EIO0000000067.14

SoMachine
Programming Guide

06/2017

www.schneider-electric.com

Schneider

The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. If you
have any suggestions for improvements or amendments or have found errors in this publication,
please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of
this document on any medium whatsoever without permission of Schneider Electric, given in
writing. You also agree not to establish any hypertext links to this document or its content.
Schneider Electric does not grant any right or license for the personal and noncommercial use of
the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at
your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and
using this product. For reasons of safety and to help ensure compliance with documented system
data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant
instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may
result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.
© 2017 Schneider Electric. All Rights Reserved.

EI00000000067 06/2017

Table of Contents

Safety Infformation. 17
Aboutthe Book........... 19
Partl Introduction................. 25
Chapter 1 General Introduction to the SoMachine Logic Builder . . 27
What is the SoMachine Logic Builder? 28
Tasks Performed by the SoMachine Logic Builder 29
Chapter 2 SoMachine Logic Builder User Interface 31
Elements of the SoMachine Logic Builder Screen 32
Multi-Tabbed Navigators 38
Multi-Tabbed Catalog View 44
Customizing the User Interface 45
User Interface in OnlineMode. 50
Menusand Commands it 51
Chapter3 BasicConcepts............., 53
Introduction and Basic Concepts., 53
Partll Configuration 55
Chapter 4 InstallingDevices 57
Integration of Sercos Devices from Third-Party Vendors 57
Chapter 5 ManagingDevices, 59
5.1 Adding Devicesby DragandDrop 60
Adding Devices by Dragand Drop 60
5.2 Adding Devices by Context Menu or Plus Button 63
Addinga Controller 64
Adding Expansion Devices i 65
Adding Communication Managers 66
Adding Devices to a Communication Manager. 68
Adding Devices from Template 70
53 UpdatingDevices 71
Updating Devicest 71
5.4 ConvertingDevices 73
Converting Devices e 73
5.5 Converting Projects 77
Converting SoMachine Basic and Twido Projects. 77

EIO0000000067 06/2017 3

Chapter 6 Common Device EditorDialogs 95

6.1 Device Configuration 96
General Information About Device Editors. 97
Controller Selection 98
Communication Settings i 113
Configuration 116
Applications e 118
Files . o 119
0o 121
PLC Settings 123
Users and Groupso v ittt e 125
Task Deployment. 137
Status. . . 138
Information. 138

6.2 1/OMapPINg . ..ot 139
O Mapping . . oot 140
Working with the 1/0O Mapping Dialog. 143
I/O MappinginOnlineMode, 146
Implicit Variables for Forcing I/Os 146

Partlll Program.......... it 149
Chapter 7 Program Componentsc.u.. 151

7.1 Program Organization Unit (POU) 152
POU . . 1563
Addingand Calling POUs 154
Program 158
Function 160
Method 163
Property 166
Interface 168
Interface Property. 172
ACHON . . . 175
External Function, Function Block, Method 177
POUs for Implicit Checks 178

7.2 FunctionBlock 179
General Information. 180
Function Block Instance. 183
Callinga FunctionBlock 184
Extension of a FunctionBlock 186

EI00000000067 06/2017

7.3

7.4

Chapter 8

Chapter 9

Part IV

9.1

9.2

9.3

9.4

Chapter 10

10.1

Implementing Interfaces
Method Invocation.
SUPER PoINter e
THI S Pointer e
Application Objects
Data Type Unit (DUT)o e
Global Variable List- GVL.
Global Network Variable List-GNVL
Persistent Variables.
External File.
TextList
Image Pool
Application.
Application.

Task Configuration

Task Configuration
Adding Tasks. oot

Managing Applications .

General Information.
Introduction
Building and Downloading Applications.
Building Applications
LOgin .o
Build Process at Changed Applications.

Downloading an Application
Running Applications.
Running Applications.
Maintaining Applications . . .
Monitoring
Debugging..............

LogicEditors.

FBD/LD/IL Editor.

Information on the FBD/LD/IL Editor

FBD/LD/IL Editor

Function Block Diagram (FBD) Language.
Ladder Diagram (LD) Language oiiienne....

Instruction List (IL) Language
Modifiers and Operators in IL

189
191
193
195
198
199
201
203
211
212
214
221
223
223
225
226
226
227
228
228
230
231
232
234
235
245
245
246
247
248
251
253
254
255
256
257
258
260

EI00000000067 06/2017

Workinginthe FBDand LD Editor. 263

Working inthe IL Editor 268
Cursor Positions in FBD, LD, and IL 274
FBD/LD/ILMENU . . .o ittt e e e e e e e 278
FBD/LD/IL Editorin OnlineMode. 279

10.2 FBD/LD/ILElements i 285
FBD/LD/IL TOOIDOX. . . v v vttt e e e e e e e e 286
Network in FBD/LD/IL e 288
Assignmentin FBD/LD/IL 291
Jumpin FBD/LD/IL. . ..o 291

Label in FBD/LD/IL.o e 292
Boxesin FBD/LD/IL 292
RETURN Instruction in FBD/LD/IL 293
Branch / Hanging Coil in FBD/LD/IL., 294
Parallel Branch. 297
Set/Resetin FBD/LD/ILo 299
Set/Reset Coil 300

10.3 LDElements. 301
Contact. 302

Coil. . 303
Chapter 11 Continuous Function Chart (CFC) Editor 305
Continuous Function Chart (CFC) Language. 306

CRC EdItor. 307
Cursor Positions in CFC. 309
CFCElements / TooIBOXo 311
Workinginthe CFCEditor. 317

CFC EditorinOnlineMode 320

CFC Editor Page-Oriented. 322
Chapter 12 Sequential Function Chart (SFC) Editor. 325
SFC EIitor 326

SFC - Sequential Function Chart Language 327
Cursor Positions in SFC. 328
Workinginthe SFCEditor 329

SFC Element Properties i 331

SFC Elements / TOOIBOXot 333

EI00000000067 06/2017

Qualifier for Actions in SFC 344
Implicit Variables-SFCFlags 345
Sequence of ProcessinginSFC 350
SFC EditorinOnlineMode i, 352
Chapter 13 Structured Text (ST) Editor. 353
13.1 Informationonthe STEditor 354
ST EdIOr . .o 355
STEditorinOnlineMode, 356
13.2 Structured Text ST / Extended Structured Text (ExST) Language . . . 360
Structured Text ST / Extended Structured Text ExST 361
EXPressions.o 362
InStructions 364
PartV ObjectEditors................. ... i, 373
Chapter 14 DeclarationEditors 375
Textual Declaration Editor. L. 376
Tabular Declaration Editor. 376
Declaration Editor in Online Mode 380
Chapter 15 Device Type Manager (DTM) Editor. 381
DTMEditor 381
Chapter 16 Data Unit Type (DUT) Editor. 383
Data Unit Type Editor 383
Chapter 17 Global Variables List (GVL) Editor 385
GVL EdItOr. . ..o 385
Chapter 18 Network Variables List (NVL) Editor. 387
18.1 Informationonthe NVL Editor. 388
Network Variables List Editor 388
18.2 General Information on Network Variables 389
Introduction to Network Variables List (NVL). 390
Configuring the Network Variables Exchange. 393
Network Variables List (NVL)Rules 398
Operating State of the Sender and the Receiver. 400
Example. e 401
Compatibility 407

EIO0000000067 06/2017 7

Chapter 19

Chapter 20

Chapter 21

Part VI
Chapter 22

Chapter 23

Chapter 24
24.1

242

243

24.4

Chapter 25

TaskEditor.ci i e e 411

Information on the Task Configuration. 412
Properties Tab 413
Monitor Tab 414
Configuration of a Specific Task 416
Task ProcessinginOnlineMode 419
Watch ListEditor, 421
Watch View / Watch List Editor 422
CreatingaWatch List. 423
Watch ListinOnlineMode 424
Tools Within Logic Editors 427
Function and Function Block Finder. 428
Input Assistant 431
TOOIS ...t e 433
Dataloggingciiiiiiiniiiiiannn.. 435
Introductionto Datalogging i, 435
RecipeManager. 437
Recipe Manager 438
Recipe Definition 441
Reci peMan Commandst 445
TraceEditor i e 453
Trace Object. i 454
Trace BasiCs 455
Creatinga Trace Object. 457
Trace Configuration i 460
Variable Settings 461
Record Settings 464
Advanced Trace Settings. 468
Edit Appearance. 469
Appearance ofthe Y-axis. i 473
Trace Editorin OnlineMode 474
Trace EditorinOnlineMode 474
Keyboard Operations for Trace Diagrams 475
Keyboard Shortcuts 475
Symbol Configuration Editor. 477
Symbol Configuration Editor 478
Symbol Configuration 481
Adding a Symbol Configuration 482

EI00000000067 06/2017

Chapter 26

Part VI
Chapter 27

271

27.2

27.3

274

275

SoMachine Controller - HMI Data Exchange

SoMachine Single Variable Definition
Publishing Variables in the ControllerPart
Selecting Variables in the HMI Part. .
Publishing Variables in the HMI Part.

Parametrization of the Physical Media

Communication Performance on Controller - HMI Data Exchange. . .

Programming Reference

Variables Declaration

Declaration

General Information.
Recommendations on the Naming of Identifiers
Variables Initialization

Declaration

ShortcutMode
AT Declaration.
Keywords.
Variable Types.
Variable Types.

Attribute Keywords for Variable Types

Variables Configuration - VAR CONFIG
Method Types
FB_init,FB_reinit Methods. ...
FB_exit Method................
Pragma Instructions.
Pragma Instructions.
Message Pragmas.
Conditional Pragmas
Attribute Pragmas
Attribute Pragmas
User-Defined Attributes

Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute

call _after_init...
di spl aynode
ExpandFul ly.......
global _init_slot..
hide
hide_al | _| ocal s...
initialize_on_call

485
486
490
492
493
495
496
501
503
504
505
508
512
513
514
515
516
520
521
524
528
530
531
534
535
536
538
539
548
549
550
552
553
554
555
556
557
558

EI00000000067 06/2017

27.6

Chapter 28
28.1

28.2

28.3

284

Attribute init_namespace.............
Attribute init_On_Onlchange..........................
Attribute instance-path............
Attribute linkalways
Attribute monitoring
Attribute namespacecoiiiiiii e
Attribute no_check
Attribute No_COpYy ...
Attribute no-exit
Attribute no_init
Attribute no_virtual _actions.........................
Attribute obsolete
Attribute pack_nmode
Attribute qualified only.........
Attribute reflection
Attribute subsequent
Attribute symbol
Attribute warning disable.............
The Smart Coding Functionality.
SmartCoding.
Data Types. .. oo i e e
General Information.
Data Types. . . .o
Standard Data Types.t
Standard Data Types
ExtensionstoIEC Standard.

References.
Pointers
User-Defined Data Types.ot
Defined Data Types oot

559
559
560
561
562
566
567
567
568
569
570
573
574
575
576
576
577
579
580
580
583
584
584
585
585
588
589
589
590
590
591
593
596
597
598
601
603
605

10

EI00000000067 06/2017

Chapter 29 Programming Guidelines 609
29.1 Naming Conventions it 610
General Information. 610

29.2 PrefiXes e 612
Prefix Parts 613
Orderof Prefixes e 614
Scope Prefix 615

Data Type Prefix 616
Property Prefix. 618

POU Prefix.o 619
Namespace Prefix. 620
Chapter30 Operators 621
30.1 ArithmeticOperators i i 622
ADD . 623

MU 625

SUB .. 627

DLV 628

MOD . . 631

MOVE . .o 632

Sl ZECF . o 633

30.2 BitstringOperators. e 634
AND . 635

OR L 636

XOR . 637

NOT . 638

30.3 Bit-ShiftOperators. e 639
SHL . 640

SHR . 642

ROL . 643

ROR .. 645

30.4 Selection Operators. 647
SEL . 648

X L 649

M N 650

LM T e 651

MUX 652
EI00000000067 06/2017 11

30.5

30.6

30.7

30.8

30.9

Comparison Operators.t e 653

1 654
P 655
LE. o 656
GE . 657
EQ. . 658
NE. . 659
Address Operators. i 660
ADR. . 661
ContentOperator 662
Bl TADR ..o 663
Calling Operator. 664
CAL . . 664
Type Conversion Operators. 665
Type Conversion Functions 666
BOOL_TO CONVErSIONSottt e e e s 667
TO_BOOL CoNnversions oot 669
Conversion Between Integral Number Types 671
REAL_TO /LREAL_TO CoNnversions.uu i 672
TIME_TO/TIME_OF_DAY CoNVversionSo v v 674
DATE_TO/DT_TO CONVErsSioNSo oot i e i e s 676
STRING_TO Conversionsc.uiiiiii .. 678
TRUNC . .t 680
TRUNC INT . . e e 681
ANY_. .. _TOCONVEISIONS. . . .ottt et e e 682
Numeric Functions. 683
ABS. . 684
SORT . o 685
LN 686
LOG. . ot 687
EXP. . 688
SEN. 689
GO, 690
TAN. 691
ASE N . 692
ACCS. . . 693
AT AN, . 694
EXPT . o 695

12

EI00000000067 06/2017

30.10 IEC Extending Operators.o ittt 696

IEC Extending Operators.t 697

L DELETE . . e 698

_ FSVALIDREF. . . 701

U NEW. 702

__ QUERYINTERFACE e e e 705

__ QUERYPO NTER . .. e 707

Scope Operatorsot 709

30.11 Initialization Operator. 711
INILOperator. e e 711
Chapter31 Operands i, 713
311 Constants e 714
BOOL Constantst e 715

TIME Constants. i 715
DATEConstants i 717
DATE_AND TIME Constants 718
TIME_OF_DAY Constants.c .. 719
Number Constants. 720
REAL/LREALConstants i 721
STRING Constants e 722

Typed Constants / Typed Literals 723

31.2 Variables 724
Variables 725
Addressing Bitsin Variables L. 726

31.3 AdAresses 728
AdArESS . .o 728

31.4 FUNCHONS. 731
Functions. 731

Part VIl SoMachine Templates 733
Chapter 32 General Information about SoMachine Templates. 735
32.1 SoMachine Templates. 736
General Information About SoMachine Templates 737
Administration of SoMachine Templates. 740

EI00000000067 06/2017 13

Chapter 33
33.1

Chapter 34
34.1

Part IX

Chapter 35
35.1

Chapter 36
36.1

36.2

Managing Device Templates
Managing Device Templates

Facts of Device Templates.
Adding Devices from Template

Creating a Device Template on the Basis of Field Devices or 1/0
Modules e
Visualizations Suitable for Creating Device Templates

Further Information on Integrating Control Logic into Device Templates
Steps to Create a Device Template
Managing Function Templates.
Managing Function Templates.
Facts of Function Templates
Adding Functions from Template.
Application Functions as Basis for Function Templates.
Steps to Create a Function Template

Troubleshootingand FAQ
Generic - Troubleshootingand FAQ.
Frequently Asked Questions
How Can | Enable and Configure Analog Inputs on CANopen?
Why is SoMachine Startup Performance Sometimes Slower?
How Can | Manage Shortcuts and Menus?

How Can | Increase the Memory Limit Available for SoMachine on 32-
Bit Operating Systems?
How Can | Reduce the Memory Consumption of SoMachine?

What Can | Do in Case of Issues with Modbus |OScanner on Serial
LN o
What Can | Do If My Network Variables List (NVL) Communication Has
Been Suspended?
What Can | Do If a Multiple Download is Unsuccessful on an HMI
Controller?
Accessing Controllers - Troubleshooting and FAQ
Troubleshooting: Accessing New Controllers
Accessing New Controllers
Connecting via IP Address and Address Information.
FAQ - What Can | Do in Case of Connection Problems With the
Controller? e
FAQ - Why is a Connection to the Controller not Possible?
FAQ - Why has the Communication Between PC and Controller been
Interrupted?

749
750
751
752

755
756
757
759
763
764
765
766
773
775
781
783
784
785
787
788

790
791
791

792
793

793
795
796
797
799

801
802

805

14

EI00000000067 06/2017

Appendices 807

Appendix A Network Communication. 809
Network Topologyo 810
Addressingand Routing 811
Structure of Addresses 813

Appendix B Usage ofthe OPC Server3 817
General Information. 818
Declaring a Variable to be Used WithOPC. 820
OPC Server Configuration. 823
Usage of the CoDeSys OPC Serverot 830

Appendix C ScriptLanguage i 831

C.1 GeneralInformation. 832
Introduction 833
Executing Scripts. 836
BestPractices 838
Reading .NET API Documentations 839
Entry Points 840

C.2 Schneider Electric Script Engine Examples 842
Device Parameters i 843
CompilerVersion. e 845
Visualization Profile.. 846
Update Libraries 847
Clean and Build Application. 848
Communication Settings 849
Reset DiagnosticMessages, 849
Rebootthe Controller i 850
ConvertDevice 851
Comparing Projects. 854
Advanced Library Management Functions 855
Accessing POUS 856

C.3 CoDeSys Script Engine Examples 857
Project . . . 858
Online Application 863
Objects ... 866
Devices 867
System /User Interface (Ul) i, 869

EI00000000067 06/2017 15

Appendix D

Appendix E

Glossary
Index

ReadingValues 871

Reading Values From Recipe and Send an Email. 872
Determine Device Tree of the Open Project 874
Script Example 4: Import a Device in PLCOpenXML From Subversion 875
User Management for Soft PLC 877
General Information on User Management for Soft PLC. 878
Users and GroupsSot it e e 879
Access Rights 883
Controller Feature Sets for Migration. 887
Controller Feature Sets for Migration. 887
... 891
... 895

16

EI00000000067 06/2017

Safety Information @

Important Information

NOTICE
Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, service, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to warn of potential hazards or to call attention
to information that clarifies or simplifies a procedure.

The addition of this symbol to a “Danger” or “Warning” safety label indicates that an
electrical hazard exists which will result in personal injury if the instructions are not
followed.

hazards. Obey all safety messages that follow this symbol to avoid possible injury or
death.

A DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious
injury.

2 This is the safety alert symbol. It is used to alert you to potential personal injury

A WARNING

WARNING indicates a hazardous situation which, if not avoided, could result in death or
serious injury.

A CAUTION

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or
moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

EIO0000000067 06/2017 17

PLEASE NOTE
Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of
the use of this material.
A qualified person is one who has skills and knowledge related to the construction and operation
of electrical equipment and its installation, and has received safety training to recognize and avoid
the hazards involved.

18 EI00000000067 06/2017

About the Book

&7

At a Glance

Document Scope

This document describes the graphical user interface of the SoMachine software and the functions
it provides. For further information, refer to the separate documents provided in the SoMachine

online help.

Validity Note

This document has been updated for the release of SoMachine V4.3.

Related Documents

Document title

Reference

SoMachine Introduction

E/00000000734 (ENG);

E100000000787 (FRE),

EI00000000788 (GER);

E100000000790 (SPA);

E100000000789 (ITA),

E/00000000791 (CHS)

SoMachine Menu Commands Online Help

EIO0000001854 (ENG);
EIO0000001855 (FRE);
EIO0000001856 (GER);
EIO0000001858 (SPA);
EIO0000001857 (ITA);
EIO0000001859 (CHS)

SoMachine Central User Guide

E100000001659 (ENG);

E100000001660 (FRE),

E100000001661 (GER);

E/00000001663 (SPA);

E/00000001662 (ITA),

EI00000001664 (CHS)

SoMachine Compatibility and Migration User Guide

E/00000001684 (ENG);

EI00000001685 (FRE),

E/00000001686 (GER);

E100000001688 (SPA);

E100000001687 (ITA);

E/00000001689 (CHS)

EIO0000000067 06/2017

19

http://www.schneider-electric.com/en/download/document/EIO0000000734
http://www.schneider-electric.com/en/download/document/EIO0000000787
http://www.schneider-electric.com/en/download/document/EIO0000000788
http://www.schneider-electric.com/en/download/document/EIO0000000790
http://www.schneider-electric.com/en/download/document/EIO0000000789
http://www.schneider-electric.com/en/download/document/EIO0000000791
http://www.schneider-electric.com/en/download/document/EIO0000001659
http://www.schneider-electric.com/en/download/document/EIO0000001660
http://www.schneider-electric.com/en/download/document/EIO0000001661
http://www.schneider-electric.com/en/download/document/EIO0000001663
http://www.schneider-electric.com/en/download/document/EIO0000001662
http://www.schneider-electric.com/en/download/document/EIO0000001664
http://www.schneider-electric.com/en/download/document/EIO0000001684
http://www.schneider-electric.com/en/download/document/EIO0000001685
http://www.schneider-electric.com/en/download/document/EIO0000001686
http://www.schneider-electric.com/en/download/document/EIO0000001688
http://www.schneider-electric.com/en/download/document/EIO0000001687
http://www.schneider-electric.com/en/download/document/EIO0000001689

Document title

Reference

SoMachine Functions and Libraries User Guide

E100000000735 (ENG);

E/00000000792 (FRE),

E100000000793 (GER);

E100000000795 (SPA);

E/00000000794 (ITA);

E/00000000796 (CHS)

SoMachine Controller Assistant User Guide

E/00000001671 (ENG);

E/00000001672 (FRE),

E/00000001673 (GER),

E100000001675 (SPA);

E1/00000001674 (ITA),
E/00000001676 (CHS)

Modicon M238 Logic Controller Programming Guide

E100000000384 (ENG);

E100000000385 (FRE),

E100000000386 (GER);

E100000000388 (SPA);
E/00000000387 (ITA),
E/00000000389 (CHS)

SoMachine Device Type Manager (DTM) User Guide

E/00000000673 (ENG);

E100000000674 (FRE),

E100000000675 (GER);

E/00000000676 (SPA);
E100000000677 (ITA),
E/00000000678 (CHS)

TwidoEmulationSupport Library Guide

E100000001692 (ENG);

E100000001693 (FRE),

E/00000001694 (GER);

E100000001696 (SPA);
E/00000001695 (ITA),
E/00000001697 (CHS)

SoMachine Network Variable Configuration
SE_NetVarUdp Library Guide

E/00000001157 (ENG),

E100000001152 (FRE),

E/00000001153 (GER);

E100000001155 (SPA);
E100000001154 (ITA),
E/00000001156 (CHS)

You can download these technical publications and other technical information from our website
at hitp.//www.schneider-electric.com/en/download.

20

EI00000000067 06/2017

http://www.schneider-electric.com/en/download/document/EIO0000000735
http://www.schneider-electric.com/en/download/document/EIO0000000792
http://www.schneider-electric.com/en/download/document/EIO0000000793
http://www.schneider-electric.com/en/download/document/EIO0000000795
http://www.schneider-electric.com/en/download/document/EIO0000000794
http://www.schneider-electric.com/en/download/document/EIO0000000796
http://www.schneider-electric.com/en/download/document/EIO0000001671
http://www.schneider-electric.com/en/download/document/EIO0000001672
http://www.schneider-electric.com/en/download/document/EIO0000001673
hhttp://www.schneider-electric.com/en/download/document/EIO0000001675
http://www.schneider-electric.com/en/download/document/EIO0000001674
http://www.schneider-electric.com/en/download/document/EIO0000001676
http://www.schneider-electric.com/en/download/document/EIO0000000384
http://www.schneider-electric.com/en/download/document/EIO0000000385
http://www.schneider-electric.com/en/download/document/EIO0000000386
http://www.schneider-electric.com/en/download/document/EIO0000000388
http://www.schneider-electric.com/en/download/document/EIO0000000387
http://www.schneider-electric.com/en/download/document/EIO0000000389
http://www.schneider-electric.com/en/download/document/EIO0000000673
http://www.schneider-electric.com/en/download/document/EIO0000000674
http://www.schneider-electric.com/en/download/document/EIO0000000675
http://www.schneider-electric.com/en/download/document/EIO0000000676
http://www.schneider-electric.com/en/download/document/EIO0000000677
http://www.schneider-electric.com/en/download/document/EIO0000000678
http://www.schneider-electric.com/en/download/document/EIO0000001692
http://www.schneider-electric.com/en/download/document/EIO0000001693
http://www.schneider-electric.com/en/download/document/EIO0000001694
http://www.schneider-electric.com/en/download/document/EIO0000001696
http://www.schneider-electric.com/en/download/document/EIO0000001695
http://www.schneider-electric.com/en/download/document/EIO0000001697
http://www.schneider-electric.com/en/download/document/EIO0000001151
http://www.schneider-electric.com/en/download/document/EIO0000001152
http://www.schneider-electric.com/en/download/document/EIO0000001153
http://www.schneider-electric.com/en/download/document/EIO0000001155
http://www.schneider-electric.com/en/download/document/EIO0000001154
http://www.schneider-electric.com/en/download/document/EIO0000001156
http://www.schneider-electric.com/en/download

Product Related Information

A WARNING

LOSS OF CONTROL

e The designer of any control scheme must consider the potential failure modes of control paths
and, for certain critical control functions, provide a means to achieve a safe state during and
after a path failure. Examples of critical control functions are emergency stop and overtravel
stop, power outage and restart.

e Separate or redundant control paths must be provided for critical control functions.

e System control paths may include communication links. Consideration must be given to the
implications of unanticipated transmission delays or failures of the link.

e Observe all accident prevention regulations and local safety guidelines.’

e Each implementation of this equipment must be individually and thoroughly tested for proper
operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

' For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the
Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest
edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of
Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Only use software approved by Schneider Electric for use with this equipment.
e Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Terminology Derived from Standards

The technical terms, terminology, symbols and the corresponding descriptions in this manual, or
that appear in or on the products themselves, are generally derived from the terms or definitions
of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not
limited to, terms such as safety, safety function, safe state, fault, fault reset, malfunction, failure,
error, error message, dangerous, etc.

Among others, these standards include:

EI00000000067 06/2017 21

Standard

Description

EN 61131-2:2007

Programmable controllers, part 2: Equipment requirements and tests.

ISO 13849-1:2008

Safety of machinery: Safety related parts of control systems.
General principles for design.

EN 61496-1:2013

Safety of machinery: Electro-sensitive protective equipment.
Part 1: General requirements and tests.

ISO 12100:2010

Safety of machinery - General principles for design - Risk assessment and risk
reduction

EN 60204-1:2006

Safety of machinery - Electrical equipment of machines - Part 1: General
requirements

EN 1088:2008
ISO 14119:2013

Safety of machinery - Interlocking devices associated with guards - Principles
for design and selection

ISO 13850:2006

Safety of machinery - Emergency stop - Principles for design

EN/IEC 62061:2005

Safety of machinery - Functional safety of safety-related electrical, electronic,
and electronic programmable control systems

IEC 61508-1:2010

Functional safety of electrical/electronic/programmable electronic safety-
related systems: General requirements.

IEC 61508-2:2010

Functional safety of electrical/electronic/programmable electronic safety-
related systems: Requirements for electrical/electronic/programmable
electronic safety-related systems.

IEC 61508-3:2010

Functional safety of electrical/electronic/programmable electronic safety-
related systems: Software requirements.

IEC 61784-3:2008

Digital data communication for measurement and control: Functional safety
field buses.

2006/42/EC Machinery Directive
2014/30/EU Electromagnetic Compatibility Directive
2014/35/EU Low Voltage Directive

EI00000000067 06/2017

In addition, terms used in the present document may tangentially be used as they are derived from

other standards such as:

Standard

Description

IEC 60034 series

Rotating electrical machines

IEC 61800 series

Adjustable speed electrical power drive systems

IEC 61158 series

Digital data communications for measurement and control — Fieldbus for use in
industrial control systems

Finally, the term zone of operation may be used in conjunction with the description of specific
hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive
(2006/42/EC) and /SO 127100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the
present documentation. For more information concerning the individual standards applicable to the
products described herein, see the characteristics tables for those product references.

EI00000000067 06/2017

23

24

EI00000000067 06/2017

Part |

Introduction

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page
1 General Introduction to the SoMachine Logic Builder 27
2 SoMachine Logic Builder User Interface 31
3 Basic Concepts 53

EIO0000000067 06/2017

25

Introduction

26

EI00000000067 06/2017

Chapter 1

General Introduction to the SoMachine Logic Builder

What Is in This Chapter?

This chapter contains the following topics:

Topic Page
What is the SoMachine Logic Builder? 28
Tasks Performed by the SoMachine Logic Builder 29
EI00000000067 06/2017 27

General Introduction to the SoMachine Logic Builder

What is the SoMachine Logic Builder?

General Description

The Logic Builder provides the configuration and programming environment for the SoMachine
projects you create with SoMachine Central.

It displays the different elements of your project in separate views that you can arrange on the
SoMachine user interface and on your desktop according to your individual requirements. This
view structure allows you to add hardware and software elements to your project by drag and drop.
The main configuration dialog boxes that allow you to create content for the project are provided
in the center of the Logic Builder screen.

In addition to easy configuration and programming, the Logic Builder also provides powerful
diagnostic and maintenance features.

28 EI00000000067 06/2017

General Introduction to the SoMachine Logic Builder

Tasks Performed by the SoMachine Logic Builder

Configuring and Programming Projects

The Logic Builder allows you to program logic and add devices to the SoMachine projects you
create with SoMachine Central.

To assist you in performing this task, it provides the following functions:

e Separate hardware catalog views for Controller, HMI & iPC, Devices & Modules, Diverse allow
you to add hardware devices to your project by simple drag and drop. It also allows you to use
device templates and function templates.

e Separate software catalog views for Variables, Assets, Macros, ToolBox, Libraries allow you to
add different types of software elements by simple drag and drop. The Assets view, for example,
allows you to create and manage your function blocks and POUs.

To display only the relevant views for the task that is being performed, SoMachine provides
individual perspectives (see page 48) for hardware configuration, software configuration, and
online mode. You are allowed to adapt these default perspectives to your individual requirements,
and to create your own perspectives with the views you use most frequently.

Building Projects

The Logic Builder provides different ways (such as Build, Build all, or Clean all) to build your
SoMachine project.

Communication with Controller

The Logic Builder provides scan functions to detect available controllers in the Ethernet network.
It supports different protocols for communication with the controller.

After communication has been established, applications can be downloaded to or uploaded from
the controller. Applications can be started and stopped on the controller.

Online Features and Monitoring

The Logic Builder online and monitoring features allow you to perform the following tasks:

e Online monitoring of values in program code and in Watch views

Performing online changes

Online configuration of traces

Watching traces online

Interacting with your machine by using built-in visualizations in online mode for diagnostic and
test purposes

Reading the status of controllers and devices

e Detecting potential programming logic errors by using the debugging function

EI00000000067 06/2017 29

General Introduction to the SoMachine Logic Builder

30 EI00000000067 06/2017

Chapter 2

SoMachine Logic Builder User Interface

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Elements of the SoMachine Logic Builder Screen 32
Multi-Tabbed Navigators 38
Multi-Tabbed Catalog View 44
Customizing the User Interface 45
User Interface in Online Mode 50
Menus and Commands 51

EIO0000000067 06/2017

31

SoMachine Logic Builder User Interface

Elements of the SoMachine Logic Builder Screen

Overview

Logic Builder consists of the following elements:
e Menus and toolbars

e Navigator views

e Catalog views

e Main editor pane

When you open the Logic Builder, it provides a default screen layout. This document describes the
default positions.

You can adapt the elements according to your individual requirements as described in the
Cusfomizing the User Inferface chapter (see page 45). You can see and modify the current
settings in the Customize dialog box. It is by default available in the Tools menu.

You can also arrange the views and windows anytime via shifting, docking/undocking views,
resizing or closing windows. The positions are saved with the project. When you reopen a project,
the elements are placed at the positions where they were when the project was saved. The
positions of views are saved separately in perspectives (see page 48).

32

EI00000000067 06/2017

SoMachine Logic Builder User Interface

Default Logic Builder Screen
Default positions of menus, bars, and views on the Logic Builder screen

12 4

Object® - SoMachine Logic Builder

ilg Edit View Project Build Online Debug Tools Window Help

= 25 Untited ;
@ B HMIGTOS310_5315(HM..

[+ 7 MyController (TM258LF..

¥ Favorites

Name

[Favorites

Vendor |

Vers|

¥ Logic Controller

Name
& [mz3s
&1 me4t
[mess

CJ T

Vendor

Vers|

» HMI Controller

» Drive Controller

¥ Motion Controller

Name
@ [LMcoss

| Vendor |

Vers|

[] use DTM Connection

ol Devioesl# Applications | [Tools

|E9 co.. B Device... [(FH... [k D..

ltastbuild: € 501 (¥ 5 Precompile: € Current user: (nobody)

|
| 1
34 5

1 Menu bar

|
6

EI00000000067 06/2017

33

SoMachine Logic Builder User Interface

Multi-tabbed Navigators: Devices tree, Tools tree, Applications tree

Multi-tabbed catalog view: hardware catalog: Controller, HMI & iPC, Devices & Modules, Diverse software

catalog: Variables, Assets. Macros, ToolBox, Libraries

2 Toolbar

3

4 Messages view

5 Information and status bar
6

7 Multi-tabbed editor view

Standard Components

The Logic Builder screen contains the following components that are visible by default:

Component Description

Menu bar Provides menus which contain the available commands as defined in
the Tools -~ Customize dialog box.

Toolbar Contains buttons to execute the available tools as defined in the Tools

— Customize dialog box.

Multi-tabbed Navigators

The following Navigators are available as tabs where the different
objects of a project are organized in a tree structure:

e Devices tree

e Applications tree

® Tools tree

For further information, refer to the chapter Multi-Tabbed Navigators
(see page 38).

Messages view

Provides messages on precompile, compile, build, download
operations. Refer to the description of the Messages view commands
for details (see SoMachine, Menu Commands, Online Help).

Information and status bar

Provides the following information:
e [nformation on the current user.
e [nformation on editing mode and current position if an editor is open.

For further information, see the /nformation and Status Bar section in
this chapter.

