
User Manual
 Data-Sharing API

1Data-Sharing API User Manual

< Note >

Preface
Thank you for purchasing the Pro-Designer graphical editing software from Pro-face.
Please note that the PS Series Type P target machines used in this manual’s examples
can be interchanged with the GP-2000 Series target machines.

Please read this manual thoroughly to understand the correct and safe use of this prod-
uct and its features.

1. It is forbidden to copy the contents of this manual, in whole or in part, except for
the user’s personal use, without the express permission of Digital Electornics
Corporation of Japan.

2. The information provided in this manual is subject to change without notice.

3. This manual has been written with care and attention to detail. However, should
you find any errors or ommissions, please contact Digital Electronics Corporation
and inform us of your findings.

4. Please be aware that Digital Electronics Corporation shall not be held liable by the
user for any damages, losses, or third-party claims arising from the uses of this
product.

All company/manufacturer names used in this manual are the registered trademarks of
those companies.

© 2003 Digital Electronics Corporation

Flex Network® is a registered trademark of Digital Electronics Corooration.

Preface

2 Data-Sharing API User Manual

Table of Contents
Preface ... 1

Table of Contents .. 2

Glossary ... 4

CHAPTER 1 OVERVIEW 1–1

1.1 Operation ... 1–1

1.2 Features ... 1–2

CHAPTER 2 SYSTEM DESIGN 2–1

2.1 Operating Environment .. 2–1

2.2 How to Use Data-Sharing Functions .. 2–1

CHAPTER 3 FEATURE DEFINITIONS 3–1

3.1 Data-Sharing Variables .. 3–1

3.2 Server / Client Connections ... 3–1

3.3 Communication Process ... 3–1

CHAPTER 4 PERFORMANCE SPECIFICATIONS 4–1

CHAPTER 5 STEPS: USING DATA-SHARING API 5–1

CHAPTER 6 SET UP PRO-DESIGNER 6–1

6.1 Target DataSharing Property .. 6–1

6.2 Target IPAddress and Port Properties ... 6–1

6.3 Shared Variable Reference Format .. 6–1

6.4 Access Group DataSharing Property ... 6–2

CHAPTER 7 PRO-DESIGNER RUNTIME 7–1

7.1 Pro-Designer Runtime Errors ... 7–1

7.2 Changing IP Address at Runtime ... 7–2

CHAPTER 8 OPERATION 8–1

8.1 Data-Sharing API Setup .. 8–1

8.1.1 Connecting Data-Sharing API and Pro-Designer Runtime 8–1

8.1.2 Data-Sharing API and Protocol Setup .. 8–1

8.2 Starting to use the Data-Sharing API .. 8–2

8.3 Data-Sharing API ... 8–3

Preface

3Data-Sharing API User Manual

8.4 Steps to Access Shared Data .. 8–4

8.4.1 Initialize the Data-Sharing API .. 8–4

8.4.2 Read Data ... 8–4

8.4.3 Write Data ... 8–4

8.5 Examples: Data-Sharing API .. 8–5

8.6 Connection from One Pro-Designer Runtime to Another 8–9

8.7 API Details .. 8–10

CHAPTER 9 SAMPLE CODE 9–1

Preface

4 Data-Sharing API User Manual

Glossary
Client Target Machine (Client): A target machine that can read from and write to the

server’s data-shared variables.

Data-Sharing API Client: A machine that runs a Data-Sharing API application
created using Data-Sharing APIs.

User-Application Client: A target machine that runs a user application created in
Pro-Designer. A user-application client can also act as
a server.

Data-Sharing API: The Data-Sharing Application Programming Interface
(API) provides functions that allow programmers to
create applications that can access or use variables
provided by a Server Target Machine.

Data-Sharing API Application: An application created with Data-Sharing APIs and
that interacts with Pro-Designer Runtime. A Data-
Sharing API Application, unlike a user application,
cannot act as a server.

Data-Sharing Protocol: The language used by target machines—clients and
servers—to communicate with each other.

Pro-Designer Editor: Pro-Designer—the HMI editor software used to
create user applications that run in Pro-Designer
Runtime.

Pro-Designer Runtime: The program that executes the user application, and
runs on a target machine.

Server Target Machine (Server): A target machine that shares its variables with client
target machines.

Target Machines: A platform that Pro-Designer Runtime uses to execute
the application file.

Client Target Machine: A target machine that can read and write to the
server’s data-shared variables.

Server Target Machine: A target machine that shares its variables with client
target machines.

User Application: An application file created in Pro-Designer, which runs
on Pro-Designer Runtime.

Variables: Data placeholders.

1–1Data-Sharing API User Manual

Chapter
1 Overview

1. Operation

2. Features

This chapter provides a general explanation of the role of the Data-Sharing API.

The Data-Sharing API is the instruction set available to the user so they can create
custom applications that can communicate with Pro-Designer user applications. When
the user application is sharing its variables, the Data-Sharing API provides a gateway for
the custom application to read and write to these variables.

Please read this Data-Sharing API User Manual before using the Data-Sharing API
programming set.

1.1 Operation

Use the Data-Sharing API to create an application that can access shared variables on
target machines.

Variables must be shared in the user application for other machines to access the data.
This process, known as data-sharing, enables target machines to share variables with
other target machines, and to share variables with Data-Sharing API applications (see
diagram, below).

When you use data-sharing:

Target machines can share variables with other target machines.

Target machines can share variables with Data-Sharing API applications.

Windows NT,
Windows 2000,
Windows XP
Data-Sharing
API application

PS Series Type G
Data-Sharing API application

PS Series
Type G

Pro-Designer
Runtime

PS Series
Type P

Pro-Designer
Runtime

Windows NT,
Windows 2000,

Windows XP
Pro-Designer

Runtime

Ethernet Network

GP-2000
Series

Pro-Designer
Runtime

1–2 Data-Sharing API User Manual

Chapter 1 – Overview

1.2 Features

Data exchange can occur between a Pro-Designer Runtime target machine and a
Data-Sharing API application.

