Program Operation Overview
	Activate Configuration
	First Scan with Active Configuration
	Power-Down Sequence
	Normal Operation
	Initialization of Variables
	Program Execution Order

	Transferring Project to RunTime
	Transferring Project to RunTime Procedure
	Installing to a Different Path
	Other Considerations

	Backup and Restore Project
	Backup and Restore Project Overview
	Project Backup
	Project Restore

	File Types
	File Type Descriptions

	Trace
	Trace Overview
	Logging Symbol Data
	Trace Symbol Data

	On-Line Editing
	On-Line Editing Operation
	Rules
	General
	Symbols
	I/O
	RLL Programs
	SFC Programs
	File Operations
	Structured Text Programs
	Instruction List Programs

	System Options
	System Options Dialog Box
	Customize Text Editor
	
	Editor Options
	Syntax Coloring

	IEC Style Locations

	UPS Configuration
	Configuring the UPS

	Dynamic Data Exchange (DDE)
	About the DDE Interface
	DDE Communication with Microsoft's Excel
	Transferring Data to Excel
	Excel DDE Example

	Transferring Data to the Control System
	Transferring Values to the Control System upon Request

	Network DDE Communication

	OLE for Process Control (OPC)
	OPC Server Overview
	Using OPC

	Import/Export Configuration
	Import/Export Introduction
	Import/Export Support
	Format
	Exporting a CSV File
	Importing a CSV File

	Index
	Online Documents