34

EI00000000067 06/2017

SoMachine Logic Builder User Interface

Component

Description

Multi-tabbed Catalog view

The Catalog view consists of different tabs where the available
hardware and software objects are listed:
o Hardware Catalog

O Controller

O HMI &iPC

O Devices & Modules

O Diverse

e Software Catalog
QO Variables
O Assets
O Macros
O ToolBox
O Libraries

For further information, refer to the chapter Multi-Tabbed Catalog
Views (see page 44).

Multi-tabbed editor window

Used for creating the particular object in the respective editor.

In the case of language editors (for example, ST editor, CFC editor),
usually the window combines the language editor in the lower part and
the declaration editor in the upper part.

In the case of other editors, it can provide dialog boxes (for example,
task editor, device editor). The name of the POU or the resource object
is displayed in the title bar of this view. You can open the objects in the
editor window in offline or online mode by executing the Edit Object
command.

Information and Status Bar

The bar at the lower border of the Logic Builder screen provides 3 types of information:

e Information on the logged-in user.

e If you are working in an editor window: the position of the cursor and the status of editing mode.
e In online mode: the current status of the program.

Information on the logged-in user

Each project has a user and access management (see page 725). The currently logged-in user is

named in the status bar.

Cursor positions in editor windows

The cursor position is counted from the left or upper margin of the editor window.

Abbreviation Description
Ln Line in which the cursor is placed.
Col Column in which the cursor is placed.
(A column includes exactly 1 space, character, or digit.)

EI00000000067 06/2017

35

SoMachine Logic Builder User Interface

Abbreviation

Description

Ch

Number of characters.

4 columns.)

(In this context, a character can be a single character or digit as well as a tab
including, for example,

Double-click one of the fields to open the dialog box Go To Line. Here you can enter a different
position where the cursor is placed.

The status of the editing mode is indicated by the following abbreviations:

Abbreviation Description
INS Insert mode
OVR Overwrite mode

Double-click this field to toggle the setting.

The following status of the program is indicated:

Text

Description

Program loaded

Program loaded on device.

Program unchanged

Program on device matches that in the programming system.

Change)

Program modified (Online

change required.

Program on device differs from that in the programming system, online

download)

Program modified (Full

required.

Program on device differs from that in the programming system, full download

Online mode information

Status of the application on the device:

Text Background Color Description

RUN Green Program running.

STOP Red Program stopped.

HALT ON BP Red Program halted on a breakpoint.

The following status field is only available if the controller, dep

cycle-independent monitoring.

ending on a setting in the device description, supports

IN CYCLE White Indicates that the values of the monitored expressions
are read within one cycle.
OUT OF CYCLE Red Indicates that the retrieval of the values of the

monitored variables cannot be performed within

one cycle.

36

EI00000000067 06/2017

SoMachine Logic Builder User Interface

Watch Windows and Online Views of Editors

Watch windows and online editor views show a monitoring view of a POU or a user-defined list of
watch expressions.

Windows, Views, and Editor Windows

There are 2 different types of windows in the Logic Builder:

e Some can be docked to any margin of the SoMachine window or can be positioned on the
screen as undocked windows independently from the SoMachine window. Additionally they can
be hidden by being represented as a tab in the SoMachine window frame (refer to the
Customizing the User Interface chapter (see page 45)). These windows display information
which is not dependent on a single object of the project (for example Messages view or Devices
tree). You can access them via the View menu (see SoMachine, Menu Commands, Online
Help). Most views include a non-configurable toolbar with buttons for sorting, viewing, searching
within the window.

e Other windows open when you are viewing or editing a specific project object in the respective
editor. They are displayed in the multi-tabbed editor window. You cannot hide or undock them
from the SoMachine window. You can access them via the Window menu.

Switching Windows

SoMachine allows you to switch between open views and editors. To switch between open views
and editors, press the CTRL and TAB keys simultaneously. A window opens that lists the views

and editors that are currently open. As long as the CTRL key is pressed the window stays open.

Use the TAB key or the ARROW keys simultaneously to select a specific view or editor.

EI00000000067 06/2017 37

SoMachine Logic Builder User Interface

Multi-Tabbed Navigators

Overview
The multi-tabbed Navigators are standard components of the Logic Builder screen.

By default, the following navigators are available:

e Devices tree: It allows you to manage the devices on which the application is to run.

e Applications tree It allows you to manage project-specific as well as global POUs, and tasks in
a single view.

e Tools tree: It allows you to manage project-specific as well as global libraries or other elements
in a single view.

You can access views via the View menu.

Adding Elements to the Navigators

The root node of a navigator represents a programmable device. You can insert further elements
below this root node.

To add elements to a node of a Navigator, simply select a device or object in the hardware or
software catalog on the right-hand side of the Logic Builder screen and drag it to the Navigator (for
example, the Devices tree). The node or nodes where the selected device or object fits are
automatically expanded and displayed in bold. The other nodes where the selected device or
object cannot be inserted are grayed. Drop the device or object on the suitable node and it is
inserted automatically. If any further elements are required for the device or object, such as
communication managers, they are inserted automatically.

Alternatively, you can select a node in the tree. If it is possible to add an object to the selected
device or object, a green plus button is displayed. Click this plus button to open a menu providing
the elements available for insertion.

Itis also possible to add an object or a device, by right-clicking a node in a Navigator and executing
the command Add Object or Add Device. The device type which can be inserted depends on the
currently selected object within the Navigator. For example, modules for a PROFIBUS DP slave
cannot be inserted without having inserted an appropriate slave device before. Note that only
devices correctly installed on the local system and matching the current position in the tree are
available for insertion.

Repositioning Objects
To reposition objects, use the standard clipboard commands (Cut, Copy, Paste, Delete) from the
Edit menu. Alternatively, you can drag the selected object with the mouse while the mouse-button
(plus CTRL key for copying) is pressed. When you add devices using the copy and paste function,
the new device gets the same name followed by an incrementing number.

38 EI00000000067 06/2017

SoMachine Logic Builder User Interface

Updating the Version of a Device

A device that is already inserted in the Navigators can be updated to another version or converted
to another device.

Refer to the description of the separate commands:

Update Device command (see page 717)
Convert Device command (see page 73)

Description of the Devices Tree

Each device object in the Devices tree represents a specific (target) hardware object.

Examples: controller, fieldbus node, bus coupler, drive, I/O module

Devices and subdevices are managed in the Devices tree. Other objects which are needed to run
an application on a controller are grouped in the other Navigators.

The root node of the tree is a symbolic node entry: = <projectname>

The controller configuration is defined by the topological arrangement of the devices in the
Devices tree. The configuration of the particular device or task parameters is performed in
corresponding editor dialogs. Also refer to the chapter 7ask Configuration (see page 226).
Thus the hardware structure is mapped and represented within the Devices tree by the
corresponding arrangement of device objects, allowing you to set up a complex heterogeneous
system of networked controllers and underlying fieldbusses.

To add devices configured with DTMs (Device Type Managers) to your project, activate the
check box Use DTM Connection in the lower part of the Devices tree. This has the effect that a
node FdtConnections is added below the root node of the tree. Below the FdtConnections node,
a communication manager node is inserted automatically. You can add the suitable DTM device
to this node. For further information, refer to the SoMachine Device Type Manager (DTM) User
Guide (see SoMachine, Device Type Manager (DTM), User Guide).

Consider the recommendations for Adding Elements to the Navigafors in this chapter.

EI00000000067 06/2017 39

SoMachine Logic Builder User Interface

Example of a Devices tree:

HWON =

3 4
Devesiee v B x
«Q
H— = My_SoM_Projed v
= B HMIGTO5310_5315 (HMIGTO5310/5315)
3 HMI Application

+% com

[+ ‘a, COoM2

3 '3 Ethemet

% usB

= 2E) MyController (TM258LF42DT4L)

% Expert

‘a T™M5

“% Ethernet

[%3 Serial Line

% CANO

[+ '2, PCI Slots
< >
|:| Use DTM Connection
'-__:_UDeViceS tree ||£ Tools tree | # Applications tree

Root node

Programmable device (with applications)
Symbolic device name

Device name defined in device description file

Each entry in the Devices tree shows the symbol, the symbolic name (editable), and the device
type (= device name as provided by the device description).

A device is programmable or configurable. The type of the device determines the possible
position within the tree and also which further resources can be inserted below the device.
Within a single project, you can configure one or several programmable devices - regardless of
manufacturer or type (multi-resource, multi-device, networking).

Configure a device concerning communication, parameters, /0O mapping in the device dialog
(device editor). To open the device editor, double-click the device node in the Devices tree (refer
to the description of the device editor (see page 97)).

In online mode, the status of a device is indicated by an icon preceding the device entry:

Q Controller is connected, application is running, device is in operation, data is exchanged.
The option Update 10 while in stop in the PLC settings view of the device editor
(see page 123) can be enabled or disabled.

o) Controller is connected and stopped (STOP). The option Update 10 while in stop in the
PLC settings view of the device editor (see page 723)is disabled.

40

EI00000000067 06/2017

SoMachine Logic Builder User Interface

q
o * Controller is connected, active application is running, diagnostic information is available.

o A Device is not exchanging data, bus error detected, not configured or simulation mode
(refer to the description of the Simulation command).

o “* Deviceis running in demo mode for 30 minutes. After this time, the demo mode expires
and the fieldbus stops exchanging data.

A Device is configured but not fully operational. Data is not exchanged. For example,
CANopen devices are in startup and preoperational.

[®)

o Redundancy mode active: The fieldbus master is currently not sending data because
another master is in active mode.

o) (2 Device description was not found in device repository. For further information on installing
and uninstalling devices in the Device Repository dialog box, refer to the description of the
Device Repository (see SoMachine, Menu Commands, Online Help).

e The names of all currently connected devices and applications are displayed green shaded.
e The names of devices running in simulation mode (refer to the description of the Simulation
command) are displayed in italics.
e Additional diagnostic information is provided in the Status view of the device editor
(see page 138).

You can also run the active application on a simulation device which is by default automatically
available within the programming system. Therefore, no real target device is needed to test the
online behavior of an application (at least that which does not rely on hardware ressources for
execution). When you switch to simulation mode (see SoMachine, Menu Commands, Online
Help), an entry in the Devices tree is displayed in italics, and you can log into the application.

You can also connect to the controller in online configuration mode (refer to chapter Online Config
Mode (see SoMachine, Menu Commands, Online Help)) without the need of first having loaded a
real application into the controller. This is useful for the initial start-up of an 1/0 system because
you can access and test the 1/Os in the controller configuration before you build and load a real
application program.

For information on the conversion of device references when opening projects, refer to the
SoMachine Compatibility and Migration User Guide.

EI00000000067 06/2017 41

SoMachine Logic Builder User Interface

Arranging and Configuring Objects in the Devices Tree

Adding devices / objects:

To add devices or objects to the Devices tree, simply select a device or object in the hardware
catalog on the right-hand side of the Logic Builder screen and drag it to the Devices tree. The node
or nodes where the selected device or object fits is expanded and is displayed in bold. The other
nodes where the selected device or object cannot be inserted are grayed. Drop the device or object
on the suitable node and it is inserted automatically.

Alternatively, you can select a node in the tree. If it is possible to add an object to the selected
device or object, a green plus button is displayed. Click the plus button to open a menu providing
the elements available for insertion.

Alternatively, you can add an object or a device, by right-clicking a node in the Devices tree and
executing the command Add Object or Add Device. The device type which can be inserted
depends on the currently selected object within the Devices tree. For example, modules for a
PROFIBUS DP slave cannot be inserted without having inserted an appropriate slave device
before. No applications can be inserted below non-programmable devices.

Note that only devices correctly installed on the local system and matching the current position in
the tree are available for insertion.

Repositioning objects:

To reposition objects, use the standard clipboard commands (Cut, Copy, Paste, Delete) from the
Edit menu. Alternatively, you can draw the selected object with the mouse while the mouse-button
(plus CTRL key for copying) is pressed. Consider for the Paste command: In case the object to be
pasted can be inserted below or above the currently selected entry, the Select Paste Position
dialog box opens. It allows you to define the insert position. When you add devices using the copy
and paste function, the new device gets the same name followed by an incrementing number.

Updating the version of a device:

Adevice that is already inserted in the Devices tree can be replaced by another version of the same
device type or by a device of another type (device update). In doing so, a configuration tree
indented below the respective device is maintained as long as possible.

Adding devices to the root node:

Only devices can be positioned on the level directly below the root node <projectname>. If you
choose another object type from the Add Object dialog box, such as a Text list object, this is added
to the Global node of the Applications tree.

Subnodes:

A device is inserted as a node in the tree. If defined in the device description file, subnodes are
inserted automatically. A subnode can be a programmable device again.

Inserting devices below a device object:

You can insert further devices below a device object. If they are installed on the local system and
thus available in the hardware catalog or in the Add Object or Add Device dialog box. The device
objects are sorted within the tree from top to bottom: On a particular tree level first the

programmable devices are arranged, followed by any further devices — each sorted alphabetically.

42

EI00000000067 06/2017

SoMachine Logic Builder User Interface

Description of the Applications Tree
The Application objects, task configuration, and task objects are managed in the Applications tree.

The objects needed for programming the device (applications, text lists, etc.), are managed in the
Applications tree. Devices that are not programmable (configuration only) cannot be assigned as
programming objects. You can edit the values of the device parameters in the parameter dialog of
the device editor.

Programming objects, like particular POUs or global variable lists can be managed in 2 different

ways in the Applications tree, depending on their declaration:

e When they are declared as a subnode of the Global node, these objects can be accessed by all
devices.

e When they are declared as a subnode of the Applications node, these objects can only be
accessed by the corresponding devices declared in this Applications node.

You can insert an Application object only in the Applications tree.

Below each application, you can insert additional programming objects, such as DUT, GVL, or
visualization objects. Insert a task configuration below an application. In this task configuration, the
respective program calls have to be defined (instances of POUs from the Global node of the
Applications tree or device-specific POUs). Consider that the application is defined in the 1/O
Mapping view of the respective device editor (see page 740).

Description of the Tools Tree

Libraries are managed in the Tools tree. Pure configurable devices cannot be assigned such
programming objects. You can edit the values of the device parameters in the parameter dialog of
the device editor.

Programming objects, like the Library Manager, can be managed in 2 different ways in the Tools

tree, depending on their declaration:

e When they are declared as a subnode of the Global node; then these objects can be accessed
by all devices.

e When they are declared as a subnode of the Applications node; then these objects can only be
accessed by the corresponding devices declared in this Applications node.

EI00000000067 06/2017 43

SoMachine Logic Builder User Interface

Multi-Tabbed Catalog View

Overview

The multi-tabbed Hardware Catalog is a standard component of the Logic Builder screen.

It contains the following tabs:

e Controller: Contains the Logic, HMI, Drive, and Motion controllers that can be inserted in your
SoMachine project.

e Devices & Modules: Contains the I/0 Modules, and the Communication, Motor Control, Safety,
and Energy Management devices that can be inserted in your SoMachine project. It also allows
you to insert devices by using a device template.

e HMI & iPC: Contains the HMI and iPC devices that can be inserted in your SoMachine project.

e Diverse: Contains third party devices that can be inserted in your SoMachine project.

The content of the individual tabs depends on the project. If the controllers integrated in the
SoMachine project do not support, for example, CANopen, then CANopen devices are not
displayed in the catalogs.

You can extend this view by the tabs of the Software Catalog (Variables, Assets, Macros, ToolBox,
Libraries) via the menu View - Software Catalog.

(s

The buttons Hardware Catalog and Software Catalog f& in the toolbar allow you to display

or hide the catalog views.

You can add the elements from the catalogs to the project by simple drag and drop as described
in the Adding Devices by Drag and Drop chapter (see page 60).

Searching Within Catalogs

Each tab of the catalog view contains a search box. The sub-lists of the tab are searched for the
string you enter in the search box. In open sub-lists, the found entires are marked yellow. Any other
items of the list that do not correspond to the search string are hidden. The number of items found
in closed sub-lists is displayed in bold print in the title bar of each the sub-list.

By default, the search is executed on the names of the items in the lists. But SoMachine also
supports the tagging mechanism. It allows you to assign search strings of your choice to any item
included in the Catalog view.

Favorites List

Each tab of the catalog view contains a Favorites list. To provide quick access, you can add
frequently used elements to this Favorites list by drag and drop.

44

EI00000000067 06/2017

SoMachine Logic Builder User Interface

Adding Devices From Device Templates in the Devices & Modules Tab

The Devices & Modules tab contains the option Device Template at the bottom. Activate this option
to display the available templates of field devices in the lists of the Devices & Modules tab. Add
them to the Devices tree as described in the Adding Devices from Template chapter

(see page 752).

Customizing the User Interface

Overview

The look of the user interface, in terms of arrangement and configuration of the particular

components, depends on the following:

e Standard pre-settings for menus, keyboard functions, and toolbars. You can overwrite the
SoMachine default settings via the Customize dialog box (see SoMachine, Menu Commands,
Online Help) (by default available in the Tools menu). The current settings are saved on the
local system. A reset function is available for restoring the default values at any time.

e Properties of an editor as defined in the respective Tools - Options dialog box
(see SoMachine, Menu Commands, Online Help). You can also overwrite these settings. The
current configuration is saved on the local system.

e The way you arrange views or editor windows within the project. The current positions are saved
with the project (see below).

e The selected perspective. By default, the Logic Configuration perspective is selected. For
further information, refer to the Perspectives paragraph in this chapter (see page 48).

Arranging Menu Bars and Toolbars

The menu bar is positioned at the top of the user interface, between the window title bar and view
windows. You can position a toolbar within the same area as the menu bar (fix) or as an
independent window anywhere on the screen.

In view windows, such as the Devices tree, a special toolbar is available. It provides elements for
sorting, viewing, and searching within the window. You cannot configure this toolbar.

Arranging Windows and Views
Closing a view or editor window: Click the cross button in the upper right corner.

Opening a closed view: By default, you can reopen the views of standard components via the View
menu. To open an editor window, execute the command Project - Edit object or double-click the
respective entry in the Devices tree, Applications tree, or in the Tools tree.

Resizing a view or window within the frame window: Move the separator lines between neighboring
views. You can resize independent view windows on the desktop by moving the window borders.

Moving a view to another position on your desk top or within the frame window: Click the title bar
or, in the case of tabbed views alternatively the tab of the view, keep the mouse-button pressed,
and move the view to the desired place. Arrow symbols will display showing every possible target
position. Keep the mouse-button pressed and choose the desired position by moving the cursor on
the respective arrow symbol. The target position is indicated by a blue-shadowed area.

EI00000000067 06/2017 45

SoMachine Logic Builder User Interface

Arrow symbols indicating new position

Arrow symbol Description
D View is placed above.
— View is placed below.
I_j View is placed to the right.
>
[‘T View is placed to the left.
i4
— View is placed here: the view currently placed at this position and the new
l_:_ one are arranged as icons.

46 EI00000000067 06/2017

SoMachine Logic Builder User Interface

Example of navigation by the arrow symbols

4 b X Properties v o X
Al| CFC \¢ Filter v | »3 Sortby =
\ Pointer
= Input
<= Output
IF Box This view has been selected
J by a mouse-click, the
< Al mouse-button is still pressed
= Label
<« Return
41T Composer
TIE Selector
V| = Comment
>
——
A
The right arrow has been
chosen by drawing the mouse :
(button still pressed) on this
symbol -> the target position
for the view now is indicated by
the blue shadowed area
ergvar =
Decription
R v
>

v X

When you release the mouse-button, the view is placed at the new position.

Views with an Auto Hide button can be placed as independent windows (floating) anywhere on the
screen by moving them and not dragging them on one of the arrow symbols. In this case, the view
looses the Auto Hide button. As an alternative, execute the commands Dock and Float from the
Window menu.

Hiding views: You can hide views with Auto Hide buttons at the border of the SoMachine window.
Click the Auto Hide down button in the upper right corner of the view. The view will be displayed

as a tab at the nearest border of the frame window. The content of the view is only visible as long
as the cursor is moved on this tab. The tab displays the icon and the name of the view. This state
of the view is indicated by the docking button changed to Auto Hide left.

Unhiding views: To unhide a view, click the Auto Hide left button.

EI00000000067 06/2017 47

SoMachine Logic Builder User Interface

An alternative way of hiding and unhiding a view is provided by the Auto Hide command that is by
default available in the Window menu.

It is not possible to reposition the information and status bar on the lower border of the user
interface (see page 33).

Perspectives

A perspective is used to save the layout of SoMachine views. It stores whether the Messages and
Watch views are open and at which position the view windows are located (docked or independent

windows).

By default, SoMachine provides 4 perspectives for the following use cases in the Window -
Switch Perspective menu or in the perspective table in the toolbar.

Perspective name | Use case Navigators (on the left | Catalog views (on the | Views at the bottom of
side) right side) the screen
Device For adding / o Devices tree Hardware catalog Messages (in Auto
Configuration configuring devices. | @ Applications tree e Controller Hide mode)
® Tools tree e Devices & Modules
e HMI &iPC
e Diverse
Logic Configuration | For adding/creating | ® Devices tree Software catalog Messages (in Auto
logic. e Applications tree | ® Variables Hide mode)
o Tools tree ® Assets
e Macros
e ToolBox
e Libraries
CODESYS Classic | Standard CoDeSys | e Devices Hardware catalog Messages (in Auto
views. e POUs e Controller Hide mode)
e Devices & Modules
e HMI &iPC
e Diverse
Online For online mode. o Devices tree Hardware catalog ® Messages (in Auto
e Applications tree | ® Controller Hide mode)
® Tools tree e Devices & Modules | @ Watch 1
e HMI &iPC
e Diverse

The Online perspective is automatically selected when the application is switched to online mode.

Creating your own perspective:

In addition to these standard perspectives, you can create your own view layout and save it in
different perspectives according to your individual requirements.

48

EI00000000067 06/2017

SoMachine Logic Builder User Interface

Zoom

To create your own perspective, proceed as follows:

Step Action
1 Resize, open, or close views according to your individual requirements.
2 Execute the command Save current view layout as perspective from the Window menu to save

your modifications to a new perspective.

3 In the Save current view layout as perspective dialog box, enter a Name for your perspective.
Result: The current view layout is saved. The new perspective is available in the Window —
Switch Perspective menu and in the perspective table in the toolbar.

Resetting a perspective to its initial state:

To reset a modified perspective to its initial state, execute the command Reset current Perspective
from the Window menu.

Importing / exporting perspectives:

To be able to exchange perspectives between different SoMachine installations or between
different users, the Tools - Options — Perspectives dialog box (see SoMachine, Menu
Commands, Online Help) allows you to export perspectives to an XML file and to import already
available perspective XML files.

Each editor window provides a zoom function. Click the zoom button @‘ in the lower right corner
of the window to open a list. It allows you to choose one of the zoom levels 25, 50, 100, 150, 200,
and 400 percent or to enter a zoom factor of your choice. A printout always refers to the 100% view.

Customization of the user interface is possible in offline and in online mode.

EI00000000067 06/2017 49

SoMachine Logic Builder User Interface

User Interface in Online Mode

Overview

As soon as you log in with the project, the objects which have already been opened in offline mode,
are automatically viewed in online mode. The perspective is automatically switched to the Online

perspective (see page 48) which means that the Watch view opens by default.

To open an object in online mode which is not already open, double-click the node in the
Applications tree or execute the Project - Edit Object command. The object will be opened in

online mode.

If there are several instances of the selected object (such as function blocks) contained in the
project, a dialog box named Select Online State <object name> will display. It allows you to choose
whether an instance or the base implementation of the object should be viewed and whether the

object should be displayed in online or offline mode.
Select Online State dialog box

' Select Online State — FBL [CoDeSys_Control_Win_V3: PLC Logic: Application_1]

@ Online mode:

Device/Application:
[CoDeSysﬁCDntrDLWianB.Applicationj -

Function block instance:
PLC_PRG.fhinst1
PLC_PRG.fhinst2

Implementation

O offline mode

(ok]| cancel |

The Device/Application field contains the device and application to which the respective object is

associated.

50

EI00000000067 06/2017

SoMachine Logic Builder User Interface

To open the online view of the object, activate the option Online mode and click OK. To see the
offline view, activate the option Offline mode.

If the object is a function block, the Function block instance field contains a list of the instances
currently used in the application.

In this case, the options available are:

e Either select one of the instances and activate Online or Offline mode.

e Or select the option Implementation which - independently of the selected instance - will open
the base implementation view of the function block. The Implementation option has no affect for
non-instantiated objects.

For more information on the online views of the particular editors, refer to the respective editor
descriptions.

The status bar (see page 33) provides information on the current status of the application.
Menus and Commands

Overview
The following figure shows the default menu bar:

File Edit View Project Build Online Debug Tools Window Help

Some commands are not visible in the default view. To add a command to a menu, insert it in a
menu of your choice by using the Tools —» Customize dialog box (see SoMachine, Menu
Commands, Online Help).

Specific commands, for a particular editor for example, are usually available in a corresponding
menu. These commands are only visible when the editor is open. For example: when you edit an
object in the SFC editor, the SFC menu is added to the menu bar.

To reorganize the menu structures, use the Tools - Customize dialog box.

Several commands of the File menu are not available because these tasks are performed in the
SoMachine Central. For further information, refer to the SoMachine Central User Guide
(see SoMachine Central, User Guide).

For a description of the menus and commands, refer to the separate SoMachine Menu Commands
Online Help (see SoMachine, Menu Commands, Online Help).

EI00000000067 06/2017 51

SoMachine Logic Builder User Interface

52 EI00000000067 06/2017

Chapter 3

Basic Concepts

Introduction and Basic Concepts

Overview
SoMachine is a device-independent controller programming system.

Conforming to the IEC 61131-3 standard, it supports all standard programming languages.

Further, it allows including C-routines. It allows you to program multiple controller devices within
one project.

For further information see chapter Generate runtime systemn files (see SoMachine, Menu
Commands, Online Help).

Object Orientation

The object-oriented approach is not only reflected by the availability of appropriate programming
elements and features, but also in the structure and version handling of SoMachine and in the
project organization. Multi-device usage of a SoMachine project is possible based on jointly used,

instantiated programming units. Cloning of applications is possible as well as mixing configurable
and programmable controller devices in one project.

Version Handling

A simultaneous installation of several versions of SoMachine components and working with the
desired combination of versions is possible. This also pertains the device-specific use of different
compiler versions. Individual functions can be added without having to update the whole version.

For further information, refer to the SoMachine Compatibility and Migration User Guide.

Project Organization

Project organization is also determined in an object oriented fashion. A SoMachine project contains
a controller program composed of various programming objects and it contains definitions of the
resources which are needed to run instances of the program (application) on defined target
systems (devices, controllers).

EIO0000000067 06/2017 53

Basic Concepts

So there are two main types of objects in a project:

Object Type

Description

Programming objects (POUs)
(see page 153).

These are programs, functions, function blocks, methods, interfaces,
actions, data type, definitions, and so on.

Programming objects which can be instantiated in the entire project,
that is, for all applications defined in the project, must be managed in
the Global node of the Applications tree. The instantiating is done by
calling a program POU by an application-assigned task.
Programming objects which are only managed in the Applications
tree, that is, which are directly assigned to an application, cannot only
be instantiated by another application inserted below.

Resource objects (Devices tree)

Device objects are only managed in the Devices tree. When you
insert objects in the Devices tree, consider the recommendations
described in the Adding Elements fo the Navigators section

(see page 42).

Code Generation

Code generation by integrated compilers and the subsequent use of the resulting machine code

provides for short execution times.

Data Transfer to the Controller Device

The data transfer between SoMachine and the device is conducted via a gateway (component) and
a runtime system. Complete online functionality for controlling a program on the device is available.

Supported Programming Languages

The programming languages mentioned in the IEC standard IEC 61131 are supported via specially

adapted editors:

e FBD/LD/IL editor (see page 253)for function block diagram (FBD), ladder logic diagram (LD),

and instruction list (IL)

e SFC editor (see page 325)for sequential function chart
e ST editor (see page 353)for structured text

Additionally, SoMachine provides an editor for programming in CFC that is not part of the

|IEC standard:

e CFC editor (see page 305) for continuous function chart

CFC is an extension to the standard IEC programming languages.

54

EI00000000067 06/2017

Part Il

Configuration

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page
4 Installing Devices 57
5 Managing Devices 59
6 Common Device Editor Dialogs 95

EIO0000000067 06/2017

55

Configuration

56 EI00000000067 06/2017

Chapter 4

Installing Devices

Integration of Sercos Devices from Third-Party Vendors

Introduction

Via the Device Repository dialog box (see SoMachine, Menu Commands, Online Help), you can
integrate Sercos devices with generic 1/O profiles in your programming system.

Toinstall this Sercos device, you need the SDDML (Sercos Device Description Markup Language)
file (device description file for Sercos devices) provided by the vendor of the device. The
SDDML file is a device description file for Sercos devices.
There are two types of Sercos devices with generic I/O profiles available:
e Block I/O devices

A block I/O device is a pre-assembled block that consists of a bus interface and an /0 module.
e Modular I/O devices

Modular I/O devices are /0O modules which can be connected to a bus interface.

Integrating In SoMachine
Proceed as follows to integrate Sercos devices from third-party vendors in your programming

system:
Step Action
1 Select Tools —» Device Repository... from the menu bar.
Result: The Device Repository dialog box opens.
2 Click the Install... button in the Device Repository dialog box.
Result: The Install Device Description dialog box opens.
3 Select the file type SERCOS Il I/O device descriptions (*.xml) and browse your file system for
the SDDML file to open.
4 Select the SDDML file and click Open.
Result: The SDDML file is converted and imported into a compatible file format for SoMachine.

NOTE: If the selected SDDML file is not compatible or if the Sercos device of the third-party vendor
is not using a compatible FSP (Function Specific Profile) type, then a corresponding diagnostic
message is indicated in the Messages view (see SoMachine, Menu Commands, Online Help).

EI00000000067 06/2017 57

Installing Devices

Verifying the Integration

To verify whether a Sercos device with generic I/O profile has been integrated in your programming
system, proceed as follows:

Step Action

1 Select Tools — Device Repository... from the menu bar.
Result: The Device Repository dialog box opens.

In the tree structure Installed device descriptions, expand the node Fieldbusses — Sercos.

Expand the subnode Slave to verify whether the Sercos bus interfaces that you integrated are
available in the list.

4 Expand the subnode Module to verify whether the Sercos 1/0 modules that you integrated are
available in the list.

For further information, refer to the description of the Device Repository dialog box
(see SoMachine, Menu Commands, Online Help).

58 EI00000000067 06/2017

Chapter 5

Managing Devices

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
5.1 Adding Devices by Drag and Drop 60
5.2 Adding Devices by Context Menu or Plus Button 63
5.3 Updating Devices 71
5.4 Converting Devices 73
5.5 Converting Projects 77

EIO0000000067 06/2017

59

Managing Devices

Section 5.1
Adding Devices by Drag and Drop

Adding Devices by Drag and Drop

Overview
SoMachine V4.0 and later versions provide a multi-tabbed catalog view on the right-hand side of
the SoMachine Logic Builder.

2 different types of catalog views are available:
e The Hardware Catalog
e The Software Catalog

To add a device to the Devices tree, select the respective entry in the Hardware Catalog, drag it to
the Devices tree, and drop it at a suitable node. It is added automatically to your project.

Adding Controllers by Drag and Drop
To add a controller to your project, proceed as follows:

Step Action

1
Open the Hardware Catalog by clicking the Hardware Catalog button Eﬂ
Logic Builder toolbar if it is not already opened.

in the SoMachine

2 Select the tab Controller in the Hardware Catalog.
Result: The controllers suitable for your SoMachine project are displayed in the Hardware
Catalog.

3 Select a controller entry in the Controller tab, drag it to the Devices tree and drop it at a suitable

node. You can drop a controller at any empty space inside the Devices tree.
Result: The controller is added to the Devices tree as a new node with different subnodes
depending on the controller type.

60 EI00000000067 06/2017

Managing Devices

Adding Expansion Devices by Drag and Drop
To add an expansion device to a controller, proceed as follows:

Step

Action

1

Open the Hardware Catalog by clicking the Hardware Catalog button @ in the SoMachine
Logic Builder toolbar if it is not already opened.

Select the tab Devices & Modules in the Hardware Catalog.
Result: The expansion devices suitable for your SoMachine project are displayed in the
Hardware Catalog.

Select your expansion device, drag it to the Devices tree and drop it at a suitable subnode of a
controller.

NOTE: Suitable subnodes are expanded and highlighted by SoMachine.

Result: The expansion device is added to the Devices tree below the subnode of the controller.

If the expansion device requires a communication manager, this node is added automatically to
the Devices tree.

If several communication managers are available for your expansion device, a dialog box is
displayed allowing you to select the suitable communication manager.

Adding Devices and Modules by Drag and Drop
To add a field device to a controller, proceed as follows:

Step Action

! L |
Open the Hardware Catalog by clicking the Hardware Catalog button in the SoMachine
Logic Builder toolbar if it is not already opened.

2 Select the tab Devices & Modules in the Hardware Catalog.
Result: The field devices suitable for your SoMachine project are displayed in the Hardware
Catalog.

3 Select a field device entry in the Devices & Modules catalog view, drag it to the Devices tree,
and drop it at a suitable subnode of a controller.
NOTE: Suitable subnodes are expanded and highlighted by SoMachine.
Result: The field device is added to the Devices tree below the subnode of the controller.

4 If the field device requires a communication manager, this node is added automatically to the
Devices tree.
If several communication managers are available for your field device, a dialog box is displayed
allowing you to select the suitable communication manager.

EI00000000067 06/2017 61

Managing Devices

Adding Devices from Device Template by Drag and Drop
To add a device from a device template, proceed as follows:

Step

Action

1

Open the Hardware Catalog by clicking the Hardware Catalog button @ in the SoMachine
Logic Builder toolbar if it is not already opened.

Select the tab Devices & Modules in the Hardware Catalog.

Select the option Device Template at the bottom of the Devices & Modules tab.
Result: The device templates suitable for your SoMachine project are displayed in the Devices
& Modules tab.