No additional setup or configuration is required in Pro-Designer to support data-
sharing, which means that:

• No extra hardware, such as a server, is required or affected.

• No setup of PLCs is required.

• Variable data can be transferred at higher speeds and with lower overhead costs.

Because the software does not affect other hardware, the setup takes place in only
one location.

2–1Data-Sharing API User Manual

2.1 Operating Environment
Pro-Designer Runtime uses the Data-Sharing protocol to communicate with user
applications on other target machines. The protocol is designed to run within the Pro-
Designer Runtime communication system as an event-driven protocol. For data-sharing
to occur, the protocol enables other target machines to use the variables shared by a
user application.

In addition to working within the Pro-Designer Runtime system, you can use the Data-
Sharing API to create an application that uses the protocol to access the shared vari-
ables on another target machine.

The following table lists the target machines that support Data-Sharing or the Data-
Sharing API.

Target Machine Data Sharing Data Sharing API

PC/AT (Windows NT, 2000, XP) √ √
PS Series Type G (Windows CE) √ √
PS Series Type P √ X
GP-2000 Series √ X

2.2 How to Use Data-Sharing Functions
You can use data-sharing in the following ways:

Connect to Pro-Designer Runtime from a Data-Sharing API application.

An application created using the Data-Sharing API can access variables shared by a
Pro-Designer Runtime user application.

Connect to Pro-Designer Runtime from Pro-Designer Runtime.

A Pro-Designer Runtime user application can access variables shared by another
Pro-Designer Runtime user application.

Chapter 8 – “Operation”

Chapter
2 System Design

1. Operating Environment

2. How to Use Data-Sharing
Functions

2—2 Data-Sharing API User Manual

Notes

3–1Data-Sharing API User Manual

Chapter
3 Feature Definitions

3.1 Data-Sharing Variables
A server is any target machine that shares variables with other target machines.

On the server, whenever the value of a shared variable changes, the updated value is
sent to all the clients that use that variable.

A client can both read from and write to the a server’s shared variables, and include:

• Target machines that run Pro-Designer Runtime

• Machines (such as PCs) that run Data-Sharing API applications

On the target machine, Pro-Designer user applications can act as server, client, or both.

Data-Sharing API applications can act only as clients.

3.2 Server / Client Connections
A connection can be defined as an access point from a target machine to either a client
or a server. In the client/server communication process, each target machine has a
limited maximum number of connections.

• PC/AT (PL Series): 32

• PS Series Type G: 16

• PS Series Type P: 8

• GP-2000 Series: 8

• Factory Gateway: 4

3.3 Communication Process
The diagram below illustrates the client/server communication process, whereby:

1. The client requests variables from the server.

2. The server responds by sharing the requested variables with the client.

CLIENT
Target Machine

SERVER
Target Machine

Client requests
server's data

Server responds
with data

Client/Server Communication

1. Data-Shared Variables

2. Server / Client Connections

3. Communication Process

Functional Specifications

3–2 Data-Sharing API User Manual

In the following examples, the direction of each arrow represents the flow of shared
data from server to client during the communication process.

Client/Server 1-Way Communication
During one-way communication:

1. The client requests data from the server (thin line).

2. The server responds by sharing the requested data (thick line) with the client.

Client/Server One-Way Communication

SERVER
Target Machine

CLIENT
Target Machine

• When a client initially connects to the server, the server
provides the client with the requested variables.

• Whenever changes occur to a server’s data-shared vari-
ables, the values are updated on all the clients that use
those variables.

Client/Server 2-Way Communication
The client/server two-way communication process is a peer-to-peer relationship be-
tween two target machines.

1

2

Client/Server Two-Way Communication

CLIENT / SERVER
Target Machine A

CLIENT / SERVER
Target Machine B

1. Target Machine A requests data (thin line) from Target Machine B. Target Machine B
responds (thick line) by sharing the requested variable data with Target Machine A.
In this case, Target Machine A is the client and Target Machine B is the server.

2. In the second communication, which can occur simultaneously with the first commu-
nication, the roles are reversed. Target Machine B is now the client and Target
Machine A is the server. Target Machine B requests data (thin line) from Target
Machine A, which responds by sharing the requested variable data with Target
Machine B.

Functional Specifications

3–3Data-Sharing API User Manual

Multi-Client 1-Way Communication
Two types of clients can communicate with the server:

• Target machines running a user application in Pro-Designer Runtime

• Machines running a Data-Sharing API application

CLIENT
(Pro-Designer Runtime)

Target M achine

CLIENT
(Data-Sharing API

application)

 Client writes variables
 to, and reads variables
 from, the server

Multi-Client One-Way Communication

 Client writes variables to,
 and reads variables

 from, the server

SERVER
(Pro-Designer Runtime)

Target M achine

The only difference between the multi-client and client/server one-way communication
processes is that, during multi-client one-way communication, the server target machine
shares its variables with more than one client.

Multi-Target 2-Way Communication Process
Multi-target communication is a simultaneous, two-way communication process, where
the target machines can act as both server and client.

Each target machine can play the role of client and request data from the other target
machines, which play the role of servers. In addition to playing the role of client, each
target machine can also fill the role of server and share its variables with other target
machines.

In this communication process, the target machines operate in a peer-to-peer relation-
ship.

In the following diagram, the first three scenarios show the data-sharing process be-
tween three target machines, as a one-way communication process between server and
client. Then, in the the fourth scenario, during the multi-target two-way communication
process, all target machines communicate simultaneously—not only as servers, but
also as clients—with the other client/server target machines.

Functional Specifications

3–4 Data-Sharing API User Manual

A B

A B

A B

A B

Client/SERVER
Target M achine

1. One-way communication
between Target Machine A
(acting as server) and Target
Machines B and C (both acting
as clients).

2. One-way communication

CLIENT /
SERVER

Target M achine

 between Target Machine B
(acting as server) and Target
Machines A and C (both acting
as clients).

3. One-way communication
between Target Machine C
(acting as server) and Target
Machines B and C (both acting
as clients).

4. Two-way communication
between Target Machines A, B,
and C (each acting as both client
and server).

CLIENT/Server
Target M achine

Client/SERVER
Target M achine

CLIENT/Server
Target M achine

C

Multi-Target Two-Way Communication

C

C

C

CLIENT /
SERVER

Target M achine

CLIENT/Server
Target M achine

CLIENT /
SERVER

Target M achine

CLIENT/Server
Target M achine

CLIENT/Server
Target M achine

Client/SERVER
Target M achine

CLIENT/Server
Target M achine

Functional Specifications

3–5Data-Sharing API User Manual

Multi-Platform, Multi-Target 2-Way Communication
The multi-platform, multi-target two-way communication process refers to two-way
communication between multiple types of target machines.

CLIENT / SERVER
(Pro-Designer Runtime)

PC/AT (PL Series)
target machine

Multi-Platform, Multi-Target Two-Way Communication

Client/server target machines write
variables to and read variables from
other client/server target machines.

CLIENT / SERVER
(Pro-Designer Runtime)

PS Series Type G
target machine

CLIENT / SERVER
(Pro-Designer Runtime)

PS Series Type P
target machine

In the diagram above, three target machines are simultanously sharing and accessing
variables. The significant aspect of this communication process is that the platforms of
each target machine is different. There is a PC/AT (PL Series) target machine, a PS
Series Type G target machine, and a PS Series Type P target machine. Communication
occurs seamlessly between the different platforms.

3–6 Data-Sharing API User Manual

Notes

4–1Data-Sharing API User Manual

Chapter
4 Performance Specifications

A target machine can act as a Data-Sharing server, a client, or both. A machine running
a Data-Sharing API application can act only as a client. Multiple clients can access the
same variables.

Like any communication system, for data-sharing to run efficiently, certain criteria must
be met. One of the criteria is limiting the number of shared variables.

The suggested maximum number of variables depends on:

• The number of variables that a client accesses from all other servers (i.e., clients can
access variables from more than one server)

• The number of variables shared by the server

The suggested maximum number of variables shared by each type of target machine is:

• PC/AT (PL Series): 400

• PS Series Type G: 150

• PS Series Type P: 150

• GP-2000 Series: 150

• Factory Gateway: 75

Suggested Maximum Number of Variables Shared by the Server

In the following example, the variables accessed by each client are not accessed by any
of the other clients. Of its 400 variables, the server shares:

• 175 with the PC/AT client

• 125 with the PS Series Type G client

• 100 with the PS Series Type P client

PS Series Type PPC/AT (PL Series)
CLIENT

175 variables 125 variables
(Suggested Max.: 400 variables)

PS Series Type G
CLIENTCLIENT

100 variables
(Max.: 150 variables) (Max.: 150 variables)

125 100

400 variables

SERVER

PC/AT (PL Series) 175

4–2 Data-Sharing API User Manual

Suggested Maximum Number of Variables Accessible by Each Client

The following diagram is an example of the suggested maximum number of variables that
each client can access from the server.

3.2 – “Communication Process”

In this example, each client accesses the suggested maximum number of variables from
the same server. Some or all of the variables accessed by each client are also being
accessed by the other two clients.

• The PC/AT (PL Series) client accesses 400 variables, 250 of which are accessed by
the other two clients.

• The PS Series Type G client accesses 150 variables, all of which are accessed by the
PC/AT (PL Series) client, and 50 of which are accessed by the PS Series Type P client.

• The PS Series Type P client accesses 150 variables, all of which are accessed by the
PC/AT (PL Series) client, and 50 of which are accessed by the PS Series Type G client.

–

–

–

–

150 variables 150 variables

CLIENT

variables accessed by all three clients (50)

variables accessed by the PC/AT only (150)

400 – total number of variables shared by the server

variables accessed by the PC/AT and the PS-G (100)
variables accessed by the PC/AT and the PS-P (100)

PS Series Type PPS Series Type G

400 variables

CLIENT

PC/AT (PL Series)

400 variables

SERVER
PC/AT (PL Series)

CLIENT

In this example, 400 is the total number of variables that the server shares with the
clients. However, because each client accesses each variable separately, the server’s
processing load is the same as if 700 variables are shared.

The number of variables that any one type of target machine can share is limited not by
design, but by the speed required to process variables.

The suggested maximum number of variables shared between two target machines
depends on:

• The type of target machines

• The number of variables shared by the server

• The number of variables that a client is accessing from other servers

• Processing load on clients and servers

5–1Data-Sharing API User Manual

Chapter
5 Steps: Using Data-Sharing API

Follow the steps in the flowchart to use the Data-Sharing API and access the variables
shared by a Pro-Designer Runtime user application.

4.2 – "Suggested
Maximum Number of
Shared Variables" and
Chapter 6 – "Set up
Pro-Designer"

Pro-Designer Data-Sharing
API Application

8.1 – "Data-Sharing API
Setup."

Right-click the Target node
and click Build.

Set up data-sharing in the user
application.

Select the variables to share
and assign them to the same
access group.

In Pro-Designer, select the
Target node and set its Data-
Sharing property to TRUE.

Set up shared variables.

Build the user application.

Set up the Windows
system path.

6.1 – "Target Data-
Sharing Property"

Use the Data-Sharing API to
create an application in C or
C++, and use the shared user
application variables.