Add them to the Devices tree as described in the Adding Devices from Template chapter
(see page 752).

Adding Devices from Function Template by Drag and Drop

To add a device from a function template, proceed as follows:

Step

Action

1

Open the software catalog by clicking the Software Catalog button L—S in the SoMachine Logic
Builder toolbar if it is not already opened.

Select the tab Macro in the Software Catalog.
Result: The function templates available in SoMachine are displayed in the Software Catalog.

Select a function template entry in the Macro view, drag it to the Devices tree, and drop it at a
suitable subnode of a controller.

NOTE: Suitable subnodes are expanded and highlighted by SoMachine.

Result: The device based on the function template is added to the Devices tree.

62

EI00000000067 06/2017

Managing Devices

Section 5.2
Adding Devices by Context Menu or Plus Button

What Is in This Section?
This section contains the following topics:

Topic Page
Adding a Controller 64
Adding Expansion Devices 65
Adding Communication Managers 66
Adding Devices to a Communication Manager 68
Adding Devices from Template 70

EI00000000067 06/2017 63

Managing Devices

Adding a Controller

Introduction

As an alternative to dragging and dropping devices on the Devices tree, click the green plus button
that is displayed at the suitable node in the Tree. Alternatively, you can right-click a node of the
Tree to add a suitable device using the context menu. The Add Device dialog box opens that allows
you to determine whether the device will be appended, inserted, or plugged to the selected node
(see SoMachine, Menu Commands, Online Help).

When you add a controller to your project, several nodes are automatically added to the Devices
tree. These subnodes are controller-specific, depending on the functions the controller provides.

The following paragraph describes the general procedure of adding a controller. For details on a
specific controller, refer to the programming manual for your particular controller.

Adding a Controller
To add a device to your SoMachine project, proceed as follows:

Step

Action

1

Select a project node, click the green plus button of the node, or right-click the project node and
select the Add Device... command from the context menu.
Result: The Add Device dialog box opens.

In the Add Device dialog box, select Schneider Electric from the list box Vendor.

Choose the controller you want to insert into the project.

Rename your device by typing a name in the text box Name.

NOTE: Choose a name that complies to the IEC standard. Do not use special characters, leading
digits, or spaces within the name. The name must not exceed a length of 32 characters. If you do
not rename the device, a name is given by default.

Naming the device meaningfully may ease the organization of your project.

Click the Add Device button.

Result: The selected controller is added to the project and appears as a new node in the Devices
tree. The Add Device dialog box remains open. You can do the following:

® You can add another controller by going back to step 3.

e Or you can click the Close button to close the Add Device dialog box.

64

EI00000000067 06/2017

Managing Devices

Adding Expansion Devices
Available Expansion Devices

For alist of expansion devices available for the different controllers, refer to the Supported Devices
chapter of the SoMachine Infroduction document.

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Only use software approved by Schneider Electric for use with this equipment.
e Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Adding Expansion Devices
To add expansion devices to your device, proceed as follows:

Step Action

1 Select a controller node and click the green plus button of the node or right-click the controller node and
select the Add Device... command from the context menu.
Result: The Add Device dialog box opens.

2 In the Add Device dialog box, select Schneider Electric from the Vendor list.

Choose the expansion device you want to add to your controller from the Device list below.

4 Rename your expansion device by typing a name in the text box Name.

NOTE: The name must not contain any space character. If you do not rename the expansion device, a
name is given by default.

Naming the expansion device meaningfully may ease the organization of your project.

5 Click the Add Device button.

Result: The selected expansion device is added to the project and is displayed in the Devices Tree as a
new subnode of your controller.

The Add Device dialog box remains open. You can do the following:

® You can add another expansion device by going back to step 3 of this description.

® Or you can click the Close button.

NOTE: When you add a TWDNOI10M3 object (AS-Interface Master Module), the corresponding

Virtual AS interface bus fieldbus manager will automatically be inserted. For further information on
AS interface configuration, refer to the chapter in the Modicon M238 Logic Controller Programming
Guide (see Modicon M238 Logic Controller, Programming Guide).

Expansion Device Configuration

For more information about configuration, refer to the Programming Guide of your expansion
device.

EI00000000067 06/2017 65

Managing Devices

Adding Communication Managers

Overview

Communication managers are mandatory to activate and configure any hardware bus interface,
for example CANopen or serial line.

2 types of communication managers exist:

e Fieldbus managers which allow to configure fieldbus devices (for example CANopen slaves or

Modbus slaves)

e general communication managers

Communication managers available in SoMachine are listed below:

Name Interface type | Description

ASCII Manager Serial line Used to transmit and/or receive data with a simple device.

SoMachine-Network Manager | @ Serial line | Use it if you want to connect an XBTGT, XBTGK, XBTGH

(max. 1) or SCU HMI through SoMachine protocol offering
e FEthernet transparent exchange of data and multiple download
(max. 3) capability (download of controller and HMI applications

through 1 unique connection PC-controller or PC-HMI).
A maximum of 4 connections is available: 1 for SoMachine
(even if a USB connection is used), 3 for Ethernet.

Modbus IOScanner Serial line Modbus RTU or ASCII protocol manager used to define
implicit exchanges (I/O scanning) with Modbus slave
devices.

Modbus Manager Serial line Used for Modbus RTU or ASCII protocol in master or slave
mode.

CANopen Optimized CAN CANopen manager for optimized controllers (M238, M241,
XBTGC, XBTGT, XBTGK, SCU HMI, ATV IMC)

CANopen Performance CAN CANopen manager for performance controllers (M251,
M258 and LMC058 and LMCO078)

CANmotion CAN CANmotion manager for LMC058 and LMCO078 Motion
Controller CAN1 port only.

Modbus TCP Slave Device Ethernet Modbus TCP manager for controllers with Ethernet port.

EtherNet/IP Ethernet EtherNet/IP manager for controllers with Ethernet port

(M251, M258, LMC058 and LMCO078).

66

EI00000000067 06/2017

Managing Devices

Adding the Communication Manager
Communication managers are automatically added with the respective device.

To add a communication manager separately, proceed as follows:

Step

Action

1

In the Devices Tree, select the bus interface (Serial Line, CANO, CAN1, Ethernet) and click the
green plus button of the node or right-click the bus interface node and execute the Add Device...
command from the context menu.

Result: The Add Device dialog box opens.

In the Add Device dialog box, select Schneider Electric from the list box Vendor.
Note: You can sort the devices by brand by clicking the list box Vendor.

Select the Communication manager from the list below.

Rename your device by typing a name in the Name textbox.

Note: Do not use spaces within the name. If you do not rename the device, a name is given by
default.

Naming the device meaningfully may ease the organization of your project.

Click the Add Device button.

Click the Close button to close the Add Device dialog box.

Configure the Communication manager.

EI00000000067 06/2017

67

Managing Devices

Adding Devices to a Communication Manager

Overview

You can add field devices to the communication manager by selecting the field device manager
node (for example, CANopen or Modbus manager) in the Devices Tree and clicking the green plus
sign. Alternatively, you can right-click the field device manager node in the Devices Tree and
execute the Add Device command.

As a prerequisite, the device must be available in the Device Repository dialog box
(see SoMachine, Menu Commands, Online Help).

Adding Devices

Step Action

1 Select the field device manager node (CANopen or Modbus manager) in the
Devices Tree and click the green plus sign, or right-click the field device manager
node and select the Add Device... command from the context menu.

Result: The Add Device dialog box opens.

2 In the Add Device dialog box, select Schneider Electric from the list box Vendor.
Note: You can sort the devices by brand by clicking the list box Vendor.

Select the device of your choice from the list below.

Rename your device by typing a name in the Name textbox.

NOTE: Do not use spaces within the name. Do not use an underscore character
(L) at the end of the name.

If you do not rename the device, a name is given by default.
Naming the device meaningfully may ease the organization of your project.

5 Click the Add Device button.
Result: The field device is added to the field device manager.

NOTE: The Add Device dialog box remains open.

You can do the following:

® You can add another device by going back to step 2.
® You can click the Close button.

Access to Diagnostic Information
To get diagnostic information of devices on CANopen, use the CAA_CiA405.library.

Access to Configuration Diagnostic (for Advanced Users)

You can use the options Abort if error and Jump to line if error in the Service Data Object tab of
the CANopen configurator to manage potential configuration inconsistencies.

68 EI00000000067 06/2017

Managing Devices

To optimize the CAN master performance, CAN diagnostics are external from the CAN master in
the controller. The CAN diagnostic structure is defined in the CanConfig Extern library available in
the Library Manager.

The structure g_aNet Di agnosi s contains the most recent diagnostic information from the
slaves. The structure is updated every time a slave is configured, for whatever reason.

This structure can be used within the program to do the following:

e Monitoring the response of the slaves configured via SDO messages.

e Monitoring the master for any abort messages from the slaves before allowing a machine /
application start-up.

This structure must be in place and active within the user application during testing, debugging and
commissioning of the application. When the machine and its controlling application have been
commissioned and validated, then it would be possible to disable this code from execution to
reduce traffic on the CANopen network.

However, if during the lifecycle of an application and the machine or process that it controls, slaves
are added or replaced in the operational system, then the diagnostic structure should continue to
remain active in the application.

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Use the g_aNetDiagnosis data structure within the application to monitor CAN slave
responses to configuration commands.

e Verify that the application does not start up or put the machine or process in an operational
state in the event of receiving SDO abort messages from any of the CAN slaves.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 69

Managing Devices

After adding the CanConfig Extern library to your application, use the Net Diagnostic definition
within your application to test for SDO abort messages from the CAN slaves.

The following code example illustrates the use of the CAN diagnostic data structure:

| F g_aNet Di agnosi s[CAN_Net _Nunber] . ct SDOErr or Counter = 0 THEN
(* No error is detected in the configuration*)
ELSE
(* An error has been detected during configuration. Get the |atest
error information.*)
/1 node ID of the slave which sent the abort code
ReadlLast Error Nodel D : = g_aNet Di agnosi s[CAN_Net _Nunber] . usi Nodel D;
/1 index used in the aborted SDO
ReadLast Error | ndex : = g_aNet Di agnosi s[CAN_Net _Nunber] . w ndex;
/1 sublndex used in the aborted SDO
ReadLast Err or Subl ndex := g_aNet Di agnosi s[CAN_Net Nunber] . bySubl ndex

/1 SDO abort code

ReadLast Er r or SdoAbor t Code : = g_aNet Di agnosi s [CAN_Net _Nunber] . udi Ab
or t Code;

(* Do not allow the start-
up or other operation of the nachine or process *)
END | F

NOTE: In this example, the CAN_Net _Nunber would be 0 for the CANO port and, if the controller
is so equipped, 1 for the CAN1port.

Adding Devices from Template

Overview

Itis also possible to add a new device using a device template. For a description of this procedure,
refer to the Managing Device Templafes section (see page 752).

70 EI00000000067 06/2017

Managing Devices

Section 5.3
Updating Devices

Updating Devices

Introduction

The update device function allows you to replace a device selected in the Devices tree
e by another version of the same device or
e by a different type of device.

Updating Devices

To replace a device of your SoMachine project by another version or by a different device, proceed
as follows:

Step

Action

1

Select the device you want to replace in the Devices free and execute the command Update Device...
from the Project menu.

OR

Right-click the device you want to replace in the Devices tree and select the command Update
Device... from the context menu.

Result: The Update Device dialog box opens.

OR

Right-click the device you want to replace in the Devices tree and select the command Add Device...
from the context menu. In the Add Device dialog box select the Action: Update device.

Result: The Add Device dialog box is converted into the Update Device dialog box.

From the Device: list, choose the device that should replace the current device.
To select a specific version of the device, select the options Display all versions (for experts only)
and/or Display outdated versions.

If necessary to distinguish the devices, rename your device by typing a name in the text box Name.
Otherwise, the same name will be used for the updated device.

If the device is updated by a different device type, then the description of the device type (in brackets
behind the device name) will be automatically adapted.

Naming the device meaningfully may ease the organization of your project.

Click the Update Device button.

Result: The device that had been selected in the Devices tree is replaced by the new device type or
the new version. The new device type or the new version is now displayed at the selected node in the
Devices tree.

EI00000000067 06/2017 71

Managing Devices

Effects after Updating a Device

The subdevices that are located in the Devices tree below the device you updated are
automatically updated as well.

The device configuration settings are not modified if the device type has not been changed.

If the update procedure causes any mismatch in the existing configuration, this is detected at the
next Build run of the application. Detected mismatches are indicated by appropriate messages.
This also concerns implicitly added libraries which will not be removed automatically and
appropriately at a device update.

72

EI00000000067 06/2017

Managing Devices

Section 5.4

Converting Devices

Converting Devices

Introduction

SoMachine 4.0 and later versions allow you to convert a device that is configured in your project
to a different, but compatible device. SoMachine automatically converts the currently configured
device into the selected device and displays the changes that are made in the Messages view.

The Convert Device command may automatically add or remove modules. These hardware
changes also have influences on the addressing and the libraries.

To help to avoid unintended behavior after a device was converted:

e Verify that the new device supports all functions and communication ports that are required in
your project.

e Avoid using direct addresses in your application.

e Perform a backup of the project to the hard disk of the PC before converting a device.

A WARNING
UNINTENDED EQUIPMENT OPERATION

e Verify that any direct addresses used in your application (for example, % B5) have been
converted correctly after device conversion.

e Verify that the modified project contains the intended configurations and provides the intended
functionnality after you have converted the device.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTICE

LOSS OF DATA
Perform a backup of the project to the hard disk of the PC before converting a device.

Failure to follow these instructions can result in equipment damage.

EI00000000067 06/2017 73

Managing Devices

Converting a Device

To convert a device to a compatible device, proceed as follows:

Step Action
1 Perform a backup of the project to the hard disk of the PC by executing the File - Save Project As...
command before converting a device.
2 Right-click the device you want to convert in the Devices Tree.

Selected devices
Name: TM238LDD24DT
Type: TM238LFAC24DR
Version: 2.0.40.6

Compatible devices

Manufacturer: | Schneider Electric

terminal blocks.

Select the Convert Device command from the context menu.
Result: The Convert Device dialog box is displayed. It lists those devices that are compatible to the device
you selected and provides further information on the selected device:

Convert device [Z]

Name Manufacturer Version
[=} -3 Logic Controller
=& m238
ﬁ_:] TM238LFDC24DT Schneider Electric 2.0.40.6
:’f_;l TM238LDA24DR Schneider Electric 2.040.6
] TM238LDD24DT Schneider Electric 20406
=)} -3 M258
@ TM258LD420T Schneider Electric 2.040.11
@8 TM258LD42DT4L Schneider Electric 2.0.40.11
B TM258LF42DT Schneider Electric 2.0.40.11
@E) TM258LF42DT4L Schneider Electric 2.0.40.11
|:] Display all versions (for experts only)
Information
Name: TM238LDA24DR
Manufacturer: Schneider Electric
Groups: PLCs
Version: 2.040.6
Model number: TM238LDA24DR
Description: Compact base controller - AC Power Supply, 14 normal inputs, 6 Relay

outputs, 4 transistor outputs (0.5 A). Timer and calendar. Removable

>

OK

][Cancel]

74

EI00000000067 06/2017

Managing Devices

Step Action

4 Select the device from the list in which you want to convert your currently configured device.
To display the available versions of a device, select the option Display all versions (for experts only).

5 If you have not yet performed a backup of your project, click Cancel to stop without changes and perform
a backup before you start the procedure once again.
To start the conversion, click OK.
Result: The currently configured device is converted into the device you selected from the list. The
information you entered is conserved if the related modules are still available. Any modifications or
configurations that could not be converted are listed in the Messages view.

6 Check whether the converted project still contains the intended configurations and provides the intended
functions. If not, adapt the configuration or restore the backup of the unchanged project file.

Conversion Information in the Messages View

The following information is displayed in the Messages view for the conversion process:
e the source devices and the target devices they have been converted to

e the parameters that have not been transferred to the target

e the devices that have not been converted

To save the information displayed in the Messages view, you can copy it to the clipboard (press
CTRL + C) and paste it to a data file (press CTRL + V).

Special Case: Converting an HMI Device to Another HMI Device with Higher Screen Resolution

Like the other devices, you can also convert an HMI device to another HMI device. In this case,
the Convert Device dialog box includes an additional option for HMI devices that allows automatic
adaptation to a higher screen resolution.

EI00000000067 06/2017 75

Managing Devices

Convert Device dialog box for HMI devices

Change Device

Device
Device Type Vendor Device Version ~

| [f] xBTGT2330/2930 with Control Schneider Electric 2.0.2.19

pod :ﬂ XBTGT2430 with Control Schneider Electric 2.0.2.19
e _ﬂ XBTGT4000 Series(With Control)

i) xBTGT4330 with Control Schneider Electric 2.0.2.19

d E XBTGT4340 with Control Schneider Electric 2.0.2.19
EJ Eﬂ XBTGT5000 Series(With Control)

[[) x8TGT5230 with Control Schneider Electric 2.0.2.19

P 3 XBTGT5330 with Control Schneider Electric 2.0.2.19

:ﬂ XBTGT5340 with Control Schneider Electric 2.0.2.19

i :ﬂ XBTGT5430 with Control Schneider Electric 2.0.2.19
F‘_, ﬁ] XBTGT6000 Series(With Control)

i I‘l XBTGT6330 with Control Schneider Electric 2.0.2.19

[[H[xeTeT6340 with Control | Schneider Electric 2.0.2.19
= |jj XBTGT7000 Series(With Control)

ﬂ XBTGT7340 with Control Schneider Electric 2.0.2.19 -

Information

Description: XBTGT6340 (800x600)

Adapt to increased screen resolution

[Automatically resize the Panel contents, Popup Windows and Font Resources in Vijeo-Designer.
You cannot undo this process.

[Change DeviceJ [Cancel J

If the new HMI device has a bigger screen and thus a higher screen resolution, the option Adapt
to increased screen resolution is by default enabled. It automatically adapts the contents of the
HMI panels and the popup windows as well as the fonts of the HMI panels to the increased screen
resolution of the new HMI device.

NOTE: This process cannot be undone automatically. Verify and, if necessary, manually adapt the
contents of the panels after the conversion.

76

EI00000000067 06/2017

Managing Devices

Section 5.5

Converting Projects

Converting SoMachine Basic and Twido Projects

Introduction

With SoMachine, you can convert a SoMachine Basic or TwidoSoft/TwidoSuite project and the
configured controller to a selectable SoMachine logic or HMI controller (see page 887). The
controller and the corresponding logic are converted and integrated in the SoMachine project.

SoMachine provides different ways to execute this conversion process:

e In SoMachine Central, execute the command Convert... - Convert Twido Project... or
Convert... » Convert SoMachine Basic Project... from the Main Menu (see SoMachine Central,
User Guide). The Convert SoMachine Basic Project dialog box or Convert Twido Project dialog
box opens.

e In SoMachine Logic Builder, execute the File -~ Convert SoMachine Basic Project or the File
- Convert Twido Project command. The Convert SoMachine Basic Project dialog box or
Convert Twido Project dialog box opens. If the commands are not available, you can insert them
in a menu of your choice by using the Tools -~ Customize dialog box (see SoMachine, Menu
Commands, Online Help).

e In SoMachine Central, open a SoMachine Basic or Twido project. To achieve this, click the
Open an existing project button, or click Open Project in the Get started screen to open the
Open project dialog box. Select the option Twido Project files (*.xpr, *.twd, *.xar) or SoMachine
Basic Project files (*.smbp) from the list of All supported files and browse for your SoMachine
Basic or Twido project. Click the Open button to open the Convert SoMachine Basic Project
dialog box or the Convert Twido Project dialog box.

The SoMachine Basic versions supported by this conversion mechanism are listed in the release
notes of SoMachine. If you convert a SoMachine Basic project that was created with a SoMachine
Basic version that is newer than the latest supported version, this is indicated by a message in the
Messages view (see SoMachine, Menu Commands, Online Help). You can then continue or
cancel the conversion. If you continue, the application will be converted, but it may not be possible
to do so without encountering errors that will need to be rectified. In this case, review and verify
both the message view and your application before attempting to put it into service.

NOTE: Verify that the SoMachine Basic or Twido project is valid before you convert it into
SoMachine.

NOTE: It is not possible to convert password-protected projects.

To help to avoid unintended behavior after a project was converted, verify that the target controller
supports the functions and communication ports that are required in your project.

EI00000000067 06/2017 77

Managing Devices

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Verify that the program for the target controller contains the intended configurations and
provides the intended functions after you have converted the project.

e Fully debug, verify, and validate the functionality of the converted program before putting it into
service.

e Before converting a program, verify that the source program is valid, i.e., is downloadable to
the source controller.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: For more information, advice and important safety information concerning importing
projects into SoMachine, see the SoMachine Compatibility and Migration User Guide
(see SoMachine Compatibility and Migration, User Guide).

78

EI00000000067 06/2017

Managing Devices

Converting a SoMachine Basic or a Twido Project
To convert a SoMachine Basic or a Twido project, proceed as follows:

Step Action

1 To start the conversion process, perform one of the three actions in the SoMachine Central or the
SoMachine Logic Builder (as listed in the /nfroduction block of this chapter (see page 77)).
Result: The Convert SoMachine Basic Project dialog box or Convert Twido Project dialog box opens:

E¥ Convert Twido Project (9] (=)}

Device Name: MyController
Project File: D:\Temp\BasicProjects\Test HSC.smbp —
Implementation Language: Ladder Logic Diagram (LD) 4

Upgrade TM2 Modules to TM3

Devices
Device Type Vendor Device Version
[=} 2 Logic Controller
= m241
(Z) TM241CEC24T Schneider Electric 2.0.40.26
(£) TM241CEC24R Schneider Electric 2.0.40.26
(@ TM241CE40T Schneider Electric 2.0.40.26
(@ TM241CE24T Schneider Electric 2.0.40.26
(@ TM241C40T Schneider Electric 2.0.40.26
([T™M241C24T Schneider Electric ~ 2.0.40.26
[TM241CE40R Schneider Electric ~ 2.0.40.26
(1) TM241CE24R Schneider Electric ~ 2.0.40.26
(@ TM241C40R Schneider Electric 2.0.40.26
i () T™M241C24R Schneider Electric ~ 2.0.40.26
=} HMI Controller
[=} @ HMISCU Series
Schneider Electric 3.5.3.22
HMISCUxBS Schneider Electric 3.5.3.22

Information

Description: Magelis HMISCU with QVGA 65K color touch screen display -
24Vdc, 128MB Flash Memory, 1 CANopen SubD9 port, 1 serial line RJ45-

RS485/232, 1 Ethernet RJ45 port, 2 USB ports, 16 Digital sink inputs (14 g
normal + 2 Fast Transistor) and 10 Digital source outputs (8 Relay + 2 Fast
Transistor).
[Convet | [Cancel |
2 Enter a name for the controller in the Device Name field.

EI00000000067 06/2017 79

Managing Devices

Step Action

3 Enter the path to the SoMachine Basic or Twido project file in the Project File box, or click the ... button
to browse for the file.

NOTE: If you already browsed for your SoMachine Basic or Twido project in the Open project dialog box,
the path has been entered automatically in the Project File field and cannot be edited.

4 Select the programming language in which the logic will be converted from the Implementation Language
list.

The following programming languages are supported:
o Ladder diagram (LD)

® Function block diagram (FBD)

® |Instruction list (IL)

o Continuous function chart (CFC)

5 Select the target controller from the Devices list in which you want to convert your SoMachine Basic or
Twido controller. Further information on the selected device is displayed in the Information area of the
dialog box.

6 Click Convert to start the conversion.

Result: The SoMachine Basic or Twido project is converted and integrated in the open SoMachine
project. Modifications or configurations that could not be converted are listed in the Messages view
(see SoMachine, Menu Commands, Online Help).

7 Consult the category Project Conversion of the Messages view and verify the errors and alerts detected
and listed.

8 Verify whether the converted project contains the intended configurations and provides the intended

functions. If not, adapt the configuration.

IEC Compatibility of Object and Variable Names

Object names and variable names in SoMachine projects have to comply with the naming
conventions defined in the IEC standard. Any names in your SoMachine Basic or Twido project
that do not comply with the standard are automatically adapted to IEC conventions by the
converter.

If you want to preserve names that are not IEC-compatible in the converted SoMachine project,
activate the option Allow unicode characters for identifiers in the Project Settings - Compile
options dialog box (see SoMachine, Menu Commands, Online Help).

TwidoEmulationSupport Library

The TwidoEmulationSupportlibrary (see Twido Emulation Support Library, Library Guide)contains
functions and function blocks that provide SoMachine Basic and TwidoSoft/TwidoSuite
functionality in a SoMachine application. The TwidoEmulationSupport library is automatically
integrated in the SoMachine project with the converted controller.

80

EI00000000067 06/2017

Managing Devices

Conversion of the Application Program

In the target SoMachine project, separate programs are created for each SoMachine Basic POU
and free POU and for each Twido subroutine and program section. The programming language
that is used for these programs is determined by the Implementation Language selected in the
Convert SoMachine Basic Project / Convert Twido Project dialog box. An exception is made for
POUs that were programmed in graphical Grafcet. They are converted to an SFC program. For
detailed information, refer to the Grafcet section in this chapter (see page 88).

For each language object (such as memory objects or function blocks) being used by the
application program, one global variable is created. Separate global variable lists (see page 207)
for the different object categories (one for memory bits, one for memory words and so forth) are
created.

The following restrictions apply for the conversion of the application program concerning the

program structure:

e In SoMachine, it is not possible to jump to a label (see page 292)in another program.

e It is not possible to define Grafcet steps in a subprogram.

e It is not possible to activate or deactivate Grafcet steps (per # and D# instruction) in a
subprogram.

Conversion of Memory Objects
The areas provided for memory objects in SoMachine Basic and Twido differ from SoMachine.
In SoMachine Basic and Twido, there are three distinct areas for memory objects:

Area Memory objects included
memory bit area memory bits (%)
memory word area ® memory words (Y

e double words (%vD)
e floating point values (%vF)

constant area ® constant words (9KW
e double words (%KD)
e floating point values (%KF)

In SoMachine, there is only the memory word area for memory objects:

Area Memory objects included

memory word area ® memory words (Y

e double words (%vD)

e floating point values
There is no specific addressing format for floating point values.
Floating point variables can be mapped on a %D address.

EI00000000067 06/2017 81

Managing Devices

The graphic provides an overview of the different layouts of %vD and %V addresses in SoMachine

Basic / Twido and SoMachine.

%MWO %MWO
%MDO0/%MFO %MDO
%MW1 %MW1
%MD1/%MF1 PR
0,
w2 %MD2/%MF2 - %MD1
%MW3 SMW3
. %MD3/%MF3 P
0 ‘o
%MD4/%MF4 %MD2
%MW5 %MW5

1 Memory addresses in SoMachine Basic / Twido
2 Memory addresses in SoMachine

Memory objects are converted as follows:

Source memory objects

Target memory object

Further information

%W

Mapped to the same %WV address

Example
%W is mapped on %W\2.

For each %W\object, a global
variable of type INT is created.

%D and %vF with even
addresses

Mapped such that they are located
on the same %WVaddress as
before.

Example

%vD4 | %vF4 are mapped on %vD2.

For each %D object, a global
variable of type DINT is created.
For each used %VF object, a global
variable of type REAL is created.

%D and %F with uneven
addresses

Cannot be mapped because a
DINT variable cannot be located
on an odd word address.

A variable is created to help ensure
that the converted application can
be built. However, you need to
examine the effect that such
variable creation has on the overall
functionality of your program.

9

Mapped as a packed bit field to a
fix location in the ¥%Warea.

For each %M object, a global
variable of type BOOL is created.

82

EI00000000067 06/2017

Managing Devices

Source memory objects Target memory object Further information
9KW Mapped to consecutive addresses | For each used %&KWobject, a global
of the %Warea. variable of type INT is created.

The relationship between ¥KW %KD, and %KF objects is the same as for %W %D, and %V objects.
For example, %KD4 / %KF4 are mapped on the same location as %&KW. Uneven %KD / %KF
addresses cannot be mapped.

Remote Access

Memory objects (%W %D, %vF, and %) can be accessed by a remote device through Modbus

services:

e |f a remote device accesses YW %D or %vF objects in the source application, this access will
still be available in the SoMachine application.

e If a remote device accesses %Mobjects in the source application, this access will no longer be
available in the SoMachine application.

Conversion of Function Blocks

For the following function blocks in SoMachine Basic / Twido, the TwidoEmulationSupport library
provides function blocks with compatible functions:

SoMachine Basic / Twido function block TwidoEmulationSupport library function block

Timers %9'M FB_Ti nmer

Counters %C FB_Count er

Register %R FB_Fi Fo/FB_Li Fo

Drum YDR FB_Drum

Shift bit register “5BR FB_Shi ftBi t Regi ster

Step counter ¥68C FB_St epCount er

Schedule %5CH FB_Schedul eBl ock

PID FB_PI D

Exchange / message %VBG FB_EXCH

High-speed counter %SC/ %/FC They are converted as described in the section

Fast counter YEC Cor? version of Fast Counters, High-speed Counters
(Twido. Very Fast Counters) and Pulse Generafors

PLS pulse generator %°LS (see page 86) of this chapter.

PWM pulse generator %P\

PTO function blocks %°TO, 9%VC_xxx_PTO

Frequency generator %-REQGEN

EI00000000067 06/2017 83

Managing Devices

SoMachine Basic / Twido function block TwidoEmulationSupport library function block

Communication function blocks FB_ReadVar, FB WiteVar, FB_WiteReadVa
READ VAR, WRI TE_VAR WRI TE_READ VAR , |r,andFB_SendRecvMsg
and SEND_RECV_MBG

SMS function block SEND_RECV_SMS They are not converted.
MC_Mbot i onTask_PTO

Drive function blocks %VC_xxx_ATV

For the conversion of function blocks, note the following:

e The TwidoEmulationSupport library does not provide any function blocks for hardware-related
functions, such as high-speed counters, fast counters, and the pulse generators. They must be
controlled through function blocks provided by the platform-specific HSC and PTO_PWM
libraries. These function blocks are not compatible with the source function blocks. In short, a
full conversion is not possible if the source program contains functions based on controller
hardware resources. For further information, refer to the description Conversion of Fast
Counters, High-speed Counters (Twido: Very Fast Counters) and Pulse Generators
(see page 86).

e In SoMachine Basic / Twido, the messaging function is provided by the EXCHx instruction and
the %vBGx function block. In the SoMachine application, this function is performed by a single
function block FB_EXCH.

e In SoMachine Basic / Twido, certain function blocks can be configured using special
configuration dialog boxes. This configuration data is provided to the function blocks of the
TwidoEmulationSupport library by dedicated parameters.

Conversion of System Variables

The following system bits and words are converted:

System bit / word Further information

%80 Is set to 1 in the first cycle after a cold start.
NOTE: Itis not possible to trigger a cold start by writing to this system
bit.

%81 Is set to 1 in the first cycle after a warm start.
NOTE: Itis not possible to trigger a warm start by writing to this system
bit.

9B4 Pulse with the time base 10 ms.

%85 Pulse with the time base 100 ms.

986 Pulse with the time base 1 s.

us7 Pulse with the time base 1 min.

%813 Is set to 1 in the first cycle after the controller was started.

84

EI00000000067 06/2017

Managing Devices

System bit / word

Further information

%518

Is set to 1 if an arithmetic overflow occurs.

NOTE: This flag is provided by the TwidoEmulationSupport library and
is only set by functions provided by this library.

%6521 |, 822

Are only written. Reading is not supported for these variables.

%8113 Stops the Modbus Serial IOScanner on serial line 1.
%B114 Stops the Modbus Serial IOScanner on serial line 2.
YEW63. . . 65 Error code of the MSGblocks 1...3.

YBWL14 Enable flags for the schedule blocks.

Other system variables are not supported by the conversion. If an unsupported system variable is
used by the source application program, a message is generated in the category Project
Conversion of the Messages view (see SoMachine, Menu Commands, Online Help).

Conversion of Retain Behavior

The variables and function blocks in SoMachine Basic / Twido are retain variables. This means,
they keep their values and states even after an unanticipated shutdown of the controller as well as
after a normal power cycle of the controller.

This retain behavior is not conserved during conversion. In SoMachine, the converted variables
and function blocks are regular, which means that they are initialized during unanticipated
shutdown and power cycle of the controller. If you need retain variables in your SoMachine
application, you have to declare this attribute keyword (see page 524) manually.

Conversion of Animation Tables

Management of animation tables differs in the source and target applications:
e SoMachine Basic / Twido allow you to define multiple animation lists identified by name. Each
animation list can contain multiple entries for objects to be animated. For each variable, you can

select the option Trace.

e In SoMachine, there are 4 predefined watchlists (see page 422) (Watch 1...Watch 4). Each
watchlist can contain multiple variables to be animated. One watchlist can contain variables

from different controllers.

For those variables that have the option Trace selected in SoMachine Basic / Twido, SoMachine
creates a trace object. You can view these variables in the trace editor (see page 453).

During the conversion process, the entries of the source animation tables are added at the end of

watchlist Watch 1.

EI00000000067 06/2017

85

Managing Devices

Conversion of Symbols
Symbols defined in a SoMachine Basic / Twido project are automatically transferred into the

SoMachine project.

The following restrictions apply to the naming of symbols:

If...

Then ...

a symbol name does not comply with the naming
rules of SoMachine,

the name of the symbol is modified.

a symbol name is equal to a keyword of SoMachine,

the name of the symbol is modified.

no variable is created for a language object,

the name of the symbol is discarded.

a symbol is not used anywhere in the application
program,

the name of the symbol may be discarded.

For the complete list of symbol modifications that were required, refer to the Messages view.

Conversion of Fast Counters, High-Speed Counters (Twido: Very Fast Counters) and Pulse Generators

The function blocks provided by SoMachine differ from the function blocks provided by SoMachine
Basic / Twido. Nevertheless, the configuration of fast counters, high-speed counters, and pulse
generators is converted as far as possible. The following sections provide an overview of the

restrictions that apply.
General Restrictions
The following general restrictions apply:

Restriction

Solution

The inputs and outputs used by the converted high-
speed counters and pulse generators may differ from
the used inputs and outputs of the source application.