To run the Data-Sharing API
application on Windows NT,
2000, or XP, set the system
path of the Data-Sharing API.

7.1 – "Pro-Designer
Runtime Errors."

Start Pro-Designer Runtime.
Download and start the user
application in Pro-Designer
Runtime.

• Windows CE: "/pro-face/Pro-

Set the system path to the
Data-Sharing API, or put the
Data-Sharing API application
file in the appropriate folder.

Runtime/public/Bin/WinCE/ "

Create a Data-Sharing API
application.

8.2 – "Starting to use the
Data-Sharing API" and
8.3 – "Data-Sharing API ."

Insert the Data-Sharing API
application in the appropriate folder.
• Windows NT, 2000, and XP:

"/pro-face/Pro-Runtime/public/Bin/"

Data-sharing begins.

Run the Data-Sharing API application.

5–2 Data-Sharing API User Manual

Notes

6–1Data-Sharing API User Manual

6.1 Target DataSharing Property

To enable data-sharing on a target machine, in the Pro-Designer editor, select the Target
node, and in the Inspector set the DataSharing property to TRUE.

The DataSharing property changes operations as follows.

DataSharing = TRUE DataSharing = FALSE

Functionality Variables in the user application
are not shared.

Variables in the user application can
be shared with other Targets in the
Pro-Designer project and with Data-
Sharing API applications.

Accessing
variables in other
user applications

Can read to / write from variables in
other target machines.

Can read to / write from variables in
other target machines.

6.2 Target IPAddress and Port Properties

The IPAddress property is available when you click the Target node. Enter the IP
address of the target machine where this user application will be running. The defined IP
address is used by data-sharing to enable other target machines to access this target’s
variables.

When the Target node’s DataSharing property is TRUE, the Port property becomes
available. Port defines the communication port number used by the Data-Sharing
protocol. If you don’t define a port number, 6000 is used.

6.3 Shared Variable Reference Format

To reference a shared variable, enter the target and variable name:

[Target Name].[Variable Name]

For example, Assembly7.OverflowTank refers to the variable OverflowTank in the
target Assembly7.

Script Example

int itemp;
itemp = 123;
Assembly7.OverflowTank.write(itemp);

3. Shared Variable Reference
Format

4. Access Group DataSharing
PropertyChapter

6 Set up Pro-Designer

1. Target DataSharing Property
2. Target IPAddress and Port

Properties

6–2 Data-Sharing API User Manual

Chapter 6 – Pro-Designer Editor

6.4 Access Group DataSharing Property

From the Navigator window’s Project tab, expand Target and I/O Manager, then click
the AccessGroup node. In the Inspector, set the DataSharing property to define
whether the variables assigned to the access group are always monitored (Always), or
are monitored only when being used on the target machine (Dynamic).

Dynamic An access group is set to Dynamic, by default, so that updates will occur:
• when a variable is used in the current panel of either the target machine

or a remote machine

• when a variable’s KeepHistory property is set to True

• when a variable is used in trend graphs

• when a variable alarm is enabled

• when a variable is used in scripts

Pro-face recommends that you use the default setting (Dynamic) in the
DataSharing property.

Always Pro-face recommends that you set only the highest priority variables to
Always. Otherwise, system performance will decline.

• To run both Pro-Designer Runtime and a Data-Sharing
API application on the same machine, start Pro-Designer
Runtime before starting the Data-Sharing API application.

• To start the Data-Sharing API application, insert a short-
cut to Pro-Designer Runtime in the Windows Startup menu,
then create a script in the user application (createProcess).

7–1Data-Sharing API User Manual

Chapter
7 Pro-Designer Runtime

1. Pro-Designer Runtime Errors

2. Changing IP Address at

Runtime

This chapter describes Pro-Designer Runtime features related to shared variables.

7.1 Pro-Designer Runtime Errors

The following table lists error conditions.

Condition Problem Error Confirmation

Pro-Designer
Runtime does not
start up on the server
target machine.

An error message displays on the client target
machine, and only the display area of Value
animations is visible. When the data type for the
Value animation is string, then the display area
and the defined string are visible.
A PLC communication error message displays on
the server target machine. On the client target
machine, an error message displays initially, but
then the user application runs with variable values
of 0. Float and integer variables are 0, and discrete
variables are displayed with the OFF label. When
a value animation displays a string variable, only
the display area is visible.

The cable that
connects the server
target machine and
the PLC has been
disconnected.

A PLC communication error message displays on
the server target machine. On the client target
machine, an error message displays initially, but
processing continues with previously polled
values.

Pro-Designer
Runtime has shut
down on the server
target machine.

On the client target machine, an error message
initially displays, but processing continues with
previously polled values.

The cable that
connects the server
target machine and
the client target
machine is
disconnected.

On the client target machine, an error message
initially displays, but processing continues with
previously polled values.

The cable that
connects the server
target machine and
the PLC was
disconnected during
the startup of Pro-
Designer Runtime.

Server target
machine does
not start up

1

2 No
communication
with server target
machine. i.e.,
unable to read
from or write to
data-shared
variables.

7–2 Data-Sharing API User Manual

7.2 Changing IP Address at Runtime

When using Data-Sharing and you change the network address on a server target
machine, the client target machines cannot find the server anymore. This error occurs
even when you change the IP address using Pro-Designer Runtime’s configuration menu.

When you want to change the IP address of a server target machine, make sure you
also change the user application’s IP address in the Pro-Designer editor. Define the new
IP address in the Target properties and rebuild all the targets that refer to the user
application’s variables. That means that user applications on all the client target machines
must be built and downloaded again so they refer to the server’s new IP address.

Changing the IP address of one target machine may seem
like an innocent change, but if the target machine is acting as
a server, then the change has ramifications on multiple tar-
get machines and the user applications for all of them must
be rebuilt and downloaded.

8–1Data-Sharing API User Manual

Chapter
8 Operation

8.1 Data-Sharing API Setup

8.1.1 Connecting Data-Sharing API and Pro-Designer Runtime

Using the the Data-Sharing API, you can create applications in C or C++ that access
variable or PLC register values in Pro-Designer Runtime. The Data-Sharing API .dll
files are required to run the application.

PC Pro-Designer Runtime

PLC Y

Data-Sharing API Application

Data-Sharing API .dll

Data-Sharing
Protocol

Data-Sharing
Protocol

Network

Link
Object B

Variable
B

8.1.2 Data-Sharing API and Protocol Setup

The following settings are required to use the Data-Sharing API and Data-Sharing
protocol from an application.

System Path
[Windows NT, Windows 2000, or Windows XP]
When using the Data-Sharing API, setting up the system path is required so access is
available to all sub-directories in Pro-Designer Runtime. The system path is used to load
the kernel, configuration, and error system.

1. Data-Sharing API Setup

2. Starting to use the Data-
Sharing API

3. Data-Sharing API

4. Steps to Access Shared Data

5. Examples: Data-Sharing API

6. Connections between Pro-
Designer Runtime

7. API Details

8–2 Data-Sharing API User Manual

Chapter 8 – Operation

To set up the system path (Windows NT, Windows 2000, or Windows XP):

1. Open the Windows Control Panel and click the System icon.

2. In the System Properties dialog box, click the Environment tab, scroll down the
System Variables listbox and click the Path variable.

3. Add the path “installed directory/pro-face/Pro-Runtime/public/bin” to the Value
box and click Set.

This path is also used as a parameter when initializing the Data-Sharing API (i.e.,
InitRuntimeAdapter, InitRuntimeAdapterEx).

[Windows CE]

Place the application file (.exe) created with the Data-Sharing API into “installed
directory/public/bin/WinCE.”

Project Configuration
The second parameter used by the InitRuntimeAdapterEx function defines the project
configuration. The project configuration is a text file which, among other things, identifies
the port number used by the Data-Sharing protocol.

To create the configuration file for the Data-Sharing API application, copy the
Project.cfg (installed directory/Pro-face/Docs/Cfg/Project.cfg) into the directory of the
Data-Sharing API application.

Define two parameters when you start InitRuntimeAdapterEx. In the first parameter,
define the complete path of Pro-Designer Runtime (installed directory/pro-face/Pro-
Runtime/public/bin). In the second parameter, define the complete path of the project
configuration file.

8.2 Starting to use the Data-Sharing API

The Data-Sharing API is provided as a Windows .dll file.

The following is an introduction to use of the API.

8.7 – “API Details”

RuntimeAdapter.h is located in “installed directory/Pro-face/Docs/Include.” This
header file lists all the data types used in the Data-Sharing API.

To use the Data-Sharing API, the user created application must load the
RuntimeAdapter.dll file and get a pointer to the process (LoadLibrary,

8–3Data-Sharing API User Manual

Chapter 8 – Operation

8.3 Data-Sharing API
Name Description

InitRuntimeAdapter Initializes the Data-Sharing APIs. Must be called before
any other Data-Sharing API calls.

InitRuntimeAdapterEx An extended Data-Sharing API initialization function
that enables running a Data-Sharing API application
on the same platform as Pro-Designer Runtime. To
ensure the same Project.cfg file, and thus the same
port number, is not used for both, the second
parameter defines the location of the configuration file
for the Data-Sharing API application.

ConnectToVars Connects the Data-Sharing API application's variable
list with the server target machine's variable list. A
connection handle is returned for each variable that is
successfully connected. Otherwise, an invalid handle
(–1) is returned. The Data-Sharing API application is
responsible for allocating and releasing the buffer for
the list of handles.

DisconnectFromVars Releases all the variable connections from the list of
handles.

WriteDataToVar Uses the defined connection to write a value to the
shared variable. Returns TRUE when the operation is
successful.

RegConnectErrorInformCallback Registers the function called when a variable
connection cannot be established.

RegUpdateDataCallback Registers the function called when the Data-Sharing
API application receives updated data.

ShutdownRuntimeAdapter Ends the Data-Sharing API application.

When defining the path of Project.cfg (for
InitRuntimeAdapterEx), name the complete path, includ-
ing the filename.

When using Pro-Designer Runtime and the Data-Sharing
API application on the same machine, the IP address
passed to the ConnectToVars function should be
“INET:127.0.0.1:xxxx,” where xxxx is the Port number of the
user application on the server target machine. The
127.0.0.1 IP address enables access to Pro-Designer
Runtime without going through the network, even though
the target machine has a different IP address.

8–4 Data-Sharing API User Manual

Chapter 8 – Operation

8.4 Steps to Access Shared Data

8.4.1 Initialize the Data-Sharing API

Use InitRuntimeAdapterEx to initialize the Data-Sharing API and the project configu-
ration file. Before making this call, set up the system path—required for loading the
kernel, configuration, and error system. Once the Data-Sharing API is initialized, use
the RegConnectErrorInformCallback and RegUpdateDataCallback functions in the
Data-Sharing API application to register the functions that handles errors and vari-
able updates.

8.4.2 Read Data

Use RegisterUpdateDataCallback to register the function that handles data updates
with the Data-Sharing API. RegisterUpdateDataCallback is called whenever the
Data-Sharing API receives new data from the server target machine.

ConnectToVars is asynchronous. This function immediately returns an empty variable
handle, which is populated when the server target machine responds with the re-
quested variable data. If an error has occurred, such as the variable is not available,
the Data-Sharing API notifies the application by calling the function registered with
RegConnectErrorInformCallback.

8.4.3 Write Data

The Data-Sharing API application can write data to a shared variable at any time
using the WriteDataTo function.