Take this into account in the wiring of the converted
controller.

The reassignment of inputs and outputs is reported in
the Messages view (see SoMachine, Menu
Commands, Online Help).

The SoMachine Basic controller may support a
different number of counters and pulse generators
than the selected target controller. The conversion
function only converts the counters and pulse
generators that are supported by the target controller.

You have to adapt your application manually.

Constraints Pertaining to the Conversion of %-C, %1SC/ %/FC, %4°LS, and %W

For each %-C, %SC/ W/FC, %°LS, and %°\WMfunction block being used in the SoMachine Basic /
Twido application, a single program is created in SoMachine. You can improve this basic
implementation according to the needs of your application.

86

EI00000000067 06/2017

Managing Devices

The following restrictions apply:

Restriction

Solution

The access to function block parameters is performed
differently in SoMachine Basic and SoMachine.

In SoMachine Basic, the parameters of a function
block can be accessed directly by the application
program, for example, %iSC. P = 100.

In SoMachine, a controller-specific function block (for
example, EXPERTSet Par am) has to be used to
access a parameter.

If the source application accesses parameters of the
function block, you have to extend the converted
application accordingly.

The behavior of counters differs in SoMachine from

SoMachine Basic / Twido when the preset value is set.

In Twido:

® The down counter continues counting if zero is
reached.

® The up counter continues counting if the preset
value is reached.

In SoMachine:

® The down counter stops counting if zero is
reached.

® The up counter starts to count from the beginning
if the preset value is reached.

You have to adapt your application manually.

The following parameters of SoMachine Basic
function blocks cannot be converted to SoMachine:
Function block %PLS:

e OQutput parameter D [Done]

e Parameter R [Duty Cycl e]

Function block %PWvt
e Parameter R [Duty Cycl e]

Function block %HSC:
® Output parameter U [Counting Direction]

You have to adapt your application manually.

Constraints Pertaining to the Conversion of PTO Function Blocks %°TOand %VC_XxXxxXx

For M241:

The PTO function blocks provided by SoMachine for M241 controllers are compatible with the
PTO function blocks provided by SoMachine Basic. PTO function blocks are converted without
restrictions. The only exception is the MC_Mot i onTask_PTOfunction block. The MC_Mbt i on-

Task_PTOis not converted.
For HMISCU:

The PTO function blocks provided by SoMachine for HMISCU controllers are not compatible with
the PTO function blocks provided by SoMachine Basic. PTO function blocks are not converted.

EI00000000067 06/2017

87

Managing Devices

Constraints Pertaining to the Conversion of Frequency Generator Function Block %-REQGEN

The frequency generator function block %-REQGEN is converted without restrictions for both M241
and HMISCU controllers.

Conversion of a Grafcet Program

You can write a Grafcet program in a textual or in a graphical way.

Grafcet type Description Supported by
Textual Various IL and LD programming elements | ® TwidoSoft/TwidoSuite
are available for the definition, activation, | @ SoMachine Basic
and deactivation of Grafcet states.
Graphical Allows you to draw the layout of steps, Only SoMachine Basic V1.4 and later
transitions, and branches in a graphical versions.
manner.

Conversion of Textual Grafcet

The programming languages of SoMachine do not support the programming with Grafcet.

For that reason, a converted Grafcet application contains additional language elements that
implement the Grafcet management.

Additional element

Description

folder Grafcet

This folder contains the following language elements used for the
management of the Grafcet state machine.

data structure GRAFCET_STATES

state.

itis FALSE.

This data structure has one bit element for each allowed Grafcet

If it is an initial state, the element is initialized to TRUE, otherwise

global variable list GrafcetVariables

the next cycle.

in the next cycle.

This global variable list contains the following variables:
e 1 variable STATES that contains 1 bit for each Grafcet state.

Each bit represents the current value of the corresponding
Grafcet state (%< object).

e 1 variable ACTI VATE_STATES that contains 1 bit for each
Grafcet state. If the bit is TRUE, the Grafcet state is activated in

e 1 variable DEACTI VATE_STATES that contains 1 bit for each
Grafcet state. If the bitis TRUE, the Grafcet state is deactivated

88

EI00000000067 06/2017

Managing Devices

Additional element

Description

program Grafcet

program.

This program implements the Grafcet state machine. It contains the

logic for the activation and deactivation of Grafcet steps.

The program contains the following actions:

® | nit initializes the Grafcet steps to their initial states. It is
executed when the system bit %521 is set by the application

® Reset resets the Grafcet steps to FALSE. It is executed when
the system bit %522 is set by the application program.

The Grafcet instructions in the application program are converted as follows:
e The beginning of each Grafcet step is marked by a label with the name of the step.
The first statement within the Grafcet step checks if the step is active. If not, it jumps to the label

of the next Grafcet step.

o The access to the %Xi is converted to an access to the STATES. Xi variable.

e A Grafcet activation instruction #i is converted to setting the activation bit of state i and the
deactivation bit of the current state.

e A Grafcet deactivation instruction #Di is converted to setting the deactivation bit of state i and
the deactivation bit of the current state.

You can extend the converted Grafcet program if you consider the information given in this section.

Conversion of graphical Grafcet

Graphical Grafcet is similar to the programming language SFC provided by SoMachine. For this
reason, a graphical Grafcet POU is converted to an SFC program, as far as possible.

There are the following differences between graphical Grafcet and SFC:

Graphical Grafcet

SFC

Further information

Can have an arbitrary number of
initial steps.

Must have exactly one initial step.

If the graphical Grafcet POU has
several initial steps, then the
converter creates several initial
steps in SFC. This has the effect,
that the converted application
cannot be built without errors being
detected.

Carefully adapt the converted
program.

Activation of multiple steps of an
alternative branch is allowed.

Only one step of an alternative
branch can be activated.

Carefully verify that the converted
program is working as expected.

The output transitions of a step are
evaluated right after the step has
been executed.

The transitions of the

SFC program are evaluated after
all active steps have been
executed.

Carefully verify that the converted
program is working as expected.

EI00000000067 06/2017

89

Managing Devices

Graphical Grafcet SFC Further information
The layout of steps, transitions, The layout of steps, transitions, The graphical layout is converted
and branches is relatively free. and branches is more restricted. | to SFC as far as possible. The

incompatibilities encountered
during the conversion are reported
in the Messages view.

The step actions and transition
sections are fully converted.
Complete the created SFC as
necessary.

A graphical Grafcet POU can be initialized by setting the system bit %521. If this bit is set in the
SoMachine Basic project, the converter activates the implicit variable SFCl ni t and uses it to
initialize the SFC program.

Conversion of TM2 Expansion Modules to TM3 Expansion Modules

Twido controllers only use TM2 expansion modules. Even though M221 and M241 Logic
Controllers can handle TM2 as well as TM3 modules, it is a best practice to use TM3 modules. To
convert the TM2 modules used in your Twido project into TM3 modules for the SoMachine project,
the option Upgrade TM2 Modules to TM3 is by default selected.

The TM2 expansion modules are converted into TM3 expansion modules as listed in the table:

Source TM2 expansion | Target Further information
module TM3 expansion
module

TM2DDI8DT TM3DI8 -
TM2DAI8DT TM3DISA -
TM2DDO8UT TM3DQ8U -
TM2DDOS8TT TM3DQ8T -
TM2DRA8RT TM3DQ8R -
TM2DDI16DT TM3DI16 -
TM2DDI16DK TM3DI16K -
TM2DRA16RT TM3DQ16R -
TM2DDO16UK TM3DQ16UK -
TM2DDO16TK TM3DQ16TK -
TM2DDI32DK TM3DI32K -
TM2DDO32UK TM3DQ32UK -
TM2DDO32TK TM3DQ32TK -
TM2DMM8DRT TM3DM8R -
TM2DMM24DRF TM3DM24R -

90 EI00000000067 06/2017

Managing Devices

Source TM2 expansion | Target Further information

module TMS3 expansion
module

TM2AMI2HT TM3AI2H -

TM2AMI4ALT TM3TI4 It is possible that the behavior of the converted
temperature module differs from the original module.
Carefully verify the converted module.

TM2AMISHT TM3AI8 -

TM2ARISHT - The TM2 modules TM2ARI8HT, TM2ARI8LRJ, and
TM2ARISLT are not converted because there is no
corresponding TM3 expansion module. You can replace
this module by two TM3TI4 modules.

TM2AMO1THT TM3AQ2 The target TM3 expansion module has more I/O channels
than the source TM2 module.

TM2AVO2HT -

TM2AMM3HT TM3TM3 -

TM2ALM3LT It is possible that the behavior of the converted
temperature module differs from the original module.
Carefully verify the converted module.

TM2AMI2LT TM3TI4 The target TM3 expansion module has more I/O channels
than the source TM2 module.

It is possible that the behavior of the converted
temperature module differs from the original module.
Carefully verify the converted module.

TM2AMMGHT TM3AM6 -

TM2ARISLRJ - The TM2 modules TM2ARI8HT, TM2ARI8LRJ, and
TM2ARISBLT are not converted because there is no
corresponding TM3 expansion module. You can replace
this module by two TM3TI4 modules.

TM2ARISLT - The TM2 modules TM2ARI8HT, TM2ARI8LRJ, and
TM2ARISLT are not converted because there is no
corresponding TM3 expansion module. You can replace
this module by two TM3TI4 modules.

NOTE: If you are using TM2 as well as TM3 expansion modules in your SoMachine project, note
their position in the tree structure: If TM3 nodes are located below TM2 nodes in the tree structure,
this is reported as a detected Build error in the Messages view.

EI00000000067 06/2017

91

Managing Devices

Conversion of Modbus Serial I0OScanner

Due to the differences between controller platforms, and especially for connected controller
equipment that depend on the proper functioning of the converted program, you must verify the
results of the conversion process. Whether or not errors or alerts are detected during the
conversion, it is imperative that you thoroughly test and validate your entire system within your
machine or process.

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Verify that the program for the target controller contains the intended configurations and
provides the intended functions after you have converted the project.

e Fully debug, verify, and validate the functionality of the converted program before putting it into
service.

e Before converting a program, verify that the source program is valid, i.e., is downloadable to
the source controller.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Configuration

The 10Scanner configuration is completely converted:

e The devices are converted to the Generic Modbus Slave device. The source device type is not
preserved.

e The device configuration is completely converted. This includes initialization requests, channel
settings, and reset variable.

Function Blocks

The drive function blocks for the control of Altivar drives over the Modbus I0Scanner
(MC_xxx_ATV) are not converted.

92

EI00000000067 06/2017

Managing Devices

Status Handling

Since the I0Scanner status handling differs for SoMachine Basic and SoMachine, these features
can only be partly converted. If your application uses IOScanner status information, verify that this

logic still works.

I0Scanner Status

Further information

Device Status (% WNSx)

converted.

Both SoMachine Basic and SoMachine provide status information for a
slave device, but the status values are different. The status logic is partly

Channel Status (% WNSX. y)

SoMachine does not provide status information for single channels. The
channel status is converted to the device status.

System words and bits:

965110/ %5111 (I0Scanner reset)

They are not converted.

%5113/ %8114 (IOScanner stop)

They are converted.

%SW210/ %6W211 (I0Scanner
status)

They are not converted.

Immediate I/O Access

The instructions READ_| MM_| Nand VRl TE_I MM_OUT of SoMachine Basic for immediate access

to digital local 1/0 channels are not converted.

For M241 controllers, you can use the functions Get | nredi at eFast | nput and Physi cal -
W it eFast Qut put s provided by the PLCSystem library, but consider the following differences:

READ | M I N and WRI TE_| MM _OUT instructions
(M221 controllers)

Get | mredi at eFast | nput and
Physi cal Wi t eFast Qut put s functions (M241
controllers)

Access to all local inputs and outputs.

Access only to fast inputs and outputs.

VRl TE_| MM_QOUT writes a single bit (similar to the

read function).
VRl TE_I MM_QUT returns an error code.

Physi cal Wi t eFast Qut put s writes fast outputs
at the same time.

Physi cal Wi t eFast Qut put s only returns the
information on which outputs have actually been
written.

The error codes of READ_| M _| Nand Get | medi at

eFast | nput differ.

READ | MM _| N updates the input object (% 0. x).

Get | medi at eFast | nput only returns the read
value but does not update the input channel.

NOTE: For HMISCU controllers, no equivalent function exists.

EI00000000067 06/2017

93

Managing Devices

Twido Communication Features

The following communication features of Twido are not converted:
e AS Interface

e CANopen

e remote link

If you use these communication features in your Twido application, you have to adapt the
SoMachine application manually.

During conversion, one variable is created for each related 1/0 object in order to allow the
SoMachine application to be built successfully. These variables are collected in separate global
variable lists. This helps you in identifying the variables to be replaced.

Detected Errors and Alerts Indicated in the Messages View

If errors or alerts are detected during the conversion process, a message box is displayed,
indicating the number of errors and alerts detected. For further information, consult the category
Project Conversion of the Messages view (see SoMachine, Menu Commands, Online Help). Verify
each entry carefully to see whether you have to adapt your application.

A WARNING
UNINTENDED EQUIPMENT OPERATION

o Verify that the program for the target controller contains the intended configurations and
provides the intended functions after you have converted the project.

e Fully debug, verify, and validate the functionality of the converted program before putting it into
service.

e Before converting a program, verify that the source program is valid, i.e., is downloadable to
the source controller.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

e A warning message indicates that the conversion process made some adjustments that, in all
likelihood, do not have impact on the functions of your application.

e An error message indicates that some parts of the application could not be fully converted. In
this case, you have to adapt the application manually in order to preserve the same functionality
in the target application.

e If the application program makes use of functionality that cannot be completely converted, the
converter creates variables for the unsupported language objects. This allows you to compile
your application successfully. However, verify this unsupported functionality after the
conversion.

To save the information displayed in the Messages view, you can copy it to the Clipboard (press
CTRL + C) and paste it to a data file (press CTRL + V).

94

EI00000000067 06/2017

Chapter 6

Common Device Editor Dialogs

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page

6.1 Device Configuration 96

6.2 1/0 Mapping 139
EI00000000067 06/2017 95

Common Device Editor Dialogs

Section 6.1

Device Configuration

What Is in This Section?

This section contains the following topics:

Topic Page
General Information About Device Editors 97
Controller Selection 98
Communication Settings 113
Configuration 116
Applications 118
Files 119
Log 121
PLC Settings 123
Users and Groups 125
Task Deployment 137
Status 138
Information 138

96

EI00000000067 06/2017

Common Device Editor Dialogs

General Information About Device Editors

Overview

The device editor provides parameters for the configuration of a device, which is managed in the

Devices tree.

To open the device editor for a specific device, do the following:
e Double-click the node of the device in the Devices tree or
e Select device in the Devices tree and execute the Edit Object command via the context menu

or via the Project menu.

The Tools - Options — Device editor dialog box allows you to make the generic device
configuration views invisible (see page 776).

This chapter describes the main device editor dialogs. Bus-specific configuration dialogs are

described separately.

Main Device Editor Dialogs

The title of the main dialog consists of the device name, for example MyPlc.

Depending on the device type, the device editor can provide the following tabs:

Tab

Description

Controller Selection (see page 98)

Configuration of the connection between programming system and a
programmable device (controller).

This is the default tab for SoMachine V4.0 and later versions. SoMachine V3.1
and earlier versions use the Communication Settings tab by default.

Communication Settings
(see page 113)

Configuration of the connection between programming system and a
programmable device (controller).

This is the default tab for SoMachine V3.1 and earlier versions.

SoMachine V4.0 and later versions use the Controller Selection tab by default.

Configuration (see page 7176)

Display or configuration of the device parameters.

Applications (see page 718)

List of applications currently running on the controller. Refer to the description
in the Program chapter (see page 749).

Files (see page 719)

Configuration of a file transfer between host and controller.

Log (see page 121)

Display of the controller log file.

PLC settings (see page 123)

Configuration of:

® application noticed for /0 handling
® |/O behavior in stop status

® bus cycle options

Users and Groups (see page 879)

User management concerning device access during runtime.

Access Rights (see page 883)

Configuration of the access rights on runtime objects and files for the particular
user groups.

EI00000000067 06/2017

97

Common Device Editor Dialogs

Tab

Description

Task Deployment (see page 137) Display of inputs and outputs assigned to the defined task - used for

troubleshooting.

Status (see page 138) Device-specific status and diagnostic messages.
Information (see page 138) General information on the device (for example: name, provider, version).
1/0 Mapping (see page 139) Mapping of the input and output channels of an I/0 device on project

(application) variables.

Controller Selection

Overview

The Controller selection view of the device editor provides access to the Network Device Identifi-
cation service. It allows you to scan the Ethernet network for available devices (such as controllers,
HMI devices) and to display them in a list. In this view, you can configure the parameters for the
communication between the devices (referred to as confrollers in this chapter) and the
programming system.

The list of controllers contains those controllers in the network that have sent a response to the
request of SoMachine. It may happen that the controller of your choice is not included in this list.
This can have several causes. For causes and suitable solutions, refer to the chapter Accessing
Controllers - Troubleshooting and FAQ (see page 795).

The Controller selection view is only visible if the communication between controller and
programming system is established by using the IP address. This is the default setting for
SoMachine V4.0 and later versions. You can select between communication establishment via
IP address and via active path in the Project Settings -~ Communication settings dialog box. If the
option Dial up via “IP-address” is selected, the view Controller selection is displayed in the device
editor. Otherwise, the Communication settings view is displayed.

98

EI00000000067 06/2017

Common Device Editor Dialogs

Controller selection view of the device editor

[My Controller % 2

[Conﬁguration]’Conlrollerseleclion PLC settings TFiles [Log TApplicalionsTUsers and Groups TAocess 1 l »

G Controller ProjectName IP_Address . IP_SubNetMask = NodeName
B @ TM241CEC24T U TM241 192.168.1.30 255.255.255.0 TM241CEC:
£ O] IMcossLF424 LMCOSS_MODEM_TDW33 192168133 255.255.255.0 LMCO58LF:

ﬁ' LMC 201C SL_LMC x00C V01.36.3... 192.168.1.20 255.255.0.0 Controller C

Connection Mode: Nodename:
|:| Secure online mode Nodename v I ’Contro\ler (192.168.1.20)

The Controller selection view provides the following elements:
e buttons in the toolbar

e list providing information on the available controllers

e option, list, and text box at the bottom of the view

EIO0000000067 06/2017 99

Common Device Editor Dialogs

Description of the Buttons in the Toolbar
The following buttons are available in the toolbar:

Button

Description

Optical

Click this button to cause the selected controller to indicate an optical signal: It flashes a control
LED quickly. This can help you to identify the respective controller if many controllers are used.
The function stops on a second click or automatically after about 30 seconds.

NOTE: The optical signal is issued only by controllers that support this function.

Optical and
acoustical

Click this button to cause the selected controller to indicate an optical and an acoustical signal:
It starts to beep and flashes a control LED quickly. This can help you to identify the respective
controller if many controllers are used.

The function stops on a second click or automatically after about 30 seconds.

NOTE: The optical and acoustical signals are issued only by controllers that support this
function.

Update

Click this button to refresh the list of controllers. A request is sent to the controllers in the
network. Any controller that responds to the request is listed with the current values.
Pr-existing entries of controllers are updated with every new request.

Controllers that are already in the list but do not respond to a new request are not deleted. They
are marked as inactive by a red cross being added to the controller icon.

The Update button corresponds to the Refresh list command that is provided in the context
menu if you right-click a controller in the list.

To refresh the information of a selected controller, the context menu provides the command
Refresh this controller. This command requests more detailed information from the selected
controller.

NOTE: The Refresh this controller command can also refresh the information of other
controllers.

Remove inactive
controllers from list.

Controllers that do not respond to a network scan are marked as inactive in the list. This is
indicated by a red cross being added to the controller icon. Click this button to remove all
controllers marked as inactive controllers simultaneously from the list.

NOTE: A controller can be marked as inactive even if this is not the case.

The context menu that opens if you right-click a controller in the list provides 2 other commands

for removing controllers:

® The Remove selected controller from list command allows you to remove only the selected
controller from the list.

e The Remove all controllers from list command allows you to remove all controllers
simultaneously from the list.

New Favorite... and
Favorite 0

You can use Favorites to adjust the selection of controllers to your personal requirements. This
can help you keep track of many controllers in the network.

A Favorite describes a collection of controllers that are recognized by a unique identifier.
Click a favorite button (such as Favorite 0) to select or deselect it. If you have not selected a
favorite, all detected controllers are visible.

You can also access Favorites via the context menu. It opens upon right-clicking a controller in
the list.

Move the cursor over a favorite button in the toolbar to view the associated controllers as a
tooltip.

100

EI00000000067 06/2017

Common Device Editor Dialogs

List of Controllers

The list of controllers in the middle of the Controller selection view of the device editor lists those
controllers that have sent a response to the network scan. It provides information on each
controller in several columns. You can adapt the columns displayed in the list of controllers
according to your individual requirements.

To achieve this, right-click the header of a column to open the Process columns dialog box.

Process columns

Column settings

‘ Default v ‘ New

Possible columns: Current columns:

BootMode ConnectionMode

CatridgelDs Controller

Controller Type ProjectName

DhcpState IP_Address

IP_Gateway TimeSinceBoot

IP_SubNetMask NodeName

KernalVersion J ProjectAuthor _|
MacAddress FW_Version

NetbiosName J ‘|
NetworkName

ProgrammingSystem
ProjectDate
ProjectDescrption
ProjectVersion

RemoteCommunicationAccess

OK][Cancel]

You can create your own layout of this table. Click New, and enter a name for your layout. Shift
columns from the list of Possible columns to the list of Current columns and vice versa by clicking
the horizontal arrow buttons. To change the order of the columns in the Current columns list, click
the arrow up and arrow down buttons.

EI00000000067 06/2017 101

Common Device Editor Dialogs

Configuring Communication Settings

To set the parameters for communication between the programming system and a controller,
proceed as follows:

Step Action
1 Select the controller in the list of controllers.
2 Right-click the controller entry and execute the command Process communication settings...

from the context menu.
Result: The Process communication settings... dialog box opens with the current settings of
the controller.

Process communication settings
— Communication parameter

Boot Mode

’ Fixed v‘

Network Name:

(oo |
IP address:

| 192.168.1.20 |

Subnet mask:

| 255.255.255.0 |

Gateway:

| 192.168.1.1 \

[] Save settings permanently

| ok || cancel |

NOTE: Most controllers provide a parameter (such as RemoteAccess) that helps prevent

changing communication parameters of the controller.

102

EI00000000067 06/2017

Common Device Editor Dialogs

Step Action
3 Configure the communication parameters:
® Boot Mode
O FIXED: A fixed IP address is used according to the values entered below (IP address,
Subnet mask, Gateway).
O BOOTP: The IP address is received dynamically by BOOTP (bootstrap protocol). The
values below will be ignored.
O DHCP: The IP address is received dynamically by DHCP (dynamic host configuration
protocol). The values below will be ignored.
NOTE: Not all devices support BOOTP and/or DHCP.
o |P address
When configuring IP addresses, refer to the hazard message below.
This text box contains the IP address of the controller. It is a unique address that consists
of 4 numbers in the range of 0...255 separated by periods. The IP address has to be
unique in this (sub)network.
e Subnet mask
The subnet mask specifies the network segment to which the controller belongs. It is an
address that consists of 4 numbers in the range of 0...255 separated by periods.
Generally, only the values 0 and 255 are used for standard subnet mask numbers.
However, other numeric values are possible. The value of the subnet mask is generally
the same for all controllers in the network.
o Gateway
The gateway address is the address of a local IP router that is located on the same
network as the controller. The IP router passes the data to destinations outside of the local
network. It is an address that consists of 4 numbers in the range of 0...255 separated by
periods. The value of the gateway is generally the same for all controllers in the network.
® To save the communication settings in the controller even if it is restarted, activate the
option Save settings permanently.
4 Click OK to transfer the settings to the controller.

Carefully manage the IP addresses because each device on the network requires a unique
address. Having multiple devices with the same IP address can cause unintended operation of
your network and associated equipment.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Verify that all devices have unique addresses.

Obtain your IP address from your system administrator.

Confirm that the device’s IP address is unique before placing the system into service.

Do not assign the same IP address to any other equipment on the network.

Update the IP address after cloning any application that includes Ethernet communications to
a unique address.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017

103

Common Device Editor Dialogs

Managing Favorites
To manage favorites in the list of controllers, proceed as follows:

Step Action
1 Select the controller in the list of controllers.
2 Right-click the controller and select one of the commands:

o New Favorite to create a new group of favorites.

o Favorite n in order to

add the selected controller to this list of favorites
remove the selected controller from this list of favorites
remove all controllers from this list of favorites

select a favorite

rename a favorite

remove a favorite

O000O0OO0

Secure online mode Option

The Secure online mode option causes SoMachine to display a message requiring confirmation
when one of the following online commands is selected: Force values, Login, Multiple download,
Release force list, Single cycle, Start, Stop, Write values. To disable the secure online mode and
thereby suppressing the display of this message, uncheck this option.

Specifying Unique Device Names (NodeNames)

The term NodeName is used as a synonym for the term device name. Since nodenames are also
used to identify a controller after a network scan, manage them as carefully as IP addresses and
verify that each nodename is unique in your network. Having multiple devices assigned the same
nodename can cause unpredictable operation of your network and associated equipment.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Ensure that all devices have unique nodenames.

Confirm that the device’s nodename is unique before placing the system into service.

Do not assign the same nodename to any other equipment on the network.

Update the nodename after cloning any application that includes Ethernet communications to
a unique nodename.

e Create a unique nodename for each device that does not create it automatically, such as
XBT HMI controllers.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Depending on the type of controller, the automatic creation of the NodeName (device name) may
differ in procedure. To create a unique name, some controllers integrate their IP address, others
use the MAC address of the Ethernet adapter. In this case, you do not have to change the name.

104 EI00000000067 06/2017

Common Device Editor Dialogs

Other devices, such as XBT HMI controllers, do not create a unique device name automatically. In
this case, assign a unique device name (NodeName) as follows:

Step Action

1 Right-click the controller in the list and execute the command Change device name... from the
context menu.
Result: The Change device name dialog box opens.

2 In the Change device name dialog box, enter a unique device name in the text box New.

Click the OK button to confirm.
Result: The device name you entered is assigned to the controller and will be displayed in the
column NodeName of the list.

NOTE: Device name and NodeName are synonymous.

Specifying the Connection Mode

The Connection Mode list at the lower left of the Controller selection view allows you to select a
format for the connection address you have to enter in the Address field.

The following formats are supported:

Automatic (see page 705)

Nodename (see page 7106)

IP Address (see page 106)

Nodename via NAT (Remote TCP) (see page 707) (NAT = network address translation)
IP Address via NAT (Remote TCP) (see page 107)

Nodename via Gateway (see page 708)

IP Address via Gateway (see page 710)

Nodename via MODEM (see page 112)

NOTE: After you have changed the Connection Mode, it may be required to perform the login
procedure twice to gain access to the selected controller.

Connection Mode Automatic

If you select the option Automatic from the Connection Mode list, you can enter the nodename, the
IP address, or the connection URL (uniform resource locator) to specify the Address.

NOTE: Do not use spaces at the beginning or end of the Address.

If you have selected another Connection Mode and you have specified an Address for this mode,
the address you specified will still be available in the Address textbox if you switch to Connection
Mode - Automatic.

Example:

EI00000000067 06/2017 105

Common Device Editor Dialogs

Connection Mode -~ Nodename via NAT (Remote TCP) selected and address and nodename
specified

Connection Mode: NAT Address/Port Target Nodename:

[Nodename via NAT (Remote TCP) w| | 10.128.158.106 |/ 1105 ‘ MyTM241 (192.168.1.55)

If you switch to Connection Mode — Automatic, the information is converted to a URL, starting with
the prefix enodenane3: / /

Connection Mode: Address:

Automatic v] enodename3://10.128.158.106:1105,MyTM241 (192.168.1.55)

If an IP address has been entered for the connection mode (for example, when Connection Mode
— IP Address has been selected), the information is converted to a URL starting with the prefix
etcp3://.Forexample, et cp3: // <l pAddr ess>.

If a nodename has been entered for the connection mode (for example, when Connection Mode
— Nodename has been selected), the information is converted to a URL starting with the prefix
enodenane3: // . For example, enodenane3d: / / <Nodenane>.

Connection Mode - Nodename

If you select the option Nodename from the Connection Mode list, you can enter the nodename of
a controller to specify the Address. The text box is filled automatically if you double-click a
controller in the list of controllers.

Example: Nodename: M\yM238 (10. 128. 158. 106)

If the controller you selected does not provide a nodename, the Connection Mode automatically
changes to IP Address, and the IP address from the list is entered in the Address text box.

NOTE: Do not use spaces at the beginning or end of the Address.
Do not use commas (,) in the Address text box.

Connection Mode - IP Address

If you select the option IP Address from the Connection Mode list, you can enter the IP address of
a controller to specify the Address. The text box is filled automatically if you double-click a
controller in the list of controllers.

Example: IP Address: 190. 201. 100. 100

If the controller you selected does not provide an IP address, the Connection Mode automatically
changes to Nodename, and the nodename from the list is entered in the Address text box.

NOTE: Enter the IP address according to the format
<Number >. <Number >. <Nunber >. <Nunber >

106

EI00000000067 06/2017

Common Device Editor Dialogs

Connection Mode - Nodename via NAT (Remote TCP)

If you select the option Nodename via NAT (Remote TCP) from the Connection Mode list, you can
specify the address of a controller that resides behind a NAT router in the network. Enter the
nodename of the controller, and the IP address or host name and port of the NAT router.

N

1 PC/HMI
2 NAT router
3 target device

Example: NAT Address/Port: 10. 128. 158. 106/1105Target Nodename:
MyM238 (10.128. 158. 106)

NOTE: Enter a valid IP address (format <Nunber >. <Nunber >. <Nunber >. <Nunber >) or a valid
host name for the NAT Address.

Enter the port of the NAT router to be used. Otherwise, the default port 1105 is used.

Do not use spaces at the beginning or end and do not use commas in the Target Nodename text
box.

The information you enter is interpreted as a URL that creates a remote TCP bridge - using
TCP block driver - and then connects by scanning for a controller with the given nodename on the
local gateway.

NOTE: The NAT router can be located on the target controller itself. You can use it to create a
TCP bridge to a controller itself.

Connection Mode — IP Address via NAT (Remote TCP)

If you select the option IP Address via NAT (Remote TCP) (NAT = network address translation)
from the Connection Mode list, you can specify the address of a controller that resides behind a
NAT router in the network. Enter the IP address of the controller, and the IP address or host name
and port of the NAT router.

E_ N

1 PC/HMI
2 NAT router
3 target device

EI00000000067 06/2017 107

Common Device Editor Dialogs

Example: NAT Address/Port: 10. 128. 154. 206/1217Target IP Address: 192. 168. 1. 55

NOTE: Enter a valid IP address (format <Nunber >. <Nunber >. <Nunber >. <Nunber >) or a valid
host name for the NAT Address.

Enter the port of the NAT router to be used. Otherwise, the default SoMachine gateway port 1217
is used.

Enter a valid IP address (format <Nunber >. <Nunber >. <Nunber >. <Nunber >) for the

Target IP Address.

The information you enter is interpreted as a URL that creates a remote TCP bridge - using

TCP block driver - and then connects by scanning for a controller with the given nodename on the
local gateway. The IP address is searched in the nodename (such as

MyControl | er (10.128.154.207)) or by calling a service on each scanned device of the
gateway.

NOTE: The NAT router can be located on the target controller itself. You can use it to create a
TCP bridge to a controller.

Connection Mode -~ Nodename via Gateway

If you select the option Nodename via Gateway from the Connection Mode list, you can specify the
address of a controller that resides behind or close to a SoMachine gateway router in the network.
Enter the nodename of the controller, and the IP address or host name and port of the SoMachine

gateway router.
‘i
LA LR "] i

]
Y

1 PC/HMI
2 PC/HMI/devices with installed SoMachine gateway
3 target device

Example: Gateway Address/Port: 10. 128. 156. 28/1217Target Nodename: My M238

NOTE: Enter a valid IP address (format <Nunber >. <Nunber >. <Nunber >. <Nunber >) or a valid
host name for the Gateway Address/Port:.

Enter the port of the gateway router to be used. Otherwise, the default SoMachine gateway port
1217 is used.

Do not use spaces at the beginning or end and do not use commas in the Target Nodename text
box.

The information you enter is interpreted as a URL. The gateway is scanned for a device with the
given nodename that is directly connected to this gateway. Directly connected means in the
SoMachine gateway topology it is the root node itself or a child node of the root node.

108

EI00000000067 06/2017

Common Device Editor Dialogs

NOTE: The SoMachine gateway can be located on the target controller, destination PC, or the
local PC itself, making it possible to connect to a device that has no unique nodename but resides
in a subnet behind a SoMachine network.

The graphic shows an example that allows a connection from the PCI / HMI to the target
controller 3 (item 4 in the graphic) by using the address of hop PC2 (item 5 in the graphic) that must
have a SoMachine gateway installed.

hop PC 1

target controller 1: MyNotUniqueNodename
target controller 2: MyNotUniqueNodename
target controller 3: MyNotUniqueNodename
hop PC 2

PC / HMI

router

Ethernet

ONOOODWN =

EI00000000067 06/2017 109

Common Device Editor Dialogs

Connection Mode - IP Address via Gateway

If you select the option IP Address via Gateway from the Connection Mode list, you can specify the
address of a controller that resides behind or close to a SoMachine gateway router in the network.
Enter the IP address of the controller, and the IP address or host name and port of the SoMachine

gateway router.
- ‘ﬂ
LR LY -

|
Y

1 PC/HMI
2 PC/HMI/ devices with installed SoMachine gateway
3 target device

Example: Gateway Address/Port: 10. 128. 156. 28/1217Target IP Address: 10. 128. 156. 222

NOTE: Enter a valid IP address (format <Nunber >. <Nunber >. <Nunber >. <Nunber >) or a valid
host name for the Gateway Address/Port:.

Enter the port of the gateway router to be used. Otherwise, the default SoMachine gateway port
1217 is used.

Enter a valid IP address (format <Nunber >. <Nunber >. <Nunber >. <Nunber >) for the

Target IP Address.

The information you enter is interpreted as a URL. The gateway is scanned for a device with the
given IP address. The IP address is searched in the nodename (such as
MyControl | er (10.128.154.207)) or by calling a service on each scanned device of the

gateway.
NOTE: The SoMachine gateway can be located on the target controller, destination PC, or the

local PC itself. It is therefore possible to connect to a device that has no unique nodename but
resides in a subnet behind a SoMachine network.

110 EI00000000067 06/2017

Common Device Editor Dialogs

The graphic shows an example that allows a connection from hop PC2 (item 5 in the graphic) that
must have a SoMachine gateway installed to the target controller 3 (item 4 in the graphic).

hop PC 1

target controller 1: 10.128.156.20
target controller 2: 10.128.156.20
target controller 3: 10.128.156.20
hop PC 2

PC / HMI

router

Ethernet

O~NOODWN =

EI00000000067 06/2017 111

Common Device Editor Dialogs

Connection Mode - Nodename via MODEM

If you select the option Nodename via MODEM from the Connection Mode list, you can specify a
controller that resides behind a modem line.

> --m—»ﬂ

d—’ LX)
— N

PC / HMI

PC / HMI / MODEM
target modem
target device
phone line

abhwN -

To establish a connection to the modem, click the MODEM — Connect button. In the Modem
Configuration dialog box, enter the Phone number of the target modem and configure the
communication settings. Click OK to confirm and to establish a connection to the modem.

If the SoMachine gateway is stopped and restarted, any connection of the local gateway is
terminated. SoMachine displays a message that has to be confirmed before the restart process is
started.

After the connection to the modem has been established successfully, the MODEM button
changes from Connect to Disconnect. The list of controllers is cleared and refreshed scanning the
modem connection for connected controllers. You can double-click an item from the list of
controllers or enter a nodename in the Target Nodename: text box to connect to a specific
controller.

Click the MODEM - Disconnect button to terminate the modem connection and to stop and restart
the SoMachine gateway. The list of controllers is cleared and refreshed scanning the Ethernet
network.

112 EI00000000067 06/2017

Common Device Editor Dialogs

Communication Settings

Overview

The Communication Settings view of the device editor serves to configure the parameters for the
communication between device and programming system.

It is only visible if the communication between device and programming system is established by
using the active path. This is the default setting for SoMachine V3.1 and earlier versions. You can
select between communication establishment via active path and IP address in the Project
Settings - Communication settings dialog box. If the option Dial up via “IP-address” is selected,
the view Controller selection is displayed in the device editor instead ot the Communication
settings view. This is the default setting for SoMachine V4.0 and later versions.

Communication Settings view of the device editor
) Device - X
Communication Settings Applications | Files | Log | PLC settings [PLC shell | Users and Groups | Access Rights | Status €2

Select the network path to the contraller:

Gateway-1:0506 v Set active path
(=] 3¥yo Gateway-1 A | |Node Name:
gateway...
4_;] ANDREASKNB [05B7] Node Address:
) AUTOTEST-5 [0506] 0506 Add device...
) BERNHARDRNE [0507] i
arget ID:
—Lj BORISSSSNB [0978)] Sl
() BWERNERNB [0584]
) DAVIDFNB [0563] Target Name:
@ FHUMBEILNB [056D)] C SPWin V3
@ FRANKH2 [0533] Target Type: Filter -
@ FRITZGNB [0942) 16#1000 T 3
) JENSSNB [0580] e [Targe
#) MARGITN [0519] ot
. 3GmbH Sorting order :
) MICHAELPNB [0989) E——
) NBSTBECK [0527) T ‘Na”‘e—"
 PROHLOFFNB [050F] Ak
“ REVBATYROVNB [0576]

I:] Don't save network path in project
|:| Secure online mode

EI00000000067 06/2017 113

Common Device Editor Dialogs

This view is divided in 2 parts:
e The left part shows the currently configured gateway channels in a tree structure.
e The right part shows the corresponding data and information.

Description of the Tree Structure

When you create the first project on your local system, the local Gateway is already available as a
node in the tree. This gateway is started automatically during system start.

The settings of this gateway are displayed in the right part of the window:
Example:

Node Name: Gateway-1

Port: 1217

IP-Address: 127.0.0.1

Driver: TCP/IP

When the gateway is running, a green bullet is shown before the Gateway node; otherwise, a red
bullet is displayed. The bullet is gray if the gateway has not been contacted yet (depending on
some communication protocols, it is not allowed to poll the gateway, so the status cannot be
displayed).

Indented below the Gateway node (open/close via the +/- sign), you will see entries for all devices

which are reachable through this gateway. The device entries are preceded by a ﬂ symbol.
Entries with a target ID different to that of the device currently configured in the project, are
displayed in gray font. To obtain an up-to-date list of the currently available devices, use the button
Scan network.

(=] %o Gateway-1
[+ [f] User1[0146]
] User20124]

The device nodes consist of a symbol followed by the node name and the node address. In the
right part of the window, the respective Target ID, Target Name, Target Type, Target Vendor, and
Target Version are shown.

In the Select the network path to the controller field, the gateway channel is specified automatically
by selecting the channel in the tree structure.

Filter and Sorting Function

You can filter and sort the gateway and device nodes displayed in the tree by the selection boxes
in the right part of the view:

o Filter: Allows you to reduce the entries of the tree structure to those devices with a Target ID
matching that of the device currently configured in the project.

e Sorting order: Allows you to sort the entries of the tree structure according to the Name or Node
Address in alphabetical or ascending order.

114

EI00000000067 06/2017

Common Device Editor Dialogs

Description of the Buttons / Commands
For changing the communication configuration, the following buttons or commands in the context

menu are available:

Button / Command

Description

Set active path

This command sets the currently selected communication channel as the active
path to the controller. See the description of the Set Active Path command. Double-
clicking the node in the tree structure has the same effect.

Add gateway...

This command opens the Gateway dialog box where you can define a gateway to
be added to the current configuration.
See the description of the Add Gateway command.

Add device...

This command opens the Add Device dialog box where you can manually define a
device to be added to the currently selected gateway entry (Consider the Scan
network functionality).

See the description of the Add Device... command.

Edit Gateway...

This command opens the Gateway dialog box for editing the settings of the currently
selected gateway.
See the description of the Edit Gateway... command.

Delete selected Device

This command removes the selected device from the configuration tree.
See the description of the Delete selected Device command.

Scan for device by address

This command scans the network for devices which have the address specified
here in the configuration tree. Those which are found will then be represented in the
gateway with the specified node address complemented by their name. The scan
refers to devices below that gateway in whose tree an entry is currently selected.
See the description of the Scan for Device by Address command.

Scan for device by name

This command scans the network for devices which have the names specified here
in the configuration tree (case-sensitive search). Those which are found will then be
represented in the gateway with the specified name complimented by their unique
node address. The scan refers to devices below that gateway in whose tree an entry
is currently selected.

See the description of the Scan for Device by Name command.

Scan for device by IP address

This command scans the network for devices which have the IP address specified
here in the configuration tree. Those which are found will then be represented in the
gateway with the specified node address complimented by their name. The scan
refers to devices below that gateway in whose tree an entry is currently selected.
See the description of the Scan for Device by IP Address command.

Connect to local Gateway

This command opens a dialog box for the configuration of a local gateway and
therefore provides an alternative to manual editing the file Gafeway.cfg.
See the description of the Connect to local Gateway... command.

Scan network

This command starts a search for available devices in your local network. The
configuration tree of the concerned gateway will be updated accordingly.
See the description of the Scan Network command.

EI00000000067 06/2017

115

Common Device Editor Dialogs

Description of the Options
2 options are available below the tree structure:

Option Description

Don't save network path | Activate this option if the current network path definition should not be stored in the project,
in project but in the local option settings on your computer. Therefore, the path setting is restored if
the project is reopened on the same computer. It will have to be redefined if the project is
used on another system.

Secure online mode Activate this option if, for security reasons, the user should be prompted for confirmation
when selecting one of the following online commands: Force values, Multiple download,
Release force list, Single cycle, Start, Stop, Write values.

Configuration

Overview

The Configuration view is only available in the device editor if the option Show generic device
configuration views in the Tools - Options —» Device editor dialog box is activated. The
Configuration view shows the device-specific parameters, and, if allowed by the device description,
provides the possibility to edit the parameter values.

Configuration view of the device editor

@ o

1/0 Mapping 1/0 Configuration

Parameter Type Value | Default Value| Unit | Description
=] Inputs
=]
® Filter Enumeration of BYTE 15 No |ms | Filtering value
¥ Latch |Enumeration of BYTE No No | Latching allow
® Event Enumeration of BYTE No No Event detectio
¥ Run/Stop Enumeration of BYTE No No Run/Stop inpu
g-® I
® Filter Enumeration of BYTE No No |ms | Filtering value
® Latch Enumeration of BYTE No No Latching allow
® Event Enumeration of BYTE No No Event detectio
® Bo umeration of BYTE| 0.0 0C Filtering value
® Run/Stop Enumeration of BYTE No No Run/Stop inpu
= 12
¥ Filter Enumeration of BYTE No No |ms | Filtering value

116 EI00000000067 06/2017

Common Device Editor Dialogs

The view contains the following elements:

Element

Description

Parameter

parameter name, not editable

Type

data type of parameter, not editable

Value

Primarily, the default value of the parameter is
displayed directly or by a symbolic name. If the
parameter can be modified (this depends on the
device description, non-editable parameters are
displayed as gray-colored), click the table cell to open
an edit frame or a selection list to change the value.
If the value is a file specification, the standard dialog
box for opening a file opens by double-clicking the
cell. It allows you to select another file.

Default Value

default parameter value, not editable

Unit

unit of the parameter value (for example: ms for
milliseconds), not editable

Description

short description of the parameter, not editable

EI00000000067 06/2017

117

Common Device Editor Dialogs

Applications

Overview

The Applications view of the device editor serves to scan and to remove applications on the
controller. Information on the content of the application can be available as well as some details on
the application properties.

Applications view of the device editor

] Device x : v
Communication Seningsi Applications | Files | Log PLC settings | PLC shell | Users and Groups € ¥

Applications on the PLC:

Application Remove

App1

Remove All
Details...

Content...

Refresh List

Description of the Elements
The Applications view provides the following elements:

Element

Description

Applications on the
PLC

This text box lists the names of applications which have been found on the controller during the
last scan (by clicking Refresh).

If no scan has been executed yet or if a scan is not possible because no gateway is configured
(see page 113)for a connection, an appropriate message is displayed.

Remove Click these buttons to remove the application currently selected in the list or all applications from

Remove All the controller.

Details Click this button to open a dialog box showing the information as defined in the Information tab
of the Properties dialog box of the application object.

Content If, in the View — Properties — Application build options, the option Download Application Info is

activated for the application object (see SoMachine, Menu Commands, Online Help), then
additional information on the content of the application is loaded to the controller.

Click the Content button to view the different POUs, in a comparison view. Upon several
downloads, this information allows you to compare the code of the new application with that
already available on the controller. This provides a more granular information for decisions on
how to log in. For further information, refer to the description of the Login command.

Refresh List

Click this button to scan the controller for applications. The list will be updated accordingly.

118

EI00000000067 06/2017

Common Device Editor Dialogs

Verifications Before Loading an Application to the Controller

The following verifications are performed before an application is loaded to the controller:
e The list of applications on the controller is compared with those available in the project. If

inconsistencies are detected, the appropriate dialog boxes are displayed for either loading the
applications not yet available on the controller, or for removing other applications from the
controller.

POUs externally implemented in the application to be loaded are verified as to whether they are
also available on the controller. If they are not available on the controller, an appropriate
message (unresolved reference(s)) will be generated in a message box as well as in the
Messages view if the option Download is selected.

The parameters (variables) of the POUs of the application to be loaded are compared with those
of the same-named POUs of the application already available on the controller (validation of
signatures). In case any inconsistencies are detected, an appropriate message (signature
mismatch(es)) will be generated in a message box as well as in the Messages view if the option
Download is selected.

If in the View — Properties - Application build options the option Download Application Info is
activated, additionally information on the content of the application will be loaded to the
controller. See the description of the Content button in the previous table.

Files
Overview
The Files view of the device editor serves to transfer files between the host and the controller. This
means you can choose any file from a directory of the local network to copy it to the file directory
of the currently connected runtime system, or vice versa.
Files view of the device editor
7@ MyPlc i b x
| Communication Settings Application Files | Log | I/OMapping | Status | Information
Host = Location: = CD:\file _exchange =l X Runtime Location: = =7\ -} 2
Name Size Modified Name Size Modified
L. [=) Application.app 68 bytes 19.01.20
[Z] ErrorList.txt 548 bytes 22.11.2006 14:21 |#) Application.cre 20 bytes 19.01.20
[£] GlobalTextlisttxt 52 bytes 22.11.2006 11:20 (2] CmpAddrSrve.dil 224,10 KB (229.478 bytes) 19.01.20
2] CmpApp.dil 348,09 KB (356.444 bytes) 19.01.20

|#] CmpBinTagUtillec.dll 232,11 KB (237.680 bytes) 19.01.20
4] CmpBitmapPool.dll 236,10 KB (241.770 bytes) 19.01.20
|#] CmpBIkDrvSimpleC.... 228,11 KB (233.588 bytes) 19.01.20

< X

()
()
2] CmpBinTagUtildll 236,10 KB (241.770 bytes) 19.01.20
()
()
()

This view is divided in 2 parts:
e The left part shows the files on the Host.
e The right part shows the files on the Runtime system.

EI00000000067 06/2017 119

Common Device Editor Dialogs

Description of the Elements

The Files view provides the following elements:

Element Description

s Updates the Runtime list.

ca Creates a new folder in which you can copy the files.

x Removes the selected files or folders from the list.

Location Specifies the folder of the respective file system that will be used for
the file transfer.
Selects an entry from the list or browse in the file system tree.

<<>> Select the files to be copied in the file system tree. You can select

several files simultaneously or you can select a folder to copy all files
it contains.

To copy the selected files from the Host to the Runtime directory,
click >>.

To copy the selected files from the Runtime to the Host directory,
click <<.

If a file is not yet available in the target directory, it will be created
there.

If a file with the given name is already available and is not write-
protected, it will be overwritten. If it is write-protected, an appropriate
message will be generated.

120

EI00000000067 06/2017

Common Device Editor Dialogs

Log

Overview

The Log view of the device editor serves to display the events which have been logged on the
runtime system of the controller.

This concerns:

events at system start or shutdown (loaded components and their versions)
application download and boot project download

customer-specific entries

log entries of 1/O drivers

log entries of the data server

Log view of the device editor

(1) Device v X
| Communication Senings\ Applicalionsé' Files 'm PLC settings '; PLC shellr: Users and Groups | Access Rights | Task deployment ¢ »
[] offiine-Logging: [] UTC Time
|f 2 warning(s) |0 1 error(s) | ' 0 exception(s)]0 122 information(s) | IW Logger: ['m} _af gr x

Severity ~ Time Stamp Description Component ~
20.10.2011 07:25:5... VisulnfoTuple not found for RegisterClient, Extld: 31909, Applicati... CmpVisuHandler
20.10.2011 07:25:5... VisulnfoTuple not found for RegisterClient, Extld: 31907, Applicati... CmpVisuHandler

(i) 20.10.2011 05:59:5:0 Setting router 2 address to (014¢:0001) CmpRouter

(i) 20.10.2011 05:59:1:0 Control ready CM

i] 20.10.2011 05:59:1:0 Setting router 2 address to (0001) CmpRouter

i) 20.10.2011 05:59:1:0 Setting router 1 address to (2ddc:c0a8:654c) CmpRouter

i] 20.10.2011 05:59:1:0 Setting router 0 address to (054c) CmpRouter

i] 20.10.2011 05:59:1:0 Local address (BlkDrvShm) set to 1 CmpBIkDrvShm

(i] 20.10.2011 05:59:1:0 Network interface BIkDrvShm registered CmpRouter

i) 20.10.2011 05:59:1:0 Network interface BlkDrvTcp registered CmpRouter

o 20.10.2011 05:59:1:0 Local network address: 192.168.101.76 CmpBIkDrvTep

i) 20.10.2011 05:59:1:0 Network interface either 0 registered CmpRouter

(i] 20.10.2011 05:59:1:0 Network interface: 192.168.101.76 255.255.252.0 CmpBIkDrvUdp

i] 20.10.2011 05:59:1:0 Running as network client CmpChannelMgr

i] 20.10.2011 05:59:1:0 Running as network server CmpChannelMgr

i] 20.10.2011 05:59:1:0 ... CmpWebServer

o 20.10.2011 05:59:1:0 Root directory : ./visu CmpWebServer

o 20.10.2011 05:59:1:0 Port : 8080 CmpWebServer

i] 20.10.2011 05:59:1:0 IP-Address; 127.0.0.1 CmpWebServer

i} 20.10.2011 05:59:1:0 © Copyright by 3S — Smart Software Solutions GmbH, 2011 CmpWebServer

(i) 20.10.2011 05:59:1:0 Web Server for 38 Runtime Systems CmpWebServer

o 20.10.2011 05:59:1:0 ... CmpWebServer

Q 20.10.2011 05:59:1:0 WinPCap (www.winpcap.org) must be installed! SysEthernet

i) 20.10.2011 05:59:1:0 Dynamic: CmpTargetVisuStub init, 000000053 3.5.0.0 CcM v
< >

EI00000000067 06/2017 121

Common Device Editor Dialogs

Description of the Elements

The Log view provides the following elements:

Element

Description

Severity

The events of the log are grouped in 4 categories:
e warning

e error

o exception

e information

The buttons in the bar above the listing display the current number of
loggings in the respective category. Click the buttons to switch on or
off the display of the entries of each category.

Time Stamp

date and time,
for example, 12.01.2007 09:48

Description

description of the event,
for example Import function failed of <CmpFileTransfer>

Component

Here you can choose a particular component in order to obtain only
displayed log entries regarding this component. The default setting is
<All components>.

Logger

The selection list provides the available loggings. The default setting
is <Default Logger>, which is defined by the runtime system.

Updates the list.

Exports the list to an XML file. The standard dialog box for saving a file
opens. The file filter is set to xml-files (*.xml). The log file is stored with
the specified file name with extension .XML in the chosen directory.

Displays log entries stored in an XML file which may have been
exported as described above. The standard dialog box for browsing
for a file opens. The filter is set to xml-files (*.xml). Choose the desired
log file. The entries of this file will be displayed in a separate window.

x

Clears the current log table that is to remove all displayed entries.

Offline-Logging

This option is not used in SoMachine.

UTC Time

Activate this option to display the time stamp of the runtime system as
it is (without conversion). If deactivated, the time stamp of the local
time of the computer is displayed (according to the time zone of the
operating system).

NOTE: In order to display the time stamp in UTC (Universal Time
Coordinated), you must set the time of the controller to UTC time
beforehand (also refer to the Services tab of your controller
configuration).

122

EI00000000067 06/2017

Common Device Editor Dialogs

PLC Settings

Overview

The PLC settings view of the device editor serves to configure some general settings for the
controller.

PLC settings view of the device editor
(4] Device 4b X
" Communication Settings | Applications | Files Log | pLC settings iUsers and Groups €2
Application for I/O handling: |Application v

PLC settings
D Update 10 while in stop

Behaviour for outputs Stop |Keep current values v

[] Update all variables in all devices

Bus cycle options -
Bus cycle task |<unspecified> v

Description of the Elements
The PLC settings view provides the following elements:

Element Description

Application for I/0 handling: | Define here the application assigned to the device in the Devices tree that will be
monitored for the 1/O handling. For SoMachine there is only one application available.

PLC settings area

Update 10 while in stop If this option is activated (default), the values of the input and output channels are
updated when the controller is stopped. In case of expiration of the watchdog, the
outputs are set to the defined default values.

Behaviour for outputs in Stop | From the selection list, choose one of the following options to define how the values at
the output channels are handled in case of controller stop:
e Keep current values
The current values will not be modified.
e Set all outputs to default
The default values resulting from the mapping will be assigned.
o Execute program
You can determine the outputs behavior by a program available within the project.
Enter the name of this program here and it will be executed when the controller gets
stopped. Click the button ... to use the Input Assistant for this purpose.

EI00000000067 06/2017 123

Common Device Editor Dialogs

Element

Description

Update all variables in all
devices

If this option is activated, then for the devices of the current controller configuration, the
1/0 variables will get updated in each cycle of the bus cycle task. This corresponds to
the option Always update variables. You can set it separately for each device in the I/O
Mapping view (see page 74.3).

Bus cycle options area

Bus cycle task

The selection list offers the tasks currently defined in the Task Configuration of the
active application (for example, MAST). The default setting MAST is entered
automatically.

<unspecified> means that the task is selected according to controller-internal settings,
which are therefore controller dependent. This may be the task with the shortest cycle
time, but as well it could be that with the longest cycle time.

NOTE: Setting the bus cycle task to <unspecified> may cause unanticipated behavior of your

application. Consult

the Programming Guide specific to your controller.

A CAUTION

UNINTENDED EQUIPMENT OPERATION

If you are not sure about the bus cycle task settings of the controller, do not set the Bus cycle task
to <unspecified>, but select a dedicated task from the list.

Failure to follow these instructions can result in injury or equipment damage.

Additional Setting

The setting Generate force variables for IO mapping: is only available if supported by the device.
If the option is activated, for each 1/O channel, which is assigned to a variable in the I/O Mapping
dialog box, 2 global variables will be created as soon as the application is built. These variables

can be used in an HMI visualization for forcing the 1/0O value. For further information, refer to the

/O Mapping chapter (see page 139).

124

EI00000000067 06/2017

Common Device Editor Dialogs

Users and Groups

Overview

The management of users and access-rights groups differs, depending on the controller you are
using. For most devices supporting online user management (such as M258, M241, M251 and
LMC-+8 controllers), the Users and Groups view described in this chapter is used to manage user
accounts and user access-rights groups and the associated access rights. This allows you to
control the access on SoMachine projects and devices in online mode.

For managing user rights, you have to login as Administrator user.

A CAUTION

UNAUTHENTICATED, UNAUTHORIZED ACCESS

e Do not expose controllers and controller networks to public networks and the Internet as much
as possible.

Use additional security layers like VPN for remote access and install firewall mechanisms.
Restrict access to authorized people.

Change default passwords at start-up and modify them frequently.

Validate the effectiveness of these measurements regularly and frequently.

Failure to follow these instructions can result in injury or equipment damage.

NOTE: It is not intended that the Users and Groups feature be used to protect the SoMachine
project against malicious access, but rather to help prevent mistakes from trusted users.

If you want to protect your entire project, activate the option Enable project file encryption in the
Project Settings — Security dialog box (see SoMachine, Menu Commands, Online Help).

If you want to protect only a part of your code inside the project, put this code inside a compiled
library (see SoMachine, Menu Commands, Online Help).

NOTE: You can use the security-related commands (see SoMachine, Menu Commands, Online
Help) which provide a way to add, edit, and remove a user in the online user management of the
target device where you are currently logged in.

NOTE: You must establish user access-rights using SoMachine software. If you have c/oned an
application from one controller to another, you will need to enable and establish user access-rights
in the targeted controller.

NOTE: The only way to gain access to a controller that has user access-rights enabled and for
which you do not have the password(s) is by performing an Update firmware operation using an
SD card or USB memory key (refer to the SoMachine Controller Assistant User Guide for further
information), depending on the support of your particular controller, or by running a script. Since
the process of running a script is specific to each controller, refer to the chapters File Transfer with
SD Card or File Transfer with USB Memory Keyin the Programming Guide of the controller you
are using. This will effectively remove the existing application from the controller memory, but will
restore the ability to access the controller.

EI00000000067 06/2017 125

Common Device Editor Dialogs

For Soft PLC controllers, a specific Users and Groups view and a separate Access Rights view are
displayed in the device editor. These specific views are described in the User Management for Soft
PLC chapter (see page 877).

If you want that certain functions of a controller can only be executed by authorized users, the
Users and Groups view allows you to define users, to assign access rights, and to require a user
authentication at login.

To perform these actions, you can create users and configure their access rights to data,
engineering tools, and files by using the buttons in the User Actions area. You can create user
access-rights groups and configure each permission individually by using the buttons in the
Groups Actions area.

Users and Groups View

The Users and Groups view allows you to manage the access of users on projects and devices.
The users and the corresponding rights are valid for all devices of a project.

Users and Groups view of the device editor:
MyController x -

Controller selection | Files || Log || PLC settings || Services || I/O Mapping || Task deployment\; Users and Groups | St
Access protection: Users Actions:

Enable user management © Add user...
User Access Protection © Delete user...
Name Data Access | Engineering Tools File Access [# Edituser...

Administrator Read-Write ~ Administrate v Read-Write-Delete v
Developer None v Program v None v
Everyone None v None + None v
HMI Read-Write v None ~ None v
» I Reao-wite v None v Read-Write-Delete ¥

Groups Actions:

© Add group

A

-

NOTE: When you apply the user rights configuration to a target, the new configuration may not be
taken in account for connections that are already open. To help to make sure that the configuration
is applied, close the connections to this target by either rebooting the target or disconnecting the
cables (Ethernet and serial line) for at least 1 minute.

126

EI00000000067 06/2017

Common Device Editor Dialogs

Access protection Area

The Access protection area of the Users and Groups view contains the Enable user management
check box. This check box is by default disabled which means that user management is not active.
Free access is provided to projects and devices. To be able to manage user accounts and user
access-rights groups and to assign access rights, activate the Enable user management check
box. To change user management settings, you must either login as Administrator, or have the
Administrate user right for your user login. During first login as administrator, you are requested to
change the default password.

Below the Enable user management check box, a list of the defined users (in the User column) and
the access-rights groups they are granted (in the Access Protection columns sorted by type) is
provided.

The list contains five users by default. You have limited access on these default users as listed in

the table:
Default user Description Can be Name can be | Permissions Default
deleted changed can be password (can
changed be changed)
Administrator User Administrator has no | No No No Adni ni strat
access restrictions; it is or
used for configuring user Must be
rights. changed with
first login.
Everyone User Everyone is used No No Yes No password
when you are not logged in. assigned.
If you suppress
permissions, you have to
log in with a user which is
granted permissions.
USER User USER is used by the | No Yes Yes USER
web server to access the
controller.
HMI User HMI is used by the No Yes Yes HM
HMI to connect to the
controller.
Developer To the user Developer Yes Yes Yes Devel oper
there are granted suitable
permissions for developing
a project.

EI00000000067 06/2017

127

Common Device Editor Dialogs

User access-rights are contained in groups, and are categorized in three areas, or access types,

under Access Protection:

e Data Access: includes access to applications intending to read/write data from the device, such
as HMI, OPC.

e Engineering Tools: includes access to programming tools, such as SoMachine and Controller
Assistant.

e File Access: includes access to the internal or external file system, such as external media,
SoMachine protocol, FTP, and Web.

Clicking the drop-down box of any defined user under any of the access type columns presents a
list of the defined user access-rights groups that you can choose for the particular user and access
type. For more information on user access-rights groups, refer to Management of Access-Rights
Groups (see page 131).

Users Actions Area
The buttons are only available if the option Enable user management is activated.

Clicking a button opens a dialog box that prompts you to log in as user Administrator because this
is the only user that is granted rights for user management.

The User Actions buttons are used to perform standard user management functions on users:

Button Description

Add user... Click this button to add a new user to the list.

The dialog box Add user opens.

Enter a User Name, a complete Name, a Description, and a Password.
Repeat the password in the Confirm password field.

To make the new user available for usage, enable the Activated option.

Delete user... Click this button to delete the user selected in the list of the Access protection
area.
Edit user... Click this button to modify the user selected in the list of the Access protection

area. The Edit user dialog box opens. It corresponds to the Add user dialog
box (see above) containing the settings of the currently defined user.
To make the user available for usage, enable the Activated option.

Change the default passwords for all the default users (USER, HMI, Developer). In addition,
consider carefully the implications for giving any access-rights to the default user Everyone. On the
one hand, granting access-rights to the user Everyone will allow you to run scripts from either the
USB port or SD port (depending on your controller reference), while on the other hand it will allow
anyone the access-rights you grant without first logging in.

128 EI00000000067 06/2017

Common Device Editor Dialogs

A WARNING

UNAUTHORIZED DATA ACCESS

e Immediately change any and all default passwords to new, secure passwords.
e Do not distribute passwords to unauthorized or otherwise unqualified personnel.
e Limit access-rights to the user Everyone to only those essential to your application needs.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: A secure password is one that has not been shared or distributed to any unauthorized
personnel and does not contain any personal or otherwise obvious information. Further, a mix of
upper and lower case letters and numbers offer greater security. You should choose a password
length of at least seven characters.

Groups Actions Area
The buttons are only available if the option Enable user management is activated.

Clicking a button opens a dialog box that prompts you to log in as user Administrator because this
is the only user that is granted rights for user management.

The buttons are used to perform access-rights management functions on groups:

Button Description

Add group Click this button to create a new group. The dialog box Custom groups
opens.

Edit group Click this button to modify a group. The Custom groups dialog box opens.

From the Group to edit list, select the group you want to edit. The settings
defined for the selected group are displayed in the tables below.

Delete group... Click this button to delete the group selected in the list of the Access
protection area.
Note: Some default groups cannot be deleted (see page 725).

Access-Rights Groups for Access Protection Types

By default, a number of access-rights groups are predefined and are available from the drop-down
lists under the individual Access Protection types for each defined user.

EI00000000067 06/2017 129

Common Device Editor Dialogs

The table lists the available default access-rights groups per Access Protection type:

Access Protection type

Default Access-Rights Groups

Description

Data Access

None

Access is denied.

Read

® Access to website of the device.
o Read unprotected data, such
as:

O Variables configured in
OpcUaSymbolConfiguration
(OPC UA client)

O Variables configured in
SymbolConfiguration (HMI,
CoDeSys OPC Server)

O Variables configured in
WebDataConfiguration (web
server)

O Webvisualization

Read-Write

® Access to website of the device.
o Read/write unprotected data,
such as:

O Variables configured in
OpcUaSymbolConfiguration
(OPC UA client)

O Variables configured in
SymbolConfiguration (HMI,
CoDeSys OPC Server)

O Variables configured in
WebDataConfiguration (web
server)

O Webvisualization

OpcUa

Access to OPC UA data (not HMI,
nor web server).

Assign this access right to the
default user Everyone to allow
anonymous access to data from
the OPC UA server.

130

EI00000000067 06/2017

Common Device Editor Dialogs

Access Protection type Default Access-Rights Groups Description
Engineering Tools None Login is denied.
Monitor e Login
o Upload source
® Read-only variables
Operate e Login
o Upload source
® Force / write variables
Program No restrictions, except user right
configuration is not allowed.
Administrate No restrictions, even user right
configuration is allowed.
File Access None Access is denied.
Read Read unprotected files.
Read-Write Read/write unprotected files.
Read-Write-Delete Read/write/delete unprotected
files.

Management of Access-Rights Groups

In addition to the default access-rights groups, you can create your own custom groups. You can
configure access rights for specific tools or commands grouped under each Access Protection type
(Data Access, Engineering Tools, File Access). To achieve this, click the Add group or Edit group
button from the Groups Actions area. The Custom groups dialog box opens.

EI00000000067 06/2017 131

Common Device Editor Dialogs

Custom groups

Name:
Access Type: Engineering v
Reset to: None v
Actions Permissions A/ | TargetName Permissions
Default Default
Reset Default ~ MyController.Expert.PowerDistribution Default ~
Run/Stop Default ~ MyController.Expert. DM72F0 Default ~
Logger Deny v MyController.Expert. DM72F1 Default ~
Variables Default ~ MyController.Expert Default ~
Trace Default ~ MyController.TM5.TM5_Manager.Embedded Bus.Module_1 Default ~
Project Settings Default ~ MyController.TM5.TM5_Manager.Embedded Bus.Module_2 Default ~
PLC Settings Deny ~ MyController. TM5.TM5_Manager.Embedded Bus Default ~
Download Default ~ MyController.TM5.TM5_Manager Default ~
Online Change Default ~ MyController.TM5 Default ~
Image Download Default ~ MyController.Ethernet Default ~
Upload Source Default ~ MyController.Serial Line.SoMachine_Network_Manager Default ~
Image Upload Default ~ MyController.Serial Line Default ~
Update Device Default ~ MyController.CANO.CANopen_Performance Default ~
Project compilation Default MyController.CANO Default ~
Device Management Default ~ MyController.PLC Logic.Application.GVL Default ~
Create Objects Default ~ MyController.PLC Logic.Application.Task Configuration.MAST Default ~
Developing tools ~ Default MyController.PLC Logic.Application.Task Configuration Default ~
Visualisation Tools Default ~ MyController.PLC Logic.Application.Library Manager Default ~
Library management Default MyController.PLC Logic.Application Default ~
Recipe Default ~ ~ | | MyController.PLC Logic Default ~
Parameter Description
Name Enter a Name for the group using a maximum of 32 characters.
The characters a-z, A-Z, 0-9 and the underscore character are allowed.
Access Type Select one of the available Access Types per group:
e Data Access
o Engineering Tools
® File Access
The Actions and Permissions available for the selected Access Type are listed below on the left-
hand side.
Reset to To copy the user access rights from one group to another, select the group from the Reset to list.
This resets the Actions and Permissions to the values of the group you have selected.
Actions / This list shows the Actions and Permissions available for the selected Access Type. Refer to the lists
Permissions list | of actions and permissions per access type below.
TargetName / | The TargetNames in this list are exactly those you find in the Devices tree of your project for the
Permissions list | device you have selected.
You can configure permissions for each target device individually. To achieve this, select the device
in the list and select the suitable option (Default, Deny, Read only, Modifiable, Full) from the
Permissions list.
The Default value corresponds to the permissions of user Everyone.