When data from a variable is no longer required, you can release the connection to
the variable in the Data-Sharing API application by calling DisconnectFromVars. Or,
to shutdown the Data-Sharing API altogether, call ShutdownRuntimeAdapter.

8–5Data-Sharing API User Manual

Chapter 8 – Operation

InitRuntimeAdapterEx(runtime directory, configuration file)
Called once per process, initializes the Data-Sharing API.

Runtime directory is the root directory of Pro-Designer Runtime (e.g. installation
directory\pro-face\Pro-Runtime\public).

The configuration file is the “Project.cfg” file used to configure the Data-Sharing API.

RegUpdateDataCallback(UpdateDataCallback)
In this example, UpdateDataCallback is the function defined by the user to handle
data updates from the Data-Sharing API.

When connecting, this function is called once for each variable so its value is initial-
ized.

ConnectToVars()
The Data-Sharing API application connects to all the variables in the Pro-Designer
Runtime user application, and uses VAR_READ_ONLY_ATTRIB

(RuntimeAdapter.h).

When the connection is established, UpdateDataCallback is called once for each
variable, to initialize the variable values in the connection list.

ConnectToVars returns immediately, and when there is an error, such as the defined
variable name does not exist, an error is passed to the user defined function
ErrorInformCallback.

Data-Sharing
API

Data-Sharing API

Application

Data-Sharing
Protocol

Pro-Designer
Runtime

Panel 1

Panel 2

INT1

INT2

INT3

INT4

INT5

8.5 Examples: Data-Sharing API

The following examples show how to use the Data-Sharing API in specific situations.

Example 1 – Data-Sharing API Application Reads Data from Pro-Designer
Runtime

8–6 Data-Sharing API User Manual

Chapter 8 – Operation

InitRuntimeAdapterEx(runtime directory, configuration file)
Called once per process, initializes the Data-Sharing API.

Runtime directory is the root directory of Pro-Designer Runtime (e.g. installation
directory\pro-face\Pro-Runtime\public).

The configuration file is the “Project.cfg” file used to configure the Data-Sharing API.

ConnectToVars()
The Data-Sharing API application connects to all the variables in the Pro-Designer
Runtime user application, and uses VAR_READ_ONLY_ATTRIB

(RuntimeAdapter.h).

ConnectToVars returns immediately, and when there is an error, such as the defined
variable name does not exist, an error is passed to the user defined function
ErrorInformCallback.

RegConnectErrorInformCallback(ErrorInformCallback)
ErrorInformCallback, a function defined in the Data-Sharing API application, is called
by the Data-Sharing API when it could not connect to a Pro-Designer variable.

DisconnectFromVars()
This function breaks connections to the specified variables.

ShutdownRuntimeAdapter()
This function is called once per process, to end the Data-Sharing API when exiting
the process.

Example 2 – Data-Sharing API Application Writes Data to Pro-Designer
Runtime

Data-Sharing

API

Data-Sharing API
Application

Data-Sharing

Protocol Pro-Designer
Runtime

Panel 1

Panel 2

INT1

INT2

INT3

INT4

INT5

8–7Data-Sharing API User Manual

Chapter 8 – Operation

RegConnectErrorInformCallback(ErrorInformCallback)
ErrorInformCallback, a function defined in the Data-Sharing application, is called by
the Data-Sharing API when it could not connect to a Pro-Designer variable.

WriteDataToVar()
The Data-Sharing API application uses this function to write values to variables in
Pro-Designer Runtime. Identify the variable by using the handle returned by the
ConnectToVars function. You can write only to one variable at a time. Call this
function multiple times to write to more than one variable.

DisconnectFromVars()
This function breaks connections to the specified variables.

ShutdownRuntimeAdapter()
This function is called once per process, to end the Data-Sharing API when exiting
the process.

Example 3 – Data-Sharing API Application Reads / Writes Data to
Pro-Designer Runtime

InitRuntimeAdapterEx(runtime directory, configuration file)
Called once per process, initializes the Data-Sharing API.

Runtime directory is the root directory of Pro-Designer Runtime (e.g. installation
directory\pro-face\Pro-Runtime\public).

The configuration file is the “Project.cfg” file used to configure the Data-Sharing API.

Data-Sharing
API

Data-Sharing API

Application

Data-Sharing

Protocol Pro-Designer

Runtime

Panel 1

Panel 2

INT1

INT2

INT3

INT4

INT5

8–8 Data-Sharing API User Manual

Chapter 8 – Operation

RegUpdateDataCallback(UpdateDataCallback)
In this example, UpdateDataCallback is the function defined by the user to handle
data updates from the Data-Sharing API.

When connecting the variables, this function is called once for each variable so their
values are initialized.

ConnectToVars()

The Data-Sharing API application connects to all the variables in the Pro-Designer
Runtime user application, and uses VAR_READ_ONLY_ATTRIB

(RuntimeAdapter.h).

When the connection is established, UpdateDataCallback is called once for each
variable, to initialize the variable values in the connection list.

ConnectToVars returns immediately, and when there is an error, such as the defined
variable name does not exist, an error is passed to the user defined function
ErrorInformCallback.

RegConnectErrorInformCallback(ErrorInformCallback)
ErrorInformCallback is the user created function called by the Data-Sharing API
when a variable is not found on the Pro-Designer Runtime.

WriteDataToVar()

The Data-Sharing API application calls this function to write values to a variable in
the Pro-Designer Runtime user application. Identify the variable by using the handle
returned by the ConnectToVars function. You can write only to one variable at a time.
Call this function multiple times to write more than one variable.

DisconnectFromVars()

This function breaks connections to the specified variables.

ShutdownRuntimeAdapter()

This function is called once per process, to end the Data-Sharing API when exiting
the process.

8–9Data-Sharing API User Manual

Chapter 8 – Operation

Var. A Link

Sink A

Link
Source A

Link

Source B

Link

Sink B
Var. B

Pro-Designer Runtime 1 Pro-Designer Runtime 2

Data-Sharing

Protocol

Protocol

Network

Data-Sharing

Protocol

PLC YPLC X

PLC X Protocol PLC X Protocol

8.6 Connection from One Pro-Designer

Runtime to Another

The following diagram shows how Pro-Designer Runtime connects to another instance
of Pro-Designer Runtime.

All the necessary Java, configuration, and communication data files are generated by the
Pro-Designer editor, so no extra setup is required by the user.

In Pro-Designer Runtime 1, Variable A reads and writes data to and from PLC X.

In Pro-Designer Runtime 2, Variable B reads and writes data to and from PLC Y.

In addition, Variable A and Variable B share their data with the other runtime.

8–10 Data-Sharing API User Manual

Chapter 8 – Operation

8.7 API Details

Details of RuntimeAdapter.h

Some of the data types used by the functions listed in this section are defined in
RuntimeAdapter.h (see table, below).

Type Value Constant

unsigned char UNIT8;
unsigned short UNIT16;
unsigned int UNIT32;
signed char INT8;
signed short INT16;
signed int INT32;

Write Only 1 VAR_WRITE_ONLY_ATTRIB
Read Only 2 VAR_READ_ONLY_ATTRIB
Read Write 3 VAR_READ_WRITE_ATTRIB

Integer 0 VAR_TYPE_INT
Float 1 VAR_TYPE_FLOAT
String 2 VAR_TYPE_STRING
Discrete 3 VAR_TYPE_DISCRETE

Variable Data Type

Attribute

Requested Data Type

Name : InitRuntimeAdapter
bool InitRuntimeAdapter
(

UNICHAR* SystemPath
)

Parameters : UNICHAR* SystemPath

Path of Pro-Designer Runtime system. NT or 2000 path is “installation
directory/pro-face/pro-runtime/public/bin,” Win CE path is “installa-
tion directory/public/bin/WinCE.”

Return : bool

Comments : Initializes the Data-Sharing API with the Pro-Designer Runtime system.
This call must be made prior to any other calls in the Data-Sharing API
application. After successfully initializing the API with the runtime sys-
tem, returns TRUE.

8–11Data-Sharing API User Manual

Chapter 8 – Operation

Name : InitRuntimeAdapterEx
bool InitRuntimeAdapter
(

UNICHAR* SystemPath,
UNICHAR* ConfigFilename

)

Parameters : UNICHAR* SystemPath

Path of Pro-Designer Runtime system. NT or 2000 path is “installation
directory/pro-face/pro-runtime/public/bin,” Win CE path is “installa-
tion directory/public/bin/WinCE.”

UNICHAR* ConfigFilename

Entire path of configuration file, including the filename

Return : bool

Comments : Expands on InitRuntimeAdapter. In addition to initializing the Data-
Sharing API with the Pro-Designer Runtime system, this method also
identifies the configuration file.

This call must be made prior to any other calls in the Data-Sharing API
application. After successfully initializing the API with the runtime system
and pointing to the configuration file, returns TRUE.

Name : ConnectToVars
bool InitRuntimeAdapter
(

UNICHAR* ServerAddr,
UINT16 NumOfVars,
UNICHAR* VarNameList[],
BYTE* DataTypeList,
BYTE* DirAtribList,
UINT32* AssignAppHandleList,
CONNECTHANDLES* RetAdapterHandleList

)

Parameters : UNICHAR* ServerAddr

Identifies the IP address and Port number of the server target machine
the Data-Sharing API application is trying to access.

UNIT16 NumOfTags

 Defines the number of variables to connect.

UNICHAR* RemoteVariableNameList[]

Lists the names of the variables to connect in the server target machine

BYTE* DataTypeList

Lists the data types of the variables requested (Integer, Discrete, Float,
or String)

BYTE* DirAttribList

Lists the variable read/write control (R, W, R/W)

8–12 Data-Sharing API User Manual

Chapter 8 – Operation

UINT32* AssignAppHandleList

Lists the handles for each variable provided by the Data-Sharing API
application. When a variable value is updated, it uses the variable handle
defined here.

CONNECTHANDLE* RetAdapterHandleList

Lists the handles for each variable returned by the Data-Sharing API.
The corresponding variable handle is used when the Data-Sharing API
application makes a read or write request to the shared variable.

Return : bool

Comments : Uses the Data-Sharing API to make connections to the defined list of
variables in the server target machine. A connection handle is returned
for each variable that successfully connects. Otherwise, an invalid handle
(-1) is returned. The caller is responsible for allocating and releasing the
buffer for the connection handle list.

Name : DisconnectFromVars
bool DisconnectFromVars
(
UINT16 NumOfHandles,
CONNECTHANDLE* AppHandleList
)

Parameters : UINT16 NumOfHandles

Defines the number of connection handles to remove

CONNECTHANDLE* AdapterHandleList

The handle list returned when ConnectToVars is used to establish
variable connections.

Return : bool

Comments : Removes all the variable connections in this list of handles.

8–13Data-Sharing API User Manual

Chapter 8 – Operation

Name : WriteDataToVar
bool WriteDataToVar
(

CONNECTHANDLE AdapterHandle,
UINT16 DataLen,
void* Data

)

Parameters : CONNECTHANDLE AdapterHandle

Defines the variable data for the write operation by passing the corre-
sponding connection handle.

UINT16 DataLen

Defines the length of the data in bytes. Discretes are 1 byte, integers and
floats are 4 bytes, and strings can be any number of bytes.

void* Data

The actual data written to the variable on the server target machine.

Return : bool

Comments : Uses the variable connection handle to write data to a shared variable
on the server target machine. After successfully writing the data to the
variable, returns TRUE; otherwise, returns FALSE.