132

EI00000000067 06/2017

Common Device Editor Dialogs

The table lists the available Actions and Permissions you can assign for the Access Type — Data

Access:
Available Actions Permissions
OPC Server e Deny
Allows the user to connect to a device within the OPC server | @ Read
by using login / password parameters. o Read - Write
HMI e Deny
Allows the user to access Vijeo-Designer by using login / e Read
password parameters. o Read - Write
Web Server e Deny
Allows the user to access the web server by using login / The user cannot access the web server.
password parameters. e Read
The user can access the web server and read
variables.
® Read - Write
The user can access the web server and read and
write variables.

The table lists the available Actions and Permissions you can assign for the Access Type —»

Engineering Tools:

Available Actions

Permissions

Login

Allows the user to connect to the device and to access the
application.

This permission is a prerequisite for any other online permission
to be granted.

Default
Deny
Grant

Reset

Default

Same permissions as user Everyone.

Deny

User cannot execute a reset of the device.
Cold

User can execute a cold reset of the device.
Cold - Warm

User can execute a cold and a warm reset of
the device.

Run / Stop

Default

Same permissions as user Everyone.

Deny

User cannot execute a run / stop of the
application.

Grant

User can execute a run/ stop of the application.

EI00000000067 06/2017

133

Common Device Editor Dialogs

Available Actions Permissions
Logger o Default
Allows the user to access the Log view of the device editor. Same permissions as user Everyone.
o Deny
e Grant
Variables e Default
Same permissions as user Everyone.
e Deny
User cannot read/write any variables.
® Read
User can read the variables of the application.
® Read - Write
User can read, write, and force unprotected
variables.
Trace e Default
Allows the user to access the trace device. Same permissions as user Everyone.
e Deny
® Grant
Project Settings o Default
Allows the user to modify (read and write) the project information Same permissions as user Everyone.
and parameters. e Deny
e Grant
PLC Settings o Default
Allows the user to access the PLC Settings view of the device Same permissions as user Everyone.
editor. e Deny
e Grant
Download o Default
Allows the user to download all applications or the currently active Same permissions as user Everyone.
application to the device. e Deny
® Grant
Online Change o Default
Allows the user to execute the Online Change command. Same permissions as user Everyone.
o Deny
e Grant
Image Download o Default
Allows the user to download images. Same permissions as user Everyone.
e Deny
® Grant
Upload Source o Default

Allows the user to execute the Source Upload command.

Same permissions as user Everyone.
Deny
Change

134

EI00000000067 06/2017

Common Device Editor Dialogs

Available Actions

Permissions

Image Upload
Allows the user to upload images.

e Default
Same permissions as user Everyone.
e Deny

e Change
Update Device e Default
Allows the user to execute the Update Device command. e Deny

e Change
Project Compilation e Default

Allows the user to execute the Build and Build all command.

Same permissions as user Everyone.
e Deny
e Change

Device Management
Allows the user to add, edit, delete, update, refresh a device.

e Default

Same permissions as user Everyone.
e Deny
e Change

Create Object
Allows the user to create objects in a project.

e Default

Same permissions as user Everyone.
e Deny
e Change

Developing Tools
Allows the user to modify applications, POUs, devices.

e Default

Same permissions as user Everyone.
e Deny
e Change

Visualization Tools
Allows the user to add and edit a web visualization and to create
visualizations in the current project.

e Default

Same permissions as user Everyone.
e Deny
e Change

Library Management
Allows the user to perform library management, except accessing
the list of libraries in a project and showing their properties.

e Default

Same permissions as user Everyone.
e Deny
e Change

Recipe
Allows the user to create, edit, send, upload, play a recipe and to
load data from the current program to a recipe.

e Default

Same permissions as user Everyone.
e Deny
e Change

Debugging Tools
Allows the user to execute debugging commands, including
breakpoints.

e Default

Same permissions as user Everyone.
e Deny
e Change

EI00000000067 06/2017

135

Common Device Editor Dialogs

Available Actions

Permissions

SoftMotion Tools
Allows the user to execute CAM and CNC commands.

Default

Same permissions as user Everyone.
Deny

Change

DTM Management
Allows the user to execute field device tool (FDT) commands.

Default

Same permissions as user Everyone.
Deny

Change

The table lists the available Actions and Permissions you can assign for the Access Type — File

Access:
Available Actions Permissions
File system e Deny
FTP ® Read
Removable media o Read - Write
Allows the user to access the file using FTP, SoMachine, or web. | ¢ Read - Write - Delete

136

EI00000000067 06/2017

Common Device Editor Dialogs

Task Deployment

Overview

The Task deployment view of the device editor shows a table with inputs/outputs and their
assignment to the defined tasks. Before the information can be displayed, the project has to be
compiled and the code has to be generated. This information helps in troubleshooting in case that
the same input/output is updated in different tasks with different priorities.

Task deployment of the device editor

Files | Log |PLC settings | PLC shell | Users and Groups | Access Rights | Licenses | Task deployment | Stati ¢ »
1/0 deployment for tasks:

1/0 channels Main Task (0) Bus Task (1) A
(=) BK5120
"® usiBK51200ut AT %QB0 X
*# usiBK5120In AT %IBO O DX
(=) 4 Generic_XN_16DO
*® usiGenericOut! AT %QB1 Ly
*¢ usiGenericOut2 AT %QB2 <o
(=)@ Generic XN_16DI
*& usiGenericin1 AT %IB1 O oKX
*® usiGenericln2 AT %IB2 O X
(=) Osicoder
*% udiOsicoderln AT %ID1 O OX
(=} ILB_CO_24_DI16_DO16
F® PhoenixOut! AT %QB3 <
*® %QB4 O |
*® %IB8 O X v

4r =Buscycle task

The table shows the tasks sorted by their task priority. Click the column heading (task name) to
display only the variables assigned to this task. To show all variables again, click the first column
(/O channels).

To open the 1/0 mapping table of a channel, double-click the input or output.
A blue arrow indicates the task of the bus cycle.

In the example above, the variable usiBK51200ut AT %QBO0 is used in 2 different tasks. In this
situation, the output, set by one task, can be overwritten by the other task: this can lead to an
undefined value. In general, it is ill-advised to write output references in more than one task, as it
makes the program difficult to debug and often may lead to unintended results in the operation of
your machine or process.

A WARNING

UNINTENDED EQUIPMENT OPERATION
Do not write to an output variable in more than one task.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 137

Common Device Editor Dialogs

Status

Overview

The Status view of the device editor shows status information (for example, Running, Stopped) and
specific diagnostic messages from the respective device; also on the used card and the internal
bus system.

Information

Overview

The Information view of the device editor shows some general information on the device currently
selected in the Devices tree: Name, Vendor, Type, Version number, Order Number, Description,
Image.

138 EI00000000067 06/2017

Common Device Editor Dialogs

Section 6.2
I/O Mapping

What Is in This Section?
This section contains the following topics:

Topic Page
1/0 Mapping 140
Working with the 1/0O Mapping Dialog 143
1/0 Mapping in Online Mode 146
Implicit Variables for Forcing 1/Os 146

EI00000000067 06/2017 139

Common Device Editor Dialogs

I/O Mapping

Overview

The 1/0O Mapping view of the device editor is named <devicetype> I/O Mapping (for example,
PROFIBUS DP I/0O Mapping). It serves to configure an I/0O mapping of the controller. This means
that project variables used by the application are assigned to the input, output, and memory
addresses of the controller.

Define the application which should handle the I/Os in the PLC settings view (see page 723).

NOTE: If supported by the device, you can use the online configuration mode to access the 1/Os
of the hardware without having an application loaded beforehand. For further information, refer to
the description of the Online Config Mode (see SoMachine, Menu Commands, Online Help).

See the following chapters:

e Working with the 1/0 Mapping Dialog (see page 74.3)
e |/O Mapping in Online Mode (see page 746)

e Implicit Variables for Forcing I/Os (see page 146)

General Information on Mapping 1/Os on Variables

Whether an /0 mapping can be configured for the current device depends on the device. It can be
that the view is only used to show the implicitly created device instance. See description of the /EC
objects (see page 146).

Basically, note the following for the mapping of I/Os to variables:
e Variables requiring an input cannot be accessed by writing.
e An existing variable can only be mapped to 1 input.
e Instead of using the /O Mapping view, you can also assign an address to a variable via the
AT declaration (see page 515).
However, consider the following:
O You can use AT declarations only with local or global variables; not however, with input and
output variables of POUs.
O The possibility of generating force variables for 1/Os (refer to Implicit Variables for Forcing
1/Os (see page 746)) will not be available for AT declarations.
O If AT declarations are used with structure or function block members, all instances will
access the same memory location. This memory location corresponds to static variables in
classic programming languages such as C.

e The memory layout of structures is determined by the target device.

e For each variable which is assigned to an 1/0O channel in the I/O Mapping view, force variables
can be created during a build run of the application (see SoMachine, Menu Commands, Online
Help). You can use them for forcing the input or output value during the commissioning of a
machine, for example, via a visualization (HMI). Refer to the chapter /mplicit Variables for
Forcing I/Os (see page 146).

140

EI00000000067 06/2017

Common Device Editor Dialogs

Automatic 1/0 Mapping

SoMachine V4.0 and later versions provide an automatic 1/0O mapping function. It automatically
creates IEC variables as soon as a device or module with I/O modules is added to the Devices
Tree and maps them on each input and/or output. By default, the function is activated.

You can deactivate and configure the function in the Project - Project Settings — Automatic 1/0

mapping dialog box.

Project Settings

| Automatic /0 mapping |
“&» Communication settings

##] Compile options Create variable on 1/0Os mapping
Compiler wamings

: Mapping
Firmware Update -
é Page Setup @ Bl
fj Security i
| O Module-wise
lﬂ Source Download

Static Analysis Light Naming Rule
&g Template Libraries
gﬂ Users and Groups #XH#THD #C
o8] Visualization
@ Visualization Profile #X : Substitute by ‘i’ for inputs and ‘q’ for outputs

#T : Prefix code of I/0 data type
#D : Device's name

#C : Name defined in Channel column

OK

][Cancel]

EI00000000067 06/2017

141

Common Device Editor Dialogs

The dialog box provides the following elements:

Element Description

Create variable on 1/0Os mapping Select or deselect this option to activate or deactivate the automatic
1/0 mapping function.

Mapping area

Bitwise Select this option to create variables for each bit.
Module-wise Select this option to create a variable for each module, not for the
individual bits.

Naming Rule area

text box Enter the following characters preceded by a # symbol to specify the

parts the variable name will consist of:

e Enter #X to integrate an i for inputs and a q for outputs in the
variable name.

e Enter #T to integrate the prefix code for the respective data type
of the variable in the variable name. The prefixes that are used for
the different data types are listed in the Recommendations on the
Naming of Identifiers chapter (see page 508).

e Enter #D to integrate the name of the device in the variable name.

e Enter #Cto integrate the name as defined in the Channel column
in the variable name.

142 EI00000000067 06/2017

Common Device Editor Dialogs

Working with the 1/0 Mapping Dialog

Overview

The following is an illustration of the 1/O Mapping tab of the device editor

/@Dl @ oa x|

’ 1/0 Mapping ‘(IIO Configuration

A The bus is not running. The shown values might not be up-to-date

Channels
Variable | Mapping | Channel | Address Type Default Value | Current Value | Prepared Value |Unit | Decription
(= [Outputs ' ‘
=2 e Qwo %QW0 | WORD 0 ;
L3 o A | |
$dA® | § | %QX0.0 | BOOL TRUE Fast output, push...|
qxDQ_Q1 Q1 %QX0.1 | BOOL FALSE [HYRS Fast output, push... |
L3 0, [
xDQ_Q2 6QX0. FALSE ast output, push... |
" q Q2 %Qx0.2 BOOL TRUE S F h
q HQX0. FALSE ast output, push... |
M DQ_Q3 Q3 %QX0.3 | BOOL FALSE S| F
" qxDQ_Q4 ® o %QX0.4 | BOOL TRUE |FIES Fast output, push...
qxDQ_Q5 5 %QX05 | BOOL K FALSE Fast output, push... |
"® ¢D0_Q ® | %Q 00l FALS!
qxDQ_ [5QX0. ALS ast output, push... |
4 DQ_Q6 Q6 %Qx0.6 BOOL TRUE QREEEIS F h...|
"® q0Q_Q7 ® | %QX0.7 | BOOL YR FALSE Fast output, push...
qxDQ._ | 08 %QX1.0 ormal output, pu...|
L DQ_Q8 Q %Q BOOL TRUE [FES Normal .
qxDQ_Q9 Q9 %QX1.1 BOOL FALSE QRS Normal output, pu...;
7 00 s ‘
E]Kﬁ e BYTE 0
X$ 500 001 @ FALSE

| Rearming Command (on rising edge)

® = Create new variable

“® =Map to existing variable

EI00000000067 06/2017

143

Common Device Editor Dialogs

Description of the Elements in the Channels Area

The 1/0O Mapping tab provides the following elements in the Channels area if provided by the
device:

Element Description

Channel symbolic name of the input or output channel of the device
Address address of the channel, for example: % W

Type data type of the input or output channel, for example: BOOL

If the data type is not standard, but a structure or bit field
defined in the device description, it will be listed only if it is
part of the IEC standard. It is indicated as IEC type in the
device description. Otherwise, the entry of the table will be

empty.
Unit unit of the parameter value, for example: ms for milliseconds
Description short description of the parameter
Current Value current value of the parameter, displayed in online mode

Configuration of the I/O Mapping

Perform the I/O mapping by assigning the appropriate project variables to the device input and
output channels each in the Variable column.

e The type of the channel is already indicated in the Variable column by a symbol: “» for input,

"9 for output. In this line, enter the name or path of the variable to which the channel should be
mapped. You can either map on an existing project variable or define a new variable, which then
will automatically be declared as a global variable.

When mapping structured variables, the editor will prevent that both the structure variable (for
example, on %B0) and particular structure elements (for example, in this case on %B0. 1 and
@B0. 2) can be entered.

This means: When there is a main entry with a subtree of bit channel entries in the mapping
table (as shown in the figure below), then either in the line of the main entry a variable can be
entered or in those of the subelements (bit channels) never in both.

For mapping on an existing variable, specify the complete path. For example: <application
name>.<pou path>.<variable name>",

Example: appl. pl c_prg.ivar

For this purpose, it can be helpful to open the input assistant via the ... button. In the Mapping

column, the # symbol will be displayed and the address value will be crossed out. This does
not mean that this memory address does not exist any longer. However, it is not used directly
because the value of the existing variable is managed on another memory location, and,
especially in case of outputs, no other already existing variable should be stored to this address
(%X x in the I/O mapping) in order to avoid ambiguities during writing the values.

144

EI00000000067 06/2017

Common Device Editor Dialogs

See in the following example an output mapping on the existing variable xBool _4:

DP parameters | DP-Module Configuration| DP-Module /O Mapping | Status | Information

Channels
Variable Mapping Channel ~ Address Type Current V
B Output0 %QB2
® Bit0 %QX2.0 BOOL
Profibus.PLC_PRG.xBool_4 C) Bt %QX2:4 BOOL

e If you want to define a new variable, enter the desired variable name.
Example: bvar 1

In this case, the #symbol will be inserted in the Mapping column and the variable will be
internally declared as a global variable. From here, the variable will be available globally within
the application. The mapping dialog is another place for the declaration of global variables.
NOTE: Alternatively, an address can also be read or written within a program code, such as
in ST (structured text).

e Considering the possibility of changes in the device configuration, it is recommended to do the
mappings within the device configuration dialog.

NOTE: If a UNION is represented by 1/0O channels in the mapping dialog, it depends on the device
whether the root element is mappable or not.

If a declared variable of a given data type is larger than that to which it is being mapped, the value
of the variable being mapped will be assigned a truncated to the size of the mapped target variable.

For example, if the variable is declared as a WORD data type, and it is mapped to a BYTE, only
8 bits of the word will be mapped to the byte.

This implies that, for the monitoring of the value in the mapping dialog, the value displayed at the
root element of the address will be the value of the declared variable - as currently valid in the
project. In the sub-elements below the root, the particular element values of the mapped variable
will be monitored. However, only part of the declared value may be displayed among the sub-
elements.

A further implication is when you map a declared variable to physical outputs. Likewise, if you map
a data type that is larger than the output data type, the output data type may receive a truncated
value such that it may affect your application in unintended ways.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Verify that the declared data type that is being mapped to physical I/O is compatible with the
intended operation of your machine.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 145

Common Device Editor Dialogs

Element Description

Reset mapping Click this button to reset the mapping settings to the defaults
defined by the device description file.

Always update variables If this option is activated, the variables will be updated in each
cycle of the bus cycle task (see page 723), no matter whether
they are used or whether they are mapped to an input or
output.

IEC Objects

This part of the tab is only available if implicitly an instance of the device object has been created,
which can be accessed by the application (for example, in order to restart a bus or to poll
information). Whether such an instance is available and how it can be used, depends on the
controller and is described in its programming guide.

Bus Cycle Options

This configuration option will be available for devices with cyclic calls before and after reading
inputs or outputs. It allows you to set a device-specific bus cycle task (see page 723).

Per default, the parent bus cycle setting will be valid (Use parent bus cycle setting). This means
that is the Devices Tree will be searched for the next valid bus cycle task definition.

To assign a specific bus cycle task, select the desired one from the selection list. The list provides
the tasks currently defined in the application task configuration.

I/0 Mapping in Online Mode

1/0O Mapping in Online Mode

If a structure variable is mapped on the root element of the address (the uppermost in the tree of
the respective address in the mapping dialog), then in online mode no value will be displayed in
this line. If, however, for example, a DWORD variable is mapped to this address, then in the root
line, as well as in the bit channel lines indented below, the respective values will be monitored.
Basically, the field in the root line stays empty if the value is composed of multiple subelements.

Implicit Variables for Forcing 1/0s

Overview

During the commissioning of a plant or a machine, it can be necessary to force 1/Os, for example,
by an HMI visualization. For this purpose, you can generate special force variables for each /O
channel which is mapped on a variable in the 1/0O Mapping tab of the device editor.

As a precondition the setting Generate force variables for IO mapping has to be activated in the
PLC settings tab. Then, at each build run of the application, for each mapped I/0 channel,

2 variables will be generated according to the following syntax. Any empty spaces in the channel
name will be replaced by underscores.

146

EI00000000067 06/2017

Common Device Editor Dialogs

<devicename>_<channelname>_<I|ECaddress>_Force of type BOOL, for activating and
deactivating the forcing

<devicename>_<channelname>_<ECaddress>_Value of datatype of the channel, for defining the
value to be forced on the channel

These variables will be available in the input assistant in category Variables — loConfig_Globals_-
Force_Variables. They can be used in any programming objects, in visualizations, symbol
configuration, and so on, within the programming system.

A rising edge at the force variable activates the forcing of the respective I/O with the value define
by the value variable. A falling edge deactivates the forcing. Deactivating by setting the force
variable back to FALSE is necessary before a new value can be forced.

Consider the restrictions listed below.

Example

If the mapping is completed as shown in figure I/O Mapping tab of the device editor (see page 743),
then at a build (F11) of the application, the following variables will be generated and be available
in the input assistant:

e Digitax_ST Control _word_QA_Force : BOO;

e Digitax_ST_Control _word_QAD_Val ue : Ul NT;

e Digitax_ ST Target_position_QDl_Force : BOO;

e Digitax_ ST Target_position_QDl_Val ue : DI NT;

e Digitax ST Status_word_|IW _Force : BOQ,;

e Digitax_ ST Status_word_|IW _Value : Ul NT;

e Digitax_ST Position_actual _value_IDl_Force : BOQOL;

e Digitax_ST_Position_actual _value |ID1_Value : DI NT;
Restrictions

e Only channels which are mapped on a variable in the 1/0 Mapping tab (i.e., a variable has to be
defined in the Variable column, no matter whether it is a new or an existing) can be forced by
the above described implicit variables.

e Unused inputs / outputs as well as those which are mapped via AT declaration in an application
program cannot be forced.

e The respective I/O channels have to be used in at least one task.

e Forced I/Os are not indicated in the monitoring (watch view, I/O mapping dialog). The value is
only used implicitly in the 1/O driver for writing onto the device.

e Forced inputs are displayed correctly by the red force symbol (F), not however, forced
inputs/outputs.

EI00000000067 06/2017 147

Common Device Editor Dialogs

148 EI00000000067 06/2017

Part Il

Program

What Is in This Part?
This part contains the following chapters:

Chapter Chapter Name Page
7 Program Components 151
8 Task Configuration 225
9 Managing Applications 227

EIO0000000067 06/2017

149

Program

150 EI00000000067 06/2017

Chapter 7

Program Components

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
71 Program Organization Unit (POU) 152
7.2 Function Block 179
7.3 Application Objects 198
7.4 Application 223

EIO0000000067 06/2017

151

Program Components

Section 7.1
Program Organization Unit (POU)

What Is in This Section?
This section contains the following topics:

Topic Page
POU 153
Adding and Calling POUs 154
Program 158
Function 160
Method 163
Property 166
Interface 168
Interface Property 172
Action 175
External Function, Function Block, Method 177
POUs for Implicit Checks 178

152 EI00000000067 06/2017

Program Components

POU

Overview

The term Program Organizational Unit (POU) is used for all programming objects (programs,
function blocks, functions, etc.) which are used to create a controller application.

POU Management

POUs which are managed in the Global node of the Applications tree are not device-specific but
they can be instantiated for the use on a device (application). For this purpose, program POUs
must be called by a task of the respective application.

POUs which are inserted in the Applications tree explicitly below an application, can only be
instantiated by applications indented below this application (child application). For further
information, see the descriptions of the Devices tree (see page 39) and of the Application object
(see page 223).

But POU also is the name of a certain sub-category of these objects in the Add Object menu. At
this place, it just comprises programs, function blocks, and functions.

Therefore, a POU object in general is a programming unit. It is an object which is managed either
non-device-specifically in the Global node of the Applications tree or directly below an application
in the Applications tree. It can be viewed and edited in an editor view. A POU object can be a
program, function, function block.

It is possible to set certain Properties (such as build conditions, etc.) for each particular POU
object.

For a description on how to create a POU, refer to the section Adding POUs to an Application
(see page 155). The POUs you have created are added to the Assets view of the Software catalog.

You can add a POU available in the Assets view to the project in 2 different ways:
e Select a POU in the Assets view and drag it to the suitable node in the Applications tree.
e Select a POU in the Assets view and drag it to the logic editor view (see page 257).

Besides the POU objects, there are device objects used for running the program on the target
system (Resource, Application, Task Configuration etc.). They are managed in the Applications
tree.

EI00000000067 06/2017 153

Program Components

Adding and Calling POUs

Introduction

You can add Program Organization Units (POUs) to your application in the Software catalog -
Assets or in the Applications tree.

The different types of POU are:

Program: It returns one or several values during operation. All values are retained from the last
time the program was run until the next. It can be called by another POU.

Function Block: It provides one or more values during the processing of a program. As opposed
to afunction, the values of the output variables and the necessary internal variables shall persist
from one execution of the function block to the next. So invocation of a function block with the
same arguments (input parameters) need not always yield the same output values.

Function: It yields exactly one data element (which can consist of several elements, such as
fields or structures) when it is processed. The call in textual languages can occur as an operator
in expressions.

154

EI00000000067 06/2017

Program Components

Adding POUs to an Application
To add a POU to the application of the controller, proceed as follows:

Step

Action

1

In the Software catalog - Assets -~ POUs section, select an Application node, click the green plus
button, and execute the command POU.... As an alternative, you can right-click the Application node
of the controller and choose Add Object - POU.

The 2 methods are also available in the Applications tree.

Result: The Add POU dialog box opens.

@ Create a new POU (Program Organization Unit)

Name:
IbecaIe I

Type:

O Program

@ Function Block
Extends: |fbAss1 IE]
Implements: | ITF)

Access specifier:
[INTERNAL v|

Method implementation language:
| Structured Text (ST) v

O Function

Return type: | |

Implementation language:
Structured Text (ST) v I

[Open][Cancel]

In the Add POU dialog box, assign a name to your POU by typing a name in the text field Name.

NOTE: The name must not contain any space characters. If you do not enter a name, a name is
given by default.

Assigning a meaningful name to a POU may ease the organization of your project.

EI00000000067 06/2017 155

Program Components

Step | Action

3 | Select the type of POU you want:

® Program

e Function Block:

a. Select Extends and click the browser to select the block function you want in the Input

Assistant.

. Click the OK button.

Select Implements and click the browser to select the interface you want in the Input Assistant.

. Click the OK button.

. In the list box Method implementation language, select the programming language you want
for editing the function block.

oao0oT

o Function:

a. Click the browse button to select the Return type you want in the Input Assistant.
b. Click the OK button.

4 | From the list box Implementation Language, select the programming language you want for editing
your program.

5 | Click the Open button.

Already defined POUs are listed in the Software catalog —~ Assets -~ POUs section. You can add
them to your application, by dragging them to the Applications tree and dropping them on an
Application node. You can also drop a POU on the logic editor view.

Assigning POUs to a Task
At least 1 POU has to be assigned to a task. To add a POU to a task, proceed as follows:

Step | Action

1 | Under the node Task Configuration of the controller, double-click the task to which you want to add
your POU. In the Configuration tab, click Add Call.

Alternatively, in the Applications tree select a task node you want to declare your POU and click the
green plus button. Execute the command POU... from the list. Click the ... button.

Result: The Input Assistant dialog box is displayed.

In the tab Categories of the Input Assistant dialog box, select Programs (Project).

Click to clear the check box Structured view.

In the Items panel, select the POU you want.

a |~ w N

Click the OK button.

156 EI00000000067 06/2017

Program Components

Calling POUs
POUs can call other POUs. Recursion however is not allowed (a POU that calls itself).

When a POU assigned to an application calls another POU just by its name (without any
namespace (see page 709) added), consider the following order of browsing the project for the
POU to be called:

current application

Library Manager of the current application in the Tools tree

1
2

3. Global node of the Applications tree

4 Library Manager in the Global node of the Tools tree

If a POU with the name specified in the call is available in a library of the Library Manager of the
application as well as an object in the Global node of the Applications tree, there is no syntax for
explicitly calling the POU in the Global node of the Applications tree, just by using its name. In this
case move the respective library from the Library Manager of the application to the Library
Manager of the Global node of the Applications tree. Then you can call the POU from the Global
node of the Applications tree just by its name (and, if needed, that from the library by preceding the
library namespace).

Also refer to the chapter POUs for Implicit Checks (see page 178).

EI00000000067 06/2017 157

Program Components

Program

Overview

A program is a POU which returns one or several values during operation. All values are retained
from the last time the program was run until the next.

Adding a Program

To assign a program to an existing application, select the application node in the Applications tree,
click the green plus button, and execute the command POU.... As an alternative, right-click the
Application node, and execute the command Add Object - POU from the context menu. To add
an application-independent POU, select the Global node of the Applications tree, and execute the
same commands.

In the Add POU dialog box select the Program option, enter a name for the program, and select
the desired implementation language. Click Open to confirm. The editor view for the new program
will open and you can start editing the program.

Declaring a Program

Syntax:
PROGRAM <program name>

This is followed by the variable declarations of input (see page 5217), output (see page 527), and
program variables. Access variables are available as options as well.

Example of a program

[£] PRGexample 4 b X
PROGRAM FPRCGexample ~
VAR_INPUT

in var:INT;
END_VAR
= VAR _OUTPUT
out_wvar:INT;
END_VAR
= VAR
9 ivar:INT:=0;
bvar :BOOL:=FALSE;

]

END VAR ot
< >
I out_var: 1[]7Vd r+ivar; A
= IF ocut_var:=10
THEN bvar:=TRUE;
END_ IF; N
< >

158

EI00000000067 06/2017

Program Components

Calling a Program

A program can be called by another POU. However, a program call in a Function (see page 7160)
is not allowed. There are no instances of programs.

If a POU has called a program and if the values of the program have been changed, these changes
will be retained until the program gets called again. This applies even if it will be called from within
another POU. Consider that this is different from calling a function block. When calling a function
block, only the values in the given instance of the function block are changed. The changes only
are affected when the same instance is called again.

In order to set input and/or output parameters in the course of a program call, in text language
editors (for example, ST), assign values to the parameters after the program name in parentheses.
For input parameters, use : = for this assignment, as with the initialization of variables

(see page 572) at the declaration position. For output parameters, use =>. See the following
example.

If the program is inserted via the Input Assistant using the option Insert with arguments in the

implementation view of a text language editor, it will be displayed automatically according to this
syntax with all parameters, though you do not necessarily have to assign these parameters.

Example for Program Calls
Program in IL:

CAL PRGexanpl e (
in_var:= 33)

LD PRGexanpl e. out _var

ST erg

Example with assigning the parameters (Input Assistant using the option Insert with arguments):
Program in IL with arguments:

CAL PRGexanpl e (
in_var:= 33)
out _var=> erg)

Example in ST

PRGexanpl e(i n_var: = 33);
erg : = PRGexanpl e. out _var;

Example with assigning the parameters (Input Assistant using the option Insert with arguments as
described previously):

PRGexanpl e (i n_var:=33, out_var=>erg);
Example in FBD
Program in FBD:

PRGExample
33 —|in var out var [—erg

EI00000000067 06/2017 159

Program Components

Function

Overview

A function is a POU which yields exactly one data element (which can consist of several elements,
such as fields or structures) when it is processed. Its call in textual languages can occur as an
operator in expressions.

Adding a Function

To assign the function to an existing application, select the application node in the Applications
tree, click the green plus button, and execute the command POU.... As an alternative, right-click
the Application node, and execute the command Add Object - POU from the context menu. To
add an application-independent POU, select the Global node of the Applications tree, and execute
the same commands.

In the Add POU dialog box, select the Function option. Enter a Name (<function name>) and a
Return Data Type (<data type>) for the new function and select the desired implementation
language. To choose the return data type, click the button ... to open the Input Assistant dialog box.
Click Open to confirm. The editor view for the new function opens and you can start editing.

Declaring a Function
Syntax:
FUNCTION <function name> : <data type>
This is followed by the variable declarations of input and function variables.
Assign a result to a function. This means that the function name is used as an output variable.

Do not declare local variables as RETAI N or PERSI STENT in a function because this will have no
effect.

The compiler generates appropriate messages if local variables declared as RETAI N or
PERSI STENT are detected.

160 EI00000000067 06/2017

Program Components

Example of a function in ST: this function takes 3 input variables and returns the product of the last
2 added to the first one.

PRGexample FCTexalwlel 1}
1 FUNCTION FCTexample : INT -
2 VAR_INPUT
3 ivarl:int;
4 ivar2:int; .
§ ivar3:int;
6 END_VAR

2 IIar

FCTexample:=ivarl+ivarZ*ivar3;

ol

Calling a Function
The call of a function in ST can appear as an operand in expressions.
In IL, you can position a function call only within actions of a step or within a transition.

Functions (in contrast to a program or function block) contain no internal state information, that is,
invocation of a function with the same arguments (input parameters) always will yield the same
values (output). For this reason, functions may not contain global variables and addresses.

Example of Function Calls in IL
Function calls in IL;

LD 5

Fct 3 5
22

ST resul t

Example of Function Calls in ST
result := fct1(5, 3, 22);

EI00000000067 06/2017 161

Program Components

Example of Function Calls in FBD
Function calls in FBD:

5—
3
22—

fctl

ivarl
ivar2
ivar3

Example:

fun(formal 1 :
fun(formal 2 :

ol | owi ng:

fun(formal 1 :

actual 1, actual 2);
formal 1 :

act ual 2,

actual 1,

—result

formal 2 :

/1l -> error message

actual 1);

actual 2);

// same semantics as the f

According to the IEC 61131-3 standard, functions can have additional outputs. They must be
assigned in the call of the function. In ST, for example, according to the following syntax:

out1 => <output variable 1> | out2 => <output variable 2> | ...further output variables

Example

Function f un is defined with 2 input variables i n1 and i n2. The return value of f un is written to
the locally declared output variables (see page 527) (VAR _OUTPUT) | oc1 and | oc2.

fun(inl

=1,

in2 := 2,

outl => |ocl,

out2 => | oc2);

162

EI00000000067 06/2017

Program Components

Method

Overview

The Method functionality is only available if selected in the currently used feature set (Options —
Features - Predefined feature sets).

You can use methods to describe a sequence of instructions because they support object-oriented
programming. Unlike a function, a method is not an independent POU, but must be assigned to a
function block (see page 779). It can be regarded as a function which contains an instance of the
respective function block. Such as a function it has a return value, an own declaration part for
temporary variables and parameters.

Also as a means of object-oriented programming, you can use interfaces (see page 768)to
organize the methods available in a project. An interface is a collection of method-prototypes. This
means a method assigned to an interface only contains a declaration part, but no implementation.
Further on in the declaration, no local and static variables are allowed, but only input, output and
input/output variables. The implementation of the method is to be done in the function block which
implements the interface (see page 789) and uses the method.

NOTE: When copying or moving a method or property from a POU to an interface, the contained
implementations are deleted automatically. When copying or moving from an interface to a POU,
you are requested to specify the desired implementation language.

Inserting a Method

To assign a method to a function block or interface, select the appropriate function block or
interface node in the Applications tree, click the green plus button and execute the command
Method. Alternatively, you can right-click the function block or interface node and execute the
command Add Object -~ Method from the context menu.

In the Add Method dialog box, enter a Name, the desired Return Type, the Implementation
Language, and the Access Specifier (see below). For choosing the return data type, click the
button ... to open the Input Assistant... dialog box.

Access specifier: For compatibility reasons, access specifiers are optional. The specifier PUBLIC
is available as an equivalent for having set no specifier.

Alternatively, choose one of the options from the selection list:

e PRIVATE: The access on the method is restricted to the function block.

e PROTECTED: The access on the method is restricted to the function block and its derivation.
e INTERNAL: The access on the method is restricted to the current namespace (the library).

o FINAL: No overwriting access on the method is possible. Enables optimized code generation.

NOTE: The access specifiers are valid as of compiler version 3.4.4.0 and thus can be used as
identifiers in older versions. For further information, refer to the SoMachine/CoDeSys compiler
version mapping table in the SoMachine Compatibility and Migration User Guide (see SoMachine
Compatibility and Migration, User Guide).

Click Open to confirm. The method editor view opens.

EI00000000067 06/2017 163

Program Components

Declaring a Method
Syntax:
METHOD <access specifier> <method name> : <return data type>VAR_INPUT ... END_VAR

For a description on how to declare interface handling methods, refer to the /nferface chapter
(see page 168).

Calling a Method

Method calls are also named virtual function calls. For further information, refer to the chapter
Method Invocation (see page 1917).

Note the following for calling a method:

e The data of a method is temporary and only valid during the execution of the method (stack

variables). This means that the variables and function blocks declared in a method are

reinitialized at each call of the method.

In the body of a method, access to the function block instance variables is allowed.

If necessary, use the THIS pointer (see page 795)which always points on the current instance.

VAR | N_QUT or VAR _TEMP variables of the function block cannot be accessed in a method.

Methods defined in an interface (see page 768) are only allowed to have input, output, and

input/output variables, but no body (implementation part).

e Methods such as functions can have additional outputs. They must be assigned during method
invocation (see page 191).

Special Methods for a Function Block

Method Description

I nit A method named FB_i ni t is by default declared implicitly, but can also be
declared explicitly. It contains initialization code for the function block as
declared in the declaration part of the function block. Refer to FB_i ni t
method (see page 537).

Rei ni t If a method named FB_r ei ni t is declared for a function block instance, it is
called after the instance has been copied (like during Online Change) and will
reinitialize the new instance module. Referto FB_init, FB reinit
methods (see page 537).

Exi t If an exit method named FB_exi t is desired, it has to be declared explicitly.
There is no implicit declaration. The Exi t method is called for each instance
of the function block before a new download, a reset or during online change
for all moved or deleted instances. Refer to FB_exi t method (see page 534).

Properties (see page 766) and interface properties (see page 77.2)each consist of a Set and/or a
Get accessor method.

164 EI00000000067 06/2017

Program Components

Method Call Also When Application Is Stopped
In the device description file, it can be defined that a certain method should always be called task-
cyclically by a certain function block instance (of a library module). If this method has the following
input parameters, it is processed also when the active application is not running.

Example

VAR_|I NPUT
pTaskl nfo : PO NTER TO DWORD;
pAppl i cationl nfo: PO NTER TO _I MPLI CI T_APPLI CATI ON_| NFG,

END VAR
The programmer can check the application status via pAppl i cat i onl nf 0, and can define what
should happen.

| F pApplicationlnfo?. state = RUNNI NG THEN <i nstructi ons> END | F

EI00000000067 06/2017 165

Program Components

Property

Overview

The Property functionality is only available if selected in the currently used feature set (Options —»
Features - Predefined feature sets).

A property in extension to the IEC 61131-3 is available as a means of object-oriented
programming. It consists of a pair of accessor methods (Get , Set). They are called automatically
at a read or write access on the function block, which has got the property.

To insert a property as an object below a program (see page 758) or a function block

(see page 179) node, select the node in the Applications tree, click the green plus button, and
execute the command Property. As an alternative, right-click the node and execute the command
Add Object — Property from the context menu.

In the Add Property dialog box specify the Name, Return Type, desired Implementation Language,
and optionally an Access Specifier.

The same access specifiers are available as for methods (see page 763).
PUBLIC

PRIVATE

PROTECTED

INTERNAL

FINAL

NOTE: Properties can also be used within interfaces.

Get and Set Accessors of a Property

2 special methods (see page 763), named accessor, are inserted automatically in the Applications
tree below the property object. You can delete one of them if the property should only be used for
writing or only for reading. An accessor, like a property (see previous paragraph), can get assigned
an access modifier in the declaration part, or via the Add POU dialog box, when explicitly adding
the accessor.

e The Set accessor is called when the property is written that is the name of the property is used
as input.

e The Get accessor is called when the property is read that is the name of the property is used
as output.

Example:

Function block FB1 uses a local variable mi | | i . This variable is determined by the properties Get
and Set :

Get example
seconds := mlli / 1000;

Set example

166

EI00000000067 06/2017

Program Components

mlli := seconds * 1000;

You can write the property of the function block (Set method), for example by
fbi nst.seconds := 22;.

(f bi nst is the instance of FB1).

You can read the property of the function block (Get method) for example by
testvar := fbinst.seconds;.

In the following example, property Pr op1 is assigned to function block f b:

POUs +* O X
= 2 proixwy hd
=-|E] fb(FB)
=5} prop1
_EE Get
5 se

A property can have additional local variables but no additional inputs and - in contrast to a function
(see page 160) or method (see page 763) - no additional outputs.

NOTE: When copying or moving a method or property from a POU to an interface, the contained
implementations are deleted automatically. When copying or moving from an interface to a POU,
you are requested to specify the desired implementation language.

Monitoring a Property

A property can be monitored in online mode either with help of inline monitoring (see page 356) or
with help of a watch list (see page 422). The precondition for monitoring a property is the addition
of the pragma {attri bute 'nonitoring: =variabl e'} (referto the chapter Attribute
Monitoring (see page 562)) on top of its definition.

EI00000000067 06/2017 167

Program Components

Interface

Overview

The Interface functionality is only available if selected in the currently used feature set (Options —
Features - Predefined feature sets).

The use of interfaces is a means of object-oriented programming. An interface POU describes a
set of methods (see page 763)and property (see page 166) prototypes. Prototype means that just
declarations but no implementation is contained. An interface can be described as an empty shell
of a function block (see page 779). 1t must be implemented (see page 789)in the declaration of the
function block in order to get realized in the function block instances. Not until being part of a
function block definition, it can be filled with the function block-specific programming code. A
function block can implement one or several interfaces.

The same method can be realized with identical parameters but different implementation code by
different function blocks. Therefore, an interface can be used/called in any POU without the need
that the POU identifies the particular function block that is concerned.

Example of Interface Definition and Usage in a Function Block

An interface | FT is inserted below an application. It contains 2 methods Met hod1 and Met hod2.

Neither the interface nor the methods contain any implementation code. Just the declaration part
of the methods is to be filled with the desired variable declarations:

Interface with 2 methods:

Applications tree v 0 X -0 [TF

v X
=30 My SoMProject 1| INTERFACE ITF ~
(=€} Application 2 v
[=]~0 |TF < >

2 Method >33 ITF Methodt v X
M Method2)
M 1| METHOD Methodl:INT A
m Library Manager © 2 VAR INPUT
E] FUN(FUN) 3 inl, in2 : INT;]
£] PICDNCINNC) ¥ 4| END VAR b2
< > $ >

1 or multiple function blocks can now be inserted, implementing the above defined interface | TF.

168

EI00000000067 06/2017

Program Components

Creating a function block implementing an interface

Add POU

@ Create a new POU (Program Organization Unit)

Name:

POU

Type:

O Program

@ Function Block

E] Extends: |

Implements: I ITF

=

Method implementation language:

When function block POU is added to the Applications tree, the methods Met hod1 and Met hod2
are automatically inserted below as defined by | TF. Here they can be filled with function block-

specific implementation code.

Using the interface in the function block definition

Devices v o X ~o [TF./[5] POU v X
=3 interface 1,¥ FUNCTION_BLOCK POU IMPLEMENTS ITE_A:‘
(=] Device (WinV3) 2| VAR INPUT i
=) PLC Logic 3| i1 1IN (5
(=) €} Application 4 i2 : INT;
B0 ITF 5| END_VAR
p Method1 6 VAR _OUTPUT
&34 Method2 7] "ol : INT;
0 Library Manager 8| o2 : INT;
: FUN (FUN) 9| mypou : POU_1; =
PLC_PRG (PRG) 10| myarrpou : ARRAY [0..3] OF PO
POU (FB) — 11, END VAR
<4 Method 2 12| var
=3 =4 - |
o ggﬁf‘?:;f\m POU Melhodt v X
@3 bl 2 Em ~ 1/ METHOD Methodl:INT h|
&) | b = 2| VAR_INPUT
3] inl : INT; D
4 in2! ; INTE;
5 END_VAR
6/ ¥
| — T
i "1] Methodl:= _11; @Al
EIO0000000067 06/2017 169

Program Components

An interface can extend other interfaces by using EXTENDS (see following example Example for
Extending an Interface (see page 177)) in the interface definition. This is also possible for function
blocks.

Interface Properties

An interface can also define an interface property, consisting of the accessor methods Get and/or
Set . For further information on properties, refer to the chapters Property (see page 766) and
Interface Property (see page 772). A property in an interface like the possibly included methods is
just a prototype that means it contains no implementation code. Like the methods, it is
automatically added to the function block, which implements the interface. There it can be filled
with specific programming code.

Considerations

Consider the following:

e |tis not allowed to declare variables within an interface. An interface has no body (implemen-
tation part) and no actions. Just a collection of methods is defined within an interface and those
methods are only allowed to have input variables, output variables, and input/output variables.

e Variables declared with the type of an interface are treated as references.

e A function block implementing an interface must have assigned methods and properties which
are named exactly as they are in the interface. They must contain identically named inputs,
outputs, and inputs/outputs.

NOTE: When copying or moving a method or property from a POU to an interface, the contained
implementations are deleted automatically. When copying or moving from an interface to a POU,
you are requested to specify the desired implementation language.

Inserting an Interface

To add an interface to an application, select the Application node in the Applications tree or in the
Software Catalog — Assets, click the green plus button and select Add Other Objects... »
Interface. Alternatively, execute the command Add Object - Interface. If you select the node
Global before you execute the command, the new interface is available for all applications.

In the Add Interface dialog box, enter a name for the new interface (<interface name>). Optionally
you can activate the option Extends: if you want the current interface to be an extension
(see page 186) of another interface.

170 EI00000000067 06/2017

Program Components

Example for Extending an Interface

If | TF1 extends | TF_base, all methods described by | TF_base will be automatically available in
| TF1.

Extending an interface

& Apn2 ~o ITF1

B2 .|:Tf1 ll INTERFACE ITF1l EXTENDS ITF base
R4 METH_11

(=} ITF base Add Interface (%]
R METH_21
< METH_22

=0 (Create a new interface

Name: ,
[ITF1 |

Inheritance:

Extends: |ITF_base @

Click Add to confirm the settings. The editor view for the new interface opens.

Declaring an Interface
Syntax
INTERFACE <interface name>
For an interface extending another one:
INTERFACE <interface name> EXTENDS <base interface name>
Example
I NTERFACE i nterfacel EXTENDS interface_base

Adding the Desired Collection of Methods

To complete the definition of the interface, add the desired collection of methods. For this purpose,
select the interface node in the Applications tree or in the Software Catalog —+ Assets and execute
the command Interface method.... The Add Interface Method dialog box opens for defining a
method to be part of the interface. Alternatively, select the interface node in the Applications tree,
click the green plus button and select Interface Method. Add as many methods as desired and
remember that these methods are only allowed to have input variables, output variables, and
input/output variables, but no body (implementation part).

EI00000000067 06/2017 171

Program Components

Interface Property

Overview
A property, available as a means of object-oriented programming, can - besides with methods and
programs - also be used within the definition of an interface (see page 768). In this case, it is
named interface property. To add it to the interface selected in the Applications tree, click the green
plus button, and execute the command Interface Property.... Alternatively, right-click the interface
node, and execute the command Add Object — Interface property from the context menu.

For further information on a property and its methods, refer to Property (see page 7166)

An interface property extends the description of an interface. Such as the interface, it just defines
that the accessor methods Get and/or Set (you can use both or just one of them) belong to the
interface; however, provides no implementation code for them. When a function block is extended
with an interface containing properties, these properties and their associated Get and/or Set

accessors are automatically inserted in the Devices tree below the function block object. They can
be edited in order to add the desired implementation code.

Example
In the following figure, the interface Nanedl t emhas got a property Nane with a Get and a Set
accessor method. The Get accessor in this example is intended to be used for reading the name
of any item from a function block implementing the interface. The Set accessor can be used to
write a name to this function block. Both methods cannot be edited within the interface definition,
but later in the function block.
The function block FB_Namne_xy 1 has been added to the Devices tree, implementing the interface
(FUNCTI ON_BLOCK FB_Nane_xyl | MPLEMENTS Nanedl t em). Therefore, the property Nane
with the Get and Set methods has been inserted automatically below FB_Nane_xy1. Here you
can edit the accessor methods, for example in a way that variable name_of _xy1 is read and thus
the name of an item is got . In another function block, also implementing the same interface, the
Get method can be filled with another code. This code can provide the name of any other item.
The Set method in the example is used to write a name - defined by program PLC_PRG (' abc')
- to the function block FB_Nane_xy2.

172 EI00000000067 06/2017

Program Components

Interface Nanedl t emimplemented in 2 function blocks

= =) interface_props

[=}- £} Application

=} =0 Nameditem

= 33 Name

3 Get

H) Set
FB_Name_xy1 (FB)
33 Name

E Get

[z Set

- [

FB_Name_xy2 (FB)
J2 Name

32 Get

53 Set
'E] PLC_PRG (PRG)

2 Function Blocks Implementing the Interface Naned! t em
Function block FB_Nane_xy1

FUNCTI ON_BLOCK FB_Name_xy1 | MPLEMENTS Nanedl t em
VAR_| NPUT
END_VAR
VAR_QUTPUT
END_VAR
VAR
name_of xyl: STRING =' xyl';
END_VAR

Function block FB_Nane_xy?2

FUNCTI ON_BLOCK FB_Name_xy2 | MPLEMENTS Namedl| t em
VAR_I NPUT

END_VAR
VAR_OQUTPUT
END_VAR
VAR

name_of _xy2: STRING =' xy2';

nane_got _from PLC PRG STRI NG

END_VAR

EI00000000067 06/2017 173

Program Components

Implementation of Code in the Accessor Methods Get and Set Below the 2 Function Blocks

FB_Name_xy1.Get

VAR
END_ VAR
nanme := nane_of xyl,;

FB_Name_xy2.Get

VAR
END_VAR
nanme := nanme_of _xy2;

FB_Name_xy2.Set

VAR
END_VAR
name_got _from PLC PRG =nane;

Accessing the Function Blocks by Program PLC_PRG

PROGRAM PLC_PRG

VAR
FBxyl_i nst: FB_Name_xyl;
FBxy2_ i nst: FB_Nane_xy2;
namexyl: STRI NG
namexy2: STRI NG

END VAR

//get nane out of fb

nanmexyl: =FBxy1l_i nst. Nane;

nanexy2: =FBxy2_i nst. Nane;

[/wite nane to fb

FBxy2_i nst. Nane: ="' abc' ;

174 EI00000000067 06/2017

Program Components

Action

Overview

You can define actions and assign them to function blocks (see page 779) and programs
(see page 158). An action is an additional implementation. It can be created in a different language
than the basic implementation. Each action is given a name.

An action works with the data of the function block or program to which it belongs. It uses the
input/output variables and local variables defined and does not contain its own declarations.

Example of an Action of a Function Block
The following illustration shows an action in FB

[£) FB1.7|5] PLC_PRG v X |5, FB1Reset v X
1 PROGRAM PLC_FPRG = 1 out:=0; -~
= 2 VAR E. 2
3 fbinst:FBl: é‘
4 erg: INT;
5 Show_count: INT; O
& END VAR g
[=
)
4
< >

In this example, each call of the function block FB1 increases or decreases the output variable out ,
depending on the value of the input variable i n. Calling action Reset of the function block sets the
output variable out to 0. The same variable out is written in both cases.

Inserting an Action

To add an action, select the respective program or function block node in the Applications Tree or
in the Global node of the Applications Tree, click the green plus button, and execute the command
Action.... Alternatively, right-click the program or function block node, and execute the command
Add Object — Action. In the Add Action dialog box, define the action Name and the desired
Implementation Language.

Calling an Action
Syntax
<Pr ogr am name>. <Act i on_name>
or
<l nst ance_name>. <Act i on_nane>

EI00000000067 06/2017 175

Program Components

Consider the notation in FBD (see the following example).

If it is required to call the action within its own block, that is the program or function block it belongs
to it is sufficient to use the action name.

Examples
This section provides examples for the call of the above described action from another POU.
Declaration for all examples:

PROGRAM PLC_PRG
VAR

Inst : Counter;
END VAR

Call of action Reset in another POU, which is programmed in IL:

CAL I nst.Reset(ln := FALSE)
LD I nst. out
ST ERG

Call of action Reset in another POU, which is programmed in ST:

Inst. Reset(In := FALSE);
Erg : = Inst.out;

Call of action Reset in another POU, which is programmed in FBD:

Action in FBD
inst
counter.reset
FALSEHin out erg

NOTE: The IEC standard does not recognize actions other than actions of the sequential function
chart (SFC). These actions are an essential part containing the instructions to be processed at the
particular steps of the chart.

176 EI00000000067 06/2017

Program Components

External Function, Function Block, Method

Overview

For an external function, function block, or method no code will be generated by the programming
system.

Perform the following steps to create an external POU:

Step Action

1. Add the desired POU object to the Global node of the Applications tree of your
project such as any internal object and define the respective input and output
variables.

NOTE: Define local variables in external function blocks. Do not define them in
external functions or methods. VAR _STAT variables cannot be used in the
runtime system.

2. Define the POU to be external:

For this purpose, right-click the POU object in the Global node of the Applications
tree and execute the command Properties from the context menu. Open the Build
tab and activate the option External Implementation (Late link in the runtime
system).

In the runtime system an equivalent function, function block or method has to be implemented. At
a program download, the equivalent for each external POU is searched in the runtime system. If
the equivalent is found, it is linked.

EI00000000067 06/2017 177

Program Components

POUs for Implicit Checks

Overview

Below an application you can add special POUs. They have to be available, if the implicitly
provided check functionality for array and range boundaries, divisions by zero and pointers during
runtime should be used. You can deactivate this functionality in case of devices for which those
check functions are provided by a special implicit library.

For this purpose, the Add Object - POUs for implicit checks dialog box provides the following
functions:

CheckBounds (see page 598)

CheckDivint (see page 628)

CheckDivLInt (see page 628)

CheckDivReal (see page 628)

CheckDivLreal (see page 628)

CheckRange (see page 605)

CheckRangeUnsigned (see page 605)

CheckPointer (see page 558)

After you have inserted a check POU, it is opened in the editor corresponding to the implemen-
tation language selected. A default implementation you can adapt to your requirements is available
in the ST editor.

After you have inserted a certain check POU, the option is no longer available in the dialog box
thus avoiding a double insertion. If all types of check POUs have already been added below the
application, the Add Object dialog box does not provide the POUs for implicit checks option any
longer.

A CAUTION

INCORRECT IMPLICIT CHECKS FUNCTIONALITY

Do not modify the declaration part of an implicit check function in order to maintain its functional
integrity.

Failure to follow these instructions can result in injury or equipment damage.

NOTE: As from SoMachine V4.0 after having removed implicit check function (such as
CheckBounds) from your application, no Online Change is possible, just a download. An
appropriate message will appear.

178 EI00000000067 06/2017

Program Components

Section 7.2

Function Block

What Is in This Section?
This section contains the following topics:

Topic Page
General Information 180
Function Block Instance 183
Calling a Function Block 184
Extension of a Function Block 186
Implementing Interfaces 189
Method Invocation 191
SUPER Pointer 193
THI S Pointer 195

EI00000000067 06/2017 179

Program Components

General Information

Overview

A function block is a POU (see page 753)which provides 1 or more values during the processing
of a controller program. As opposed to a function, the values of the output variables and the
necessary internal variables shall persist from one execution of the function block to the next.
Therefore, invocation of a function block with the same arguments (input parameters) need not
always yield the same output values.

In addition to the functionality described by standard IEC11631-3, object-oriented programming is
supported and function blocks can be defined as extensions (see page 786) of other function
blocks. They can include interface (see page 789) definitions concerning Method invocation
(see page 191). Therefore, inheritance can be used when programming with function blocks.

A function block always is called via an instance (see page 783), which is a reproduction (copy) of
the function block.

Adding a Function Block

To add a function block to an existing application, select the respective node in the Software
Catalog — Assets or Applications tree, click the green plus button and select POU.... Alternatively
you can right-click the node and execute the command Add Object - POU. To create a function
block that is independent of an application, select the Global node of the Applications tree or
Assets.

In the Add Object dialog box, select the option Function Block, enter a function block Name
(<identifier>) and choose the desired Implementation Language.

Additionally, you can set the following options:

Option Description

Extends Enter the name of another function block available in the
project, which should be the base for the current one. For
details, refer to Extension of a Function Block

(see page 186).

Implements Enter the names of interfaces (see page 768)available in the
project, which should be implemented in the current function
block. You can enter several interfaces separated by
commas. For details, refer to /mplementing Interfaces

(see page 189).

180

EI00000000067 06/2017

Program Components

Option Description

Access specifier For compatibility reasons, access specifiers are optional.

Specifier PUBLIC is available as an equivalent for having set

no specifier.

Alternatively, choose one of the options from the selection

list:

® INTERNAL: The access on the function block is restricted
to the current namespace (the library).

® FINAL: Deriving access is not possible that is the function
block cannot be extended by another one. Enables
optimized code generation.
NOTE: The access specifiers are valid as of compiler
version 3.4.4.0 and thus can be used as identifiers in
earlier versions.

For further information, refer to the SoMachine/CoDeSys
compiler version mapping table in the SoMachine
Compatibility and Migration User Guide (see SoMachine
Compatibility and Migration, User Guide).

Method implementation Choose the desired programming language for all method
language objects created via the interface implementation,
independently from that set for the function block itself.

Click Add to confirm the settings. The editor view for the new function block opens and you can
start editing.

Declaring a Function Block
Syntax

FUNCTION_BLOCK <access specifier> <function block name> | EXTENDS <function block
name> | IMPLEMENTS <comma-separated list of interface names>

This is followed by the declaration of the variables.

Example
FBexanpl e shown in the following figure has 2 input variables and 2 output variables out 1 and
out 2.

out 1 is the sum of the 2 inputs, out 2 is the result of a comparison for equality.

EI00000000067 06/2017 181

Program Components

Example of a function block in ST

PRGexample |FI:Te:-:amp!e Fﬂmn;hl
1 FUNCTION_BLOCK FBEexauwple
2 VAR_INPUT
3 inpl:int;
4 inp2:int:
5 END_VAR
6 VAR_OUTPUT
7 outl:int;
8 out2:bool;

q

p

X

9 END_VAR
A0 YAD
1|outl:=inpl+inpZ;

N

outZ:=inpl=inp2;

182

EI00000000067 06/2017

Program Components

Function Block Instance

Overview

Function blocks are called (see page 784)through an instance which is a reproduction (copy) of a
function block (see page 780).

Each instance has its own identifier (instance name), and a data structure containing its inputs,
outputs, and internal variables.

Instances like variables are declared locally or globally. The name of the function block is indicated
as the data type of an identifier.

Syntax for Declaring a Function Block Instance
<identifier>:<function block name>;

Example
Declaration (for example, in the declaration part of a program) of instance | NSTANCE of function
block FUB:
| NSTANCE: FUB;

The declaration parts of function blocks and programs can contain instance declarations. But
instance declarations are not permitted in functions.

EI00000000067 06/2017 183

Program Components

Calling a Function Block

Overview

Syntax

Function blocks (see page 780)are called through a function block instance. Thus a function block
instance has to be declared locally or globally. Refer to the chapter Function Block Instance
(see page 183)for information on how to declare.

Then the desired function block variable can be accessed using the following syntax.

<instance name>.<variable name>

Considerations

e Only the input and output variables of a function block can be accessed from outside of a
function block instance, not its internal variables.

e Access to a function block instance is limited to the POU (see page 753)in which it was
declared unless it was declared globally.

e At calling the instance, the desired values can be assigned to the function block parameters.
See the following paragraph Assigning Parameters at Call.

e The input / output variables (VAR_|I N_QUT) of a function block are passed as pointers.

e In SFC, function block calls can only take place in steps.

e The instance name of a function block instance can be used as an input parameter for a function
or another function block.

e All values of a function block are retained until the next processing of the function block.
Therefore, function block calls do not always return the same output values, even if done with
identical arguments.

NOTE: If atleast 1 of the function block variables is a remanent variable, the total instance is stored
in the retain data area.

Examples for Accessing Function Block Variables

Assume: Function block f b has an input variable i n1 of the type INT. See here the call of this
variable from within program pr og. See declaration and implementation in ST:

PROGRAM pr og

VAR

instl:fb;

END_VAR

instl.inl:=22; (* fbis called and input variable inl gets assigned v
alue 22 *)

instl(); (* fbis called, this is needed for the follow ng access on th
e out put variable *)

res:=instl.outl; (* output variable of fb is read *)

184

EI00000000067 06/2017

Program Components

Example of a function block call in FBD:

instl

fh
22—1inl outlf—res

Assigning Parameters at Call
In the text languages IL and ST, you can set input and/or output parameters immediately when
calling the function block. The values can be assigned to the parameters in parentheses after the
instance name of the function block. For input parameters, this assignment takes place using : =
as with the initialization of variables (see page 572) at the declaration position. For output
parameters, => is to be used.

Example of a Call with Assignments
In this example, a timer function block (instance CVMD_TMR) is called with assignments for the
parameters | Nand PT. Then the result variable Qis assigned to the variable A. The result variable
is addressed with the name of the function block instance, a following point, and the name of the
variable:
CMD_TMR(IN := 9% X5, PT := 300);
A =CMD_TMR. Q

Example of Inserting Via Input Assistant with Arguments
If the instance is inserted via Input Assistant with the option With arguments in the implementation
view of an ST or IL POU, it is displayed automatically according to the syntax showed in the
following example with all of its parameters, though it is not necessarily required to assign these
parameters.

For the previously mentioned example, the call would be displayed as follows.
CMD_TMR(in: =, pt:=, q=>)

->fill in, e.g.:

CMD_TMR(i n: =bvar, pt:=t#200nms, q=>bres);

EI00000000067 06/2017 185

Program Components

Extension of a Function Block

Overview

Supporting object-orientated programming, a function block can be derived from another function
block. This means a function block can extend another, thus automatically getting the properties
of the basing function block in addition to its own.

The extension is performed by using the keyword EXTENDS in the declaration of a function block.
You can choose the EXTENDS option already during adding a function block to the project via the
Add Object dialog box.

Syntax
FUNCTION_BLOCK <function block name> EXTENDS <function block name>

This is followed by the declaration of the variables.

Example
Definition of function block f bA
FUNCTI ON_BLOCK f bA
VAR _| NPUT
X:int;
END VAR

Definition of function block f bB

FUNCTI ON_BLOCK f bB EXTENDS f bA
VAR _| NPUT

ivar: INT := O;
END_VAR

Extension by EXTENDS

Extension by EXTENDS means:

e f bB contains all data and methods which are defined by f bA. An instance of f bB can now be
used in any context were a function block of type f bA is expected.

e f bBis allowed to override the methods defined in f bA. This means: f bB can declare a method
with the same name and the same inputs and output as declared by A.

e f bBis not allowed to use function block variables with the same name as used in f bA. In this

case, the compiler will generate an error message.
e f bAvariables and methods can be accessed directly within an f bB scope by using the SUPER

pointer (see page 7193) (SUPER". <net hod>).

NOTE: Multiple inheritance is not allowed.

186 EI00000000067 06/2017

Program Components

Example
FUNCTI ON_BLOCK FB_Base
VAR | NPUT
END_VAR
VAR _QUTPUT
iCnt : |NT;
END_VAR
VAR
END_VAR
THI S*. METH Dol t () ;
THI S*. METH_DoAl so() ;

METHOD METH Dolt : BOOL
VAR

END_VAR

iCnt := -1;

METH Dolt := TRUE;

METHOD METH DoAl so : BOOL
VAR

END_VAR

METH_DoAl so : = TRUE;

EI00000000067 06/2017 187

Program Components

FUNCTI ON_BLOCK FB_1 EXTENDS FB_Base
VAR _| NPUT
END_ VAR
VAR _QUTPUT
END_VAR
VAR
END_VAR
/] Calls the method defined under FB_1
THI S*. METH Dol t () ;
THI S*. METH_DoAl so() ;
/[l Calls the method defined under FB Base
SUPER®. METH Dol t () ;
SUPER". METH_DoAl so() ;
METHOD METH Dolt : BOOL
VAR
END_VAR
iCnt = 1111;
METH Dolt : = TRUE;
PROGRAM PLC_PRG

VAR
Mfb_1: FB 1;
i FB: | NT;
i Base: | NT;
END VAR
MWfb_1();

i Base := Myfb_1.i Cnt_Base;
iFB := Myfb_1.iCnt_THIS;

188 EI00000000067 06/2017

Program Components

Implementing Interfaces

Overview

Syntax

In order to support object-oriented programming, a function block can implement several interfaces
(see page 168)which allows you to use methods (see page 763).

FUNCTION_BLOCK <function block name> IMPLEMENTS <interface_1 name>|,<interface_2
name>, ..., <interface_n name>

A function block that implements an interface must contain all methods and properties (interface
property (see page 172)) defined by this interface. This includes name, inputs, and the output of
the particular method or property which must be exactly the same.

For this purpose - when creating a new function block implementing an interface - automatically all
methods and properties defined in this interface will be inserted below the new function block in
the Applications Tree.

NOTE: If afterwards methods are added to the interface definition, they will not be added
automatically in the concerned function blocks. Execute the command Implement interfaces...
(see SoMachine, Menu Commands, Online Help) to perform this update explicitly.

Example

| NTERFACE | 1 includes method Get Narne:
METHOD Get Nanme : STRI NG
Function blocks A and B each implement interface | 1:

FUNCTI ON_BLOCK A | MPLEMENTS | 1
FUNCTI ON_BLOCK B | MPLEMENTS | 1

Thus in both function blocks the method Get Nane has to be available and will be inserted
automatically below each when the function blocks are inserted in the Applications Tree.

Consider a declaration of a variable of type | 1:

FUNCTI ON Del i ver Nanme : STRI NG
VAR _| NPUT
I T I
END_VAR
This input can receive all function blocks that implement interface | 1.

Example for function calls:

DeliverNane(l_i := A instance); // call with instance of type A
DeliverNane(l_i := B_instance); // call with instance of type B

EI00000000067 06/2017 189

Program Components

NOTE: A variable of an interface-type must get assigned an instance of a function block before a
method can be called on it. A variable of an interface-type always is a reference to the assigned
function block instance.

Thus a call to the interface method results in a call to the function block implementation. As soon
as the reference is assigned, the corresponding address is monitored in online mode. Otherwise,
if no reference has been assigned yet, the value 0 is displayed within monitoring in online mode.

For this example see in the implementation part of the function Del i ver Nane:

DeliverName := | _i.GetNane(); // in this case it depends on the "real"
type of | _i whether A GetNane or B.GetNane is called

NOTE: See also the possibility to extend a function block (see page 786) by using the keyword
EXTENDS in the declaration.

190

EI00000000067 06/2017

Program Components

Method Invocation

Overview
Object-oriented programming with function blocks is - besides of the possibility of extension
(see page 186)via EXTENDS - supported by the possible use of interfaces (see page 759) and

inheritance. This requires dynamically resolved method invocations, also called virtual function
calls.

Virtual function calls need some more time than normal function calls and are used when:

e a call is performed via a pointer to a function block (pf ub®.method)

a method of an interface variable is called (interface1.method)

a method calls another method of the same function block

a call is performed via a reference to a function block

VAR _| N_QUT of a basic function block type can be assigned an instance of a derived function
block type

Virtual function calls make possible that the same call in a program source code will invoke
different methods during runtime.

For more information and in-depth view, refer to:

o Method (see page 163)for further information on methods.
e THIS Pointer (see page 195)for using THIS pointer.

o SUPER Pointer (see page 193)for using SUPER pointer.

Calling Methods

According to the IEC 61131-3 standard, methods such as normal functions (see page 760) can
have additional outputs. They have to be assigned in the method call according to syntax:

<method>(in1:=<value> |, further input assignments, out1 => <output variable 1> | out2 => <output
variable 2> | ...further output variables)

This has the effect that the output of the method is written to the locally declared output variables
as given within the call.

EI00000000067 06/2017 191

Program Components

Example
Assume that function blocks f ubl and f ub2 EXTEND function block f ubbase and | MPLEMENT
i nt er f acel. Method net hod1 is contained.
Possible use of the interfaces and method calls:
PROGRAM PLC_PRG

VAR _| NPUT

b : BOOL;
END_VAR
VAR

plnst : PO NTER TO f ubbase;
i nst Base : fubbase;
instl : fubil;
inst2 : fub2;
i nst Ref : REFERENCE to fubbase;
END VAR
| F b THEN
i nst Ref REF= inst1; (* Reference to fubl *)
pl nst : = ADR(i nst Base);
ELSE
i nst Ref REF= i nst 2; (* Reference to fub2 *)
plnst := ADR(inst1l);
END | F
pl nst~. net hod1() ; (* If bis true, fubbase.nethodl is c
alled, else fubl.nethodl is called *)
i nst Ref . net hod1(); (* If bis true, fubl.nethodl is call
ed, else fub2.methodl is called *)

Assume that f ubbase of the upper example contains 2 methods net hod1 and net hod2. f ubl
overrides met hod2 but not net hod1.

met hod1l is called as shown in the upper example.

pl nst”. nethodl(); (* If b is true fubbase.methodl is called, else fubl.
nmet hodl is called *)

For calling via THIS pointer, refer to THIS Pointer (see page 195).