Writing a value that is the same as the one currently set to a variable will
not cause a data change operation in Pro-Designer Runtime.

Name : RegConnectErrorInformCallback
void RegConnectErrorInformCallback
(
bool (

CONNECT_STATUS ConnectionStatus,
UINT16 NumOfHandles,
UINT32*AppHandleList)

)

Parameters : bool (* ErrorInformCallback)

User created method that’s called when there is an error. Use the
defined parameters and return type for ErrorInformCallback.
CONNECT_STATUS ConnectionStatus

Shows the operation or error status of the asynchronous connection.

UINT16 NumOfHandles

When the ConnectionStatus is an error, this parameter defines the
number of handles in AppHandleList.

UINT32* AppHandleList

When the ConnectionStatus is an error, this parameter defines the list of
application handles with errors.

Return : void

8–14 Data-Sharing API User Manual

Chapter 8 – Operation

Comments : Use this function to create the function (ErrorInformCallback) that will
handle error conditions when attempting to make variable connections.
The function must use the defined parameters and return a bool:

CONNECT_STATUS ConnectionStatus

UINT16 NumOfHandles
UINT32*AppHandleList

The user defined function shows the status of connections:

• RTA_CONNECTING

• RTA_CONNECTED

• RTA_TAGNAME_ERROR

• RTA_TOO_MANY_TAGS_ERROR

• RTA_VERSION_ERROR

When establishing a connection or when a connection is cut
(RTA_CONNECTING, RTA_CONNECTED), the Data-Sharing API
populates the AppHandleList with pointers to the IP address and port
number (UNICODE text strings) of the target machine that was con-
nected or disconnected.

When you try to access more than the number of connections the server
target machine can support, ConnectionStatus is
RTA_TOO_MANY_TAGS_ERROR. This error can also result when
multiple client target machines access variables on the server.

When you try to access a variable that isn’t available on the server
target machine, ConnectionStatus is RTA_TAGNAME_ERROR.

When you try to access a server target machine that is using a different
version of the Data-Sharing protocol, then ConnectionStatus is
RTA_VERSION_ERROR.

When there is a connection error, every heartbeat ConnectToVars

attempts to connect to the server target machine, and
RTA_CONNECTING is passed to this error function.

When the connection is successful with all the defined variables,
ConnectionStatus is RTA_CONNECTED.

When the connection is successful with a portion of the variables, then
ConnectionStatus is RTA_TAGNAME_ERROR and AppHandleList

contains the variable connections that failed.

When there is a problem with the connection, ErrorInformCallback

returns RTA_CONNECTING; when the connection is successful,
returns RTA_CONNECTED.

8–15Data-Sharing API User Manual

Chapter 8 – Operation

Name : RegUpdateDataCallback
void RegUpdateDataCallback
(
bool (

UINT32 AppHandle,
UINT16 DataByteLen,
void* Data)

)

Parameters : bool (* UpdateDataCallback)

User created method that’s called by the Data-Sharing API when it
receives updated variable data from the server target machine. Use the
defined parameters and return type.

UINT32AppHandle

A valid variable handle from the list of handles.

UINT16 DataByteLen

Total byte length of the data.

void* Data

Data that is updated by UpdateDataCallback.

Return : void

Comments : Use this function to create the function (UpdateDataCallback) that will
handle variable updates from the Data-Sharing API. The function must
use the defined parameters:
UINT32 AppHandle
UINT16 DataByteLen
void* Data

The function must return a bool value.

Name : ShutdownRuntimeAdapter
bool ShutdownRuntimeAdapter ()

Parameters : void

Return : bool

Comments : Returns TRUE when the Data-Sharing API is shut down successfully.

8–16 Data-Sharing API User Manual

Notes

9–1Data-Sharing API User Manual

Chapter
9 Sample Code

Code samples for a working Data-Sharing API application are located in:

installed directory/pro-face/docs/sample

Files in the folder are as follows.

• Dsapi/main.cpp Sample code

• Dsapi/Dsapi.dsw Project work space

• Dsapi/Dsapi.dsp Project file

• Dsapi/RuntimeAdapter.h Header file

• Dsapi/Debug Stores the debug application

• Dsapi/Release Stores the production-ready application

9–2 Data-Sharing API User Manual

Notes

	Data-Sharing API User Manual
	Preface
	Table of Contents
	Glossary

	Chapter 1 Overview
	1.1 Operation
	1.2 Features

	Chapter 2 System Design
	2.1 Operating Environment
	2.2 How to Use Data-Sharing Functions

	Chapter 3 Feature Definitions
	3.1 Data-Sharing Variables
	3.2 Server / Client Connections
	3.3 Communication Process

	Chapter 4 Performance Specifications
	Chapter 5 Steps: Using Data-Sharing API
	Chapter 6 Set up Pro-Designer
	6.1 Target DataSharing Property
	6.2 Target IPAddress and Port Properties
	6.3 Shared Variable Reference Format
	6.4 Access Group DataSharing Property

	Chapter 7 Pro-Designer Runtime
	7.1 Pro-Designer Runtime Errors
	7.2 Changing IP Address at Runtime

	Chapter 8 Operation
	8.1 Data-Sharing API Setup
	8.1.1 Connecting Data-Sharing API and Pro-Designer Runtime
	8.1.2 Data-Sharing API and Protocol Setup

	8.2 Starting to use the Data-Sharing API
	8.3 Data-Sharing API
	8.4 Steps to Access Shared Data
	8.4.1 Initialize the Data-Sharing API
	8.4.2 Read Data
	8.4.3 Write Data

	8.5 Examples: Data-Sharing API
	8.6 Connection from One Pro-Designer Runtime to Another
	8.7 API Details

	Chapter 9 Sample Code