192 EI00000000067 06/2017

Program Components

SUPER Pointer

Overview

For each function block, a pointer with name SUPERis automatically available. It points to the basic
function block instances, from which the function block is created with inheritance of the basic

function block.

This provides an effective solution for the following issue:

e SUPER offers access to methods of the base class implementation. With the keyword SUPER, a
method can be called which is valid in the base (parent) class instance. Thus, no dynamic name

binding takes place.

SUPER may only be used in methods and in the associated function block implementation.

Because SUPER is a pointer to the basic function block, you have to unreference it to get the
address of the function block: SUPER*. METH_Dol t

SUPER Call in Different Implementation Languages

Implementation Language

Example

ST

SUPER®. METH Dol t () ;

FBD/CFC/LD

SUPER~
METH DoIt
METH_DoIt |-

NOTE: The functionality of SUPER is not yet implemented for Instruction List.

EI00000000067 06/2017

193

Program Components

Example
Local variable i Var B overload the function block variable i Var B.

FUNCTI ON_BLOCK FB_Base

VAR _OUTPUT
iCnt : | NT;

END_VAR
METHOD METH Dolt : BOOL
ictnt 1= -1;

METHOD METH _DoAl so : BOOL
METH DoAl so : = TRUE;

FUNCTI ON_BLOCK FB_1 EXTENDS FB_Base
VAR_QUTPUT
i Base: | NT;
END_VAR
/[l Calls the nmethod defined under FB 1
TH S*. METH Dol t () ;
THI S*. METH_DoAl so() ;
/1 Calls the nmethod defined under FB Base
SUPER?. METH Dol t () ;
SUPER*. METH_DoAl so() ;
i Base : = SUPERM. i Cnt;

METHOD METH Dolt : BOOL
icnt = 1111;
METH Dolt := TRUE;

END VAR
ROGRAM PLC_PRG
VAR
nyBase: FB_Base;
nyFB_1: FB_1;
i THI'S: | NT;
i Base: | NT;
END VAR
myBase() ;
i Base : = nmyBase.iCnt;
nyFB_1();

i TH'S : = nyFB_1.iCnt;

194 EI00000000067 06/2017

Program Components

THI S Pointer

Overview

For each function block, a pointer with name THI S is automatically available. It points to its own

function block instance.

This provides an effective solution for the following issues:

e If a locally declared variable in the method hides a function block variable.

e If you want to refer a pointer to its own function block instance for using in a function.

THI S may only be used in methods and in the associated function block implementation.

THI S must be written in capital letters. Other spellings are not accepted.

Because THI S is a pointer to the inheriting function block, you have to unreference it to get the
address of this overriding function block: THI S*. METHDoI t .

THI S Call in Different Implementation Languages

Implementation Language

Example

ST

THI S*. METH_Dol t ()

FBD/CFC/LD

THIS~

METH DoAlso
METH DoAlso |-

NOTE: The functionality of THI S is not yet implemented for Instruction List.

EI00000000067 06/2017

195

Program Components

Example 1

Local variable i Var B shadows the function block variable i Var B.

FUNCTI ON_BLOCK f bA
VAR _| NPUT

i Var A: | NT;
END_VAR
i VarA : = 1;

FUNCTI ON_BLOCK f bB EXTENDS f bA
VAR _| NPUT
iVarB: INT := O;
END VAR
i VarA := 11;
iVarB : = 2;

METHOD Dolt : BOCL
VAR | NPUT
END_ VAR
VAR

i Var B: | NT;
END_VAR

iVarB := 22; // Here the |ocal

iVarB is set.

THI S*.iVarB := 222; // Here the function block variable iVarB is se

t, although iVarB is overl oaded.

PROGRAM PLC_PRG
VAR

WfbB: fbB;
END VAR

M/fbB(i VarA: =0 , iVarB:= 0);
M/f bB. Dol t () ;

196

EI00000000067 06/2017

Program Components

Example 2
Function call that needs a reference to its own instance.

FUNCTI ON f unA
VAR_I NPUT

pFB: fbA;
END_VAR

FUNCTI ON_BLOCK f bA
VAR_I NPUT

i Var A: | NT;
END_VAR

FUNCTI ON_BLOCK f bB EXTENDS f bA
VAR_I NPUT
iVarB: |INT := O;
END_VAR
iVarA := 11;
ivVarB : = 2;

METHCD Dolt : BOOL
VAR_| NPUT
END_VAR
VAR
i Var B: | NT;
END_VAR
iVarB : = 22; //Here the local iVarB is set.
funA(pFB : = THI SM); //Here funA is called with TH S*.

PROGRAM PLC_PRG
VAR
M/f bB: fbB;
END_VAR
M/f bB(i VarA: =0 , iVarB:= 0);
Myf bB. Dol t () ;

EI00000000067 06/2017 197

Program Components

Section 7.3
Application Objects

What Is in This Section?
This section contains the following topics:

Topic Page
Data Type Unit (DUT) 199
Global Variable List - GVL 201
Global Network Variable List - GNVL 203
Persistent Variables 211
External File 212
Text List 214
Image Pool 221

198

EI00000000067 06/2017

Program Components

Data Type Unit (DUT)

Overview

Along with the standard data types, you can define your own data types. You can create structures
(see page 601), enumeration types (see page 603), and references (see page 5917) as data type
units (DUTSs) in a DUT editor (see page 383).

For a description of the particular standard and the user-defined data types, refer to the description
of the data types (see page 584).

Adding a DUT Object

To add a DUT object to an existing application, select the application node in the Software catalog
— Assets or in the Applications tree, click the green plus button, and select DUT.... Or right-click
the respective node and execute the command Add Object — DUT. To create an application-
independent DUT object, select the Global node in the Assets or Applications tree. In the Add DUT
dialog box, enter a Name for the new data type unit, and choose the desired type Structure,
Enumeration, Alias, or Union.

In case of type Structure, you can use the principle of inheritance, thus supporting object-oriented
programming. Optionally, you can specify that the DUT extends another DUT which is already
defined within the project. This means that the definitions of the extended DUT will be automatically
valid within the current one. For this purpose, activate the option Extends: and enter the name of
the other DUT.

Click Add to confirm the settings. The editor view for the new DUT opens and you can start editing.

Declaring a DUT Object
Syntax
TYPE <identifier> : <DUT components declaration>END_TYPE

The DUT component declaration depends on the type of DUT, for example, a structure
(see page 6017), or an enumeration (see page 603).

EI00000000067 06/2017 199

Program Components

Example

The following example contains 2 DUTS, defining structures st ruct 1 and st ruct 2; struct 2
extends st ruct 1, which means that you can use st r uct 2. a in your implementation to access
variable a.

TYPE structl :
STRUCT
a: | NT;
b: BOOL;
END_STRUCT
END_TYPE
TYPE struct2 EXTENDS structl :
STRUCT
c: DWORD;
d: STRI NG
END_STRUCT
END_TYPE

200 EI00000000067 06/2017

Program Components

Global Variable List - GVL

Overview

A global variables list (GVL) is used to declare global variables (see page 522). If a GVL is placed
in the Global node of the Software catalog — Assets - POUs or theApplications tree, the variables
will be available for the entire project. If a GVL is assigned to a certain application, the variables
will be valid within this application.

To add a GVL to an existing application, select the application node in the Software catalog -
Assets - POUs or Applications tree, click the green plus button and select Global Variable List....
Alternatively you can right-click the node and execute the command Add Object — Add Global
Variable List.... If you select the Global node in these views, the new GVL object will application-
independent.

Use the GVL editor (see page 385)to edit a global variable list.

The variables contained in a GVL can be defined to be available as network variables

(see page 809)for a broadcast data exchange with other devices in the network. For this purpose,
configure appropriate network properties (by default in the menu View - Properties - Network
Properties) for the GVL.

NOTE: The maximum size of a network variable is 255 bytes. The number of network variables is
not limited.

NOTE: Variables declared in GVLs get initialized before local variables of POUs.

GVL for Configurable Constants (Parameter List) in Libraries

The value of a global constant provided via a library can be replaced by a value defined by the
application. For this purpose, the constant has to be declared in a parameter list in the library.
Then, when the library is included in the application, its value can be edited in the Parameter List
tab of the Library Manager of the application. See the following example for a description on how
to do in detail.

Parameter List Handling

Alibrary I'i b1.1i brary provides an array variable g_Ar r ay. The size of the array variable is
defined by a global constantg_c_Ar r aysi ze. The library is included in various applications, each
needing a different array size. Therefore, you want to overwrite the global constant of the library
by an application-specific value.

Proceed as follows: When creating | i b1. | i br ary, define the global constantg_c_Arr aysi ze
within a special type of global variable list (GVL), the so-called parameter list. For this purpose,
execute the command Add Object and add a parameter list object, in the current example named
Par am In the editor of this object, which equals that of a standard GVL, insert the declaration of
variable g_c_Arraysi ze.

EI00000000067 06/2017 201

Program Components

Parameter list Par amin library Li b1. | i brary

POUs *+ 1 X @ Param

w X
B3 Lib1 E] [1| VAR GLOBAL CONSTANT ~
ﬂ GVL_1 2 g_c_Arraysize:INT:=6;
i Param 3| END_VAR = B
2] fbd_prog (PRG) ¢ >
E] fo_from_lib (FB)) -
5] PLC_PRG (PRG) @ o v X
B Project Information & MEVER CGLOBAL £
G.. Project Settings 2 g _Array: ARRAY[1..g c Arraysize] OF BOOL; 0
3| END_VAR
Edit parameter g_c_Arraysi ze in the Library Manager of a project
Device ~ % X [PLC_PRG -
=1 Pro_xy Q 1 PROGRAM PLC_PRG "
(=) (] Device < 5 &
=IE) PLC Logic GVL 1.g Array[8] :=1; a
(=) Application < S N2
m Library Manager
[£] PLC_PRG (PRG) Library Manager v X
(3] ;g Task Configuration Name Namespace | Effective version | Add library...
+@8 |oStandard, 3.3.0.10 (System) loStandard 3.3.0.10 Properties...
" . .@ Standard, 3.4.4.0 (System) Standard 3440 Remove Library
POUs = o =8 Lib, 1.0 (3S) Lib1 1.0 Placeholders...
=3 Projxy E] Details...
@ o < 3| Library repository...
[Project Settings . :
[SEE! £7 - E][Library Parameters | Documentation
’$ Param Parameters
g ffgdf’rz::g”b Name Type Value (editable) Comment
o P$ g_c_Araysize | INT
< >

Select the library in the upper part of the Library Manager to get the module tree. Select Par amin
order to open the tab Library Parameters showing the declarations. Select the cell in column Value
(editable) and use the empty space to open an edit field. Enter the desired new value for
g_c_Arraysi ze. It will be applied to the current, local scope of the library after having closed the
edit field.

202 EI00000000067 06/2017

Program Components

Global Network Variable List - GNVL

Overview

The GNVL functionality is only available if selected in the currently used feature set (Options -
Features - Predefined feature sets).

A global network variable list (GNVL) is used in the Software catalog — Variables -~ Global
Variables view and in the Applications tree. It defines variables, which are specified as network
variables in another device within the network.

NOTE: The maximum size of a network variable is 255 bytes. The number of network variables is
not limited.

Thus you can add a GNVL object to an application if a GVL (see page 2017) with special network
properties (network variable list) is available in 1 of the other network devices. This is independent
of whether defined in the same project or in different projects. If several of appropriate GVLs are
found within the current project for the current network, choose the desired GVL from a selection
list Sender when adding a GNVL via the dialog box Add Object — Add Global Network Variable
List. GVLs from other projects must be imported as described in this chapter.

This means that each GNVL in the current device (receiver) corresponds exactly to 1 GVL in
another device (sender).

Dialog box Add Global Network Variable List

Add Global Network Variable List

& Create a new global network variable list

Name:

[NVL |
Task:
[MainTask v]

Sender:

llmport from file 'l

Import from file:

| |G

[open [cancel |

EI00000000067 06/2017 203

Program Components

Description of the Elements

When adding the GNVL, besides a Name, also define a Task, responsible for the handling of the
network variables.

Alternatively to directly choosing a Sender GVL from another device, you can specify a GVL export
file *.GVL with the option Import from file. This GVL file has been generated previously from that
Sender GVL via View — Properties - Link To File dialog box (see SoMachine, Menu Commands,
Online Help). In any case this is necessary if the desired GVL is defined within another project. For
this purpose, select the option Import from file in the Sender selection list and enter the file path in
the Import from file text field (or click the ... button to use the standard dialog for browsing in the
file system).

You can modify the settings at a later time via the View —» Properties - Network Settings dialog
box (see SoMachine, Menu Commands, Online Help).

A GNVL is displayed by the NVL editor (see page 388), but it cannot be modified. It shows the
current content of the corresponding GVL. If you change the basic GVL, the GNVL is updated
accordingly.

A comment is added automatically at top of the declaration part of a GNVL, providing information
on the sender (device path), the GVL name, and the protocol type.

Global Network Variable List Example

Global network variable list

@ NvL32 [Device_B: Plc Logic: Application] | 4 b X
1 //This gobal variable list is received via the network. A
/S r: GVL321 [Device B: Plc Logic: Application]
3 7 : Upp
4
3 VAR GLOBAL
& iglobvar321:IHT;

7 bglobvar32l:BOO0L ;
strglobvar32l:STRING:
END VAR

NOTE: Only arrays whose bounds are defined by a literal or a constant are transferred to the
remote application. Constant expressions in this case are not allowed for bounds definition.
Example: arrVar : ARRAY[O..g_i ArraySi ze-1] OF I NT ; is nottransferred
arrVar : ARRAY[O0..10] OF INT ; is transferred

For further information, refer to the Nefwork Communication chapter (see page 809).

204

EI00000000067 06/2017

Program Components

Example of a Simple Network Variable Exchange

In the following example, a simple network variable exchange is established. In the sender
controller, a global variable list (GVL) is created. In the receiver controller, the corresponding global
network variable list (GNVL) is created.

Perform the following preparations in a standard project, where a sender controller Dev_Sender

and a receiver controller Dev_Receiver are available in the Devices tree:

e Create a POU (program) prog_sender below the Application node of Dev_Sender.

e Under the Task Configuration node of this application, add the task Task_S that calls
prog_sender.

e Create a POU (program) prog_rec below the Application node of Dev_Receiver.

e Under the Task Configuration node of this application, add the task Task_R that calls prog_rec.
NOTE: The 2 controllers must be configured in the same subnet of the Ethernet network.

Defining the GVL for the Sender

Step 1: Define a global variable list in the sender controller:

Step

Action

Comment

1

In the Software catalog — Assets View - POUs, select
the Application node of the controller Dev_Sender and
click the green plus button. Select the command Global
Variable List....

The Add Global Variable List dialog box is
displayed.

Enter the Name GVL_Sender and click Add to create a
new global variable list.

The GVL_Sender node appears below the
Application node in the Applications tree and the

editor opens on the middle of the SoMachine
screen.

EI00000000067 06/2017

205

Program Components

Step

Action

Comment

3

In the editor, enter the following variable definitions:
VAR _GLOBAL

i gl obvar: | NT;

bgl obvar: BOOL;
strgl obvar: STRI NG,
END_VAR

Devices - 1 x|

[%% Sotby~- 2| Sortorder~ adeFind

=] QI nwvar_proj
= J Dev_Sender (CoDeSys SP for Win32)
= Ef| PreLooic
[=! @ Application
@ (GVL Sender
ﬁ" Library Manager
prog_sender (PRG)
=] ﬁTaskConﬂguralion
5 mescs
=] Dev_Recsiver (CoDeSys SP for Win32)
= 2] PrLoge
= &) Avplication
ﬁ [Library Manager
B prog rec (PRG)
(=) {3 Task Canfiguration

Hrsen

206

EI00000000067 06/2017

Program Components

Step 2: Define the network properties of the sender GVL:

Step Action Comment

1 In the Applications tree, select the GVL_Sender The Properties - GVL_Sender dialog box is
node, click the green plus button, and execute the | displayed.
command Properties...

2 Open the Network properties tab and configure the |-
parameters as shown in the graphic:

Properties - GVL [Device: PLC Logic: Application]

Common || Link To File Ancesscunlmk. Network properties | Build

Netwrkipe:[uoe J
Task: | |

Listidentifir. 2|

Pack variables

[Transmit checksum
[] Acknowledgement

Cydlic transmission
[] Transmit on change —
[] Transmit on event Veriable: | |

3 Click OK. The dialog box is closed and the GVL network
properties are set.

EI00000000067 06/2017 207

Program Components

Defining the GNVL for the Receiver

Step 1: Define a global network variable list in the receiver controller:

Step

Action

Comment

1

In the Applications tree, select the Application node
of the controller Dev_Receiver, click the green plus
button, and execute the command Global Network
Variable List....

The Add Global Network Variable List dialog box is
displayed.

Configure the parameters as shown in the graphic.
Add Global Network Variable List

ﬂ Create a new global network variable list

Name:
GNVL_Receiver]|

Task:
Task_R v

Sender:
GVL_Sender [Dev_Sender: PLC Logic: Application] M

Import from file:

Cancel

This global network variable list is the counterpart of
the GVL defined for the sender controller.

208

EI00000000067 06/2017

Program Components

Step Action Comment
3 Click Open. The dialog box is closed and the GNVL_Receiver
appears below the Application node of the
Dev_Receiver controller:
Devices AR ogic: Application] @ GNVL_Receiver [De
[T *3Sortby - 4| Sortorder ~ y$sFind
= [3) mwar_proj
=] J Dev_Sender (CoDeSys SP for Win32)
=&} Application bglobvar:BOOL;
FI: GVL_Sender - :‘:Rrglobvuv;:STRING;
“ Library Manager -
prog_sender (PRG)
2 ﬂTask Configuration
@ Task_S
= J Dev_Receiver (CoDeSys SP for Win32)
B Plc Logic
= (_, Application
ﬂ:‘ Library Manager
@ oWViReeEver |
prog_rec (PRG)
= ETask Configuration
@ Task R
This GNVL automatically contains the same
variable declarations as the GVL_Sender.
Step 2: View and / or modify the network settings of the GNVL:
Step Action Comment
1 In the Devices tree, right-click the GNVL_Receiver | The Properties - GNVL_Receiver dialog box is
node and select the command Properties.... displayed.
2 Open the Network settings tab. -
Step 3: Test the network variable exchange in online mode:
Step Action Comment
1 Under the Application node of the controller The editor for prog_sender opens on the right-hand
Dev_Sender, double-click the POU prog_sender. | side.

EI00000000067 06/2017

209

Program Components

Step Action Comment
2 Enter the following code for the variable i gl obvar: |-
@ prog_sender [Dev_Sender: Plc Logic: Application]
PROGRAM prog sender
VAR
END_VAR
<
L iglobvar:=iglobvar+l;
3 Under the Application node of the controller The editor for prog_rec opens on the right-hand
Dev_Receiver, double-click the POU prog_rec. side.
4 Enter the following code for the variable -
ivar_Il ocal :
@ prog_rec [Dev_Receiver: Plc Logic: Application]
1 PROGRAM prog_rec
= VAR
ivar_local: INT:
END_VAR
|
iva[_locnl :=iglobvar;
5 Log on with sender and receiver applications within | The variable i var _| ocal in the receiver gets the

the same network and start the applications.

values of i gl obvar as currently shown in the
sender.

210

EI00000000067 06/2017

Program Components

Persistent Variables

Overview

This object is a global variable list, which only contains persistent variables of an application. Thus
it has to be assigned to an application. For this purpose it has to be inserted in the Applications
tree via selecting the respective node, clicking the green plus button, and selecting Add Other
Objects — Persistent Variables....

Edit a persistent variable list in the GVL editor (see page 385). The
VAR_GLOBAL PERSI STENT RETAI Nis already preset in the first line.

Persistent variable list

Devices v R X @ PersistentVars1 [Device1: Plc Logic: Application]
(" ¥%Sortby v £lSortorder v 4foFind T 1| VAR GLOBAL PERSISTENT
B _}] pv1 A ivarl:INT;
(=}{_] Device1 (SP for Win32) : bvarl:INT;
=2 Pl Logic 4
END_VAR
[=1-4} Application

[+ (g DataServer
m Library Manager
[+) (4 Task Configuration
? PersistentVars1 v

Persistent variables are only reinitialized at a Reset (origin) <application>. For further information,
refer to the description of remanent variables (see page 524).

Also refer to the description of the special commands for handling persistent variables
(see SoMachine, Menu Commands, Online Help).

Adding and Declaring Remanent Variables

When you add variables to an application, you can declare some of the variables as remanent
variables. Remanent variables can retain their values in the event of power outages, reboots,
resets, and application program downloads. There are multiple types of remanent variables,
declared individually as retain or persistent, or in combination as retain-persistent.

For information on the memory size reserved for retain and persistent variables in the different
controllers, refer to the Programming Guide of the controller you are using.

To add a global variable list called Persistent Variables to your application, proceed as follows:

Step | Action

1 Select the respective application node in the Applications tree, click the green plus
button, and select Add Other Objects — Persistent Variables....

Alternatively, you can right-click the application node, and execute the command Add
Object — Persistent Variables....

EI00000000067 06/2017 211

Program Components

Step | Action
2 In the Add Persistent Variables dialog box type a name for this list in the Name text
box.

3 Click Add.

Result: A persistent variable node is created in the Applications tree. For an example,
refer to the Overview paragraph in this chapter.

External File

Overview

The External File functionality is only available if selected in the currently used feature set (Options

- Features —» Predefined feature sets).

To add an external file to the Global node of the Applications Tree or Tools Tree, select the Global
node, click the green plus button and execute the commands Add other objects - External File....

Click the ... button to open the dialog box for browsing a file. The path of this file is entered in the
File path text box. In the Name text box, the name of the chosen file is entered automatically
without extension. You can edit this field to define another name for the file under which it should

be handled within the project.
Add External File dialog box:

Add External File

Create a reference to an external file

File Path:

Name:
‘docm

What do you want to do with the external file?
(O Remember the link.
@ Remember the link and embed into project.
O Embed into project.

When the external file changes, then

O reload the file automatically.
@ prompt whether to reload the file.
O do nothing.

‘ D:\proj\docut.txt !@

212

EI00000000067 06/2017

Program Components

Description of the What Do You Want to Do with the External File? Section of the Dialog Box

Select one of the following options:

Option

Description

Remember the link.

The file will be available in the project only if it is
available in the defined link path

Remember the link and embed into
project.

A copy of the file will be stored internally in the project
but also the link to the external file will be recalled. As
long as the external file is available as defined, the
defined update options will be implemented
accordingly. Otherwise just the file version stored in the
project will be available.

Embed into project.

Just a copy of the file will be stored in the project. There
will be no further connection to the external file.

Description of the When the External File Changes, Then Section of the Dialog Box

If the external file is linked to the project, you can additionally select one of the options:

Option

Description

reload the file automatically.

The file is updated within the project as soon as it has
been changed externally.

prompt whether to reload the file.

A dialog box pops up as soon as the file has been
changed externally. You can decide whether the file is
updated also within the project.

do nothing.

The file remains unchanged within the project, even
when it is changed externally.

Description of the Buttons

Button

Description

Display file properties...

This button opens the standard dialog box for the
properties of a file. This dialog box also appears when
you select the file object in the Applications Tree or
Tools Tree and execute the command Properties. In the
tab External file of this dialog box, you can view and
modify the properties.

Open

After you have completed the settings, click the Open
button to add the file to the Global node of the
Applications Tree or Tools Tree. It is opened in that tool
which is defined as default for the given file format.

EI00000000067 06/2017

213

Program Components

Text List

Overview

The Text List functionality is only available if selected in the currently used feature set (Options —
Features - Predefined feature sets).

A text list is an object managed globally in the Global node of the Applications Tree or assigned to
an application in the Applications Tree.

It serves the following purposes:

e multi-language support for static (see page 275)and dynamic (see page 216)texts and tooltips
in visualizations and in the alarm handling

e dynamic text exchange

Text lists can be exported and (re-) imported (see page 279). Export is necessary, if a language
file in XML format has to be provided for a target visualization, but is also useful for translations.

Possible formats of text lists:
o text
e XML

You can activate support of Unicode (see page 278).

Each text list is uniquely defined by its namespace. It contains text strings which are uniquely
referenced within the list by an identifier (ID, consisting of any sequence of characters) and a
language identifier. The text list to be used is specified when configuring the text for a visualization
element.

Depending on the language which is set in the visualization, the corresponding text string is
displayed in online mode. The language used in a visualization is changed by a Change the
language input. This is accomplished by a mouse action that you have configured on the given
visualization element. Each text list must at least contain a default language, and optionally in other
languages that you choose to define. If no entry is found which matches the language currently set
in SoMachine, the default language entry of the text list is used. Each text can contain formatting
definitions (see page 2179).

Basic structure of a text list

Identifier Default <Language 1> |<Language 2> | <Language n>
(Index)

<unique <text abc in default | <text abc in <text abc in

string of language> language 1> language 2>

characters>

<unique <text xyz in default | <text xyz in <text xyz in

string of language> language 1> language 2>

characters>

214

EI00000000067 06/2017

Program Components

Text List Types

There are two types of text usable in visualization elements and correspondingly there are two
types of list:

e { obal Text Li st for static texts

e Textlist for dynamic texts

GlobalTextList for Static Texts

GlobalTextList is a special text list where the identifiers for the particular text entries are handled
implicitly and are not editable. Additionally, the list cannot be deleted. However, the list can be
exported, edited externally and then reimported.

Static texts in a visualization, in contrast to dynamic texts, are not exchanged by a variable in online
mode. The only option to exchange the language of a visualization element is via a Change the
language input. A static text is assigned to a visualization element via property Text or Tooltip in
category Texts. When the first static text is defined in a project, a text list object named
GlobalTextList is added to the Global node of the Applications Tree. It contains the defined text
string found in the column Default, and an automatically assigned integer number as the text
identifier. For each static text that is created thereafter, the identifier number is incremented and
assigned to the visualization element.

If a static text is entered into a visualization element (for example, if in a rectangle with property

category of Texts, the string Text Example is specified), this text is looked up in the GlobalTextList.

e If the text is found (for example, ID 4711, Text Example), the element value 4711 of Textld will
be assigned to an internal variable. This establishes the relationship between the element and
the corresponding line in the GlobalTextList.

e If the text is not found, a new line is inserted in the GlobalTextList (for example, ID 4712, Text
Example). In the element, the value 4712 is assigned to the internal variable.

NOTE: If it does not yet exist - you can create a global text list explicitly by the command Create
Global Text List.

If you have exported, edited and reimported the GlobalTextList, it is validated as to whether the
identifiers are still matching those which are used in the configuration of the respective visualization
elements. If necessary, an implicit update of the identifiers used in the configuration will be
implemented.

EI00000000067 06/2017 215

Program Components

Example of a GlobalTextList
Create Global Text List

/{7 GlobalTextList | 4 b x
Standard Deutsch Englisch

%s %s %s

Deutsch De Deutsch German

Deutsch Tooltip De Deutsch Tooltip En German Tooltip

Englisch

Englisch Tooltip

Inkrement

o

o= sw o N

Textlist for Dynamic Texts

Dynamic texts can be changed dynamically in online mode. The text index (ID), which is a string
of characters, must be unique within the text list. In contrast to GlobalTextLists, you have to define
it. Also in contrast to the GlobalTextList, create text lists for dynamic texts explicitly by selecting the
Global node, clicking the green plus button, and executing the command Add other objects - Text
List....

The currently available dynamic text lists are offered when configuring a visualization element via
property Dynamic texts / Text list. If you specify a text list name combined with the text index (ID)
- which can be entered directly or by entering a project variable which defines the ID string - the
current text can be changed in online mode.

A dynamic text list must be exported if it is needed as a language file for language switching in a
target visualization. Specify the file path in the Visualization Options. Such as GlobalTextList, a
dynamic text list can also be exported for external editing and reimported. In contrast to
GlobalTextList, when you import dynamic text lists, there is no automatic check and update of the
identifiers.

NOTICE

UNINTENDED MODIFICATION OF IDENTIFIERS
Do not modify the identifiers when editing the exported list.

Failure to follow these instructions can result in equipment damage.

216 EI00000000067 06/2017

Program Components

Example of a Dynamic Text List Named ErrorList
Example ErrorList

FOUs . Bl fl X {9 ErrorList |D'¥:f extlis 4 b X
[¥ S
J| 2V ® D | Default Deutsch Englisch
1] GlobalTextList
. 0 Wrong argument Falsches Argument Wrong argument
m Library Manager —
I 1 Bad format Ungiiltiges Format Bad format
I8 PLepRG 2 llegal Ungiltiges T lllegal
i _:l ErrorList | llegal type | ﬂglj !QES yp ‘ legal type
':I Textist 3 Bad result Ungiiltiges Ergebnis Bad result
2l
i g 4 Wrong data type Ungiiltiger Datentyp Wrong data type
[Project Settings

Detailed Example

This example explains how to configure a visualization element, which displays the corresponding
message when an error is detected in an application that processes error events identified via
numeric IDs assigned to an integer variable i var _err.

Provide a dynamic textlist named ErrorList where the message texts for error IDs 0 to 4 are defined
in languages German, English and Default:

/(] ErrorList | 4 b x
ID | Default Deutsch Englisch

0 | This is Error 0. Do the following... | Fehler 0. Fiihren Sie folge... Error 0. Do the...

1 | Thisis Error 1. Close... Fehler 1. SchlieBen Se... Error 1. Close the...

2 Thisis Error 2. Perform a... Fehler 2. Fidhren Sie einen...]Error 2. Perform....

3 Thisis Error 3. Try to... Fehler 3. Versuchen Sie...

4 Thisis Error 4. Start... Fehler 4. Starten Sie...

To use the error IDs in the visualization configuration, define a STRING variable, for example
strvar _err. To assign the integer value of i var _err tostrvar_err, use

strvar_err: = NT_TO STRI NG(ivar_err);.

strvar _err can be entered as Textindex parameter in the configuration of the Dynamic texts

properties of a visualization element. This element will display the appropriate message in online
mode.

EI00000000067 06/2017 217

Program Components

The next example is for processing the error ID using project variables and configuration of a
visualization element (Properties), which should display the appropriate message:

/(] Enotlist,” (5] PLC_PRG | b x
bvar: BOOL; A| Y Filter v »3Sortby v #| Sortorder v
ivar err:INT; Property Value A
strvar err:STRING; = .
- . (=) Dynamic texts
ENDbGE;L BOOL Textlist ‘ErrorList’
= v Textindex
£ 3 Tooltipindex
=] IF b_err:=TRUE THEN ~|| =] Fontvariables
N i?/arierr =23 Fontname 3
END_IF
strvar_err:=INT_TO_STRING (ivar_ err); m_pDynamicText..stTextindex
v
< >

Creating a Text List

e To create a text list for dynamic texts (see page 276), add a Text List object to the project in the
Applications Tree. To create an application-specific text list, select an application node. To
create a global text list, select the Global node. Then click the green plus button of the selected
node, and execute the command Add other objects - Text List.... When you have specified a
list name and confirmed the Add Textlist dialog box, the new list is inserted below the selected
node, and a text list editor view opens.

e To get a text list for static texts (see page 275) (GlobalTextList), either assign a text in property
Text in category Texts of a visualization object to get the list created automatically, or generate
it explicitly by command Create Global Text List.

e To open an existing text list for editing, select the list object in the Applications Tree or Global
node of the Applications Tree. Right-click the text list node and execute the command Edit
Object, or double-click the text list node. Refer to the table Basic structure of a fext listfor how
a text list is structured.

e For adding a new default text in a text list, either use the command Insert Text, or edit the
respective field in the empty line of the list. To edit a field in a text list, click the field to select it
and then click the field again or press SPACE to get an edit frame. Enter the desired characters
and close the edit frame with RETURN.

Support of Unicode Format

To use Unicode format, activate the respective option in the Visualization Manager. Further on, set
a special compilation directive for the application: select the application in the Devices Tree, open
the Properties dialog box, Build tab. In the Compiler defines field, enter VI SU_USEWSTRI NG

218 EI00000000067 06/2017

Program Components

Dialog box with compiler definition

Properties — App [PLC: Ple Logic]

Common } Build \
[] Exclude from build

[] Extemal implementation
(Late link in the runtime system)

D Enable system call

Compiler defines:
iVISU USEWSTRING ‘

[0K] [Cancel] [Apply]

Export and Import of Text Lists
Static and dynamic text lists can be exported as files in CSV format. Exported files can also be

used for adding texts externally, for example by an external translator. However, only files available
in text format (* ¢sv) can be reimported.

See the description of the respective text list commands (see SoMachine, Menu Commands,
Online Help).

Specify the folder in which the export files should be saved in the dialog box File - Project Settings
- Visualization.

Formatting of Texts

The texts can contain formatting definitions (%, %d,...), which allow to include the current values

of variables in a text. For the possible formatting strings, see the Visualization part of the
SoMachine online help.

When using text with formatting strings, the replacement is done in the following order:

e The actual text string to be used is searched via list name and ID.

e If the text contains formatting definitions, these are replaced by the value of the respective
variable.

EI00000000067 06/2017 219

Program Components

Subsequent Delivery of Translated Texts

By inserting GlobalTextL/st.csvin the directory which is used for loading text files, a subsequent

integration of translated texts is possible. When the bootproject is started up, the firmware detects
that an additional file is available. The text is compared with that in the existing textlist files. New
and modified texts are then applied to the textlist files. The updated textlist files will then be applied
at the next startup.

List Components for Text Input

Via the dialog box Tools — Options — Visualization, you can specify a text template file. All texts
of column Default of this file will be copied to a list, which will be used for the List Components
functionality. A template file can be used which has been created before via the Export command.

Multiple User Operations
By use of the source control, it is possible that multiple users work simultaneously on the same
project. If a static text is modified in visualization elements by more than one user, it will cause
modifications to the GlobalTextList (refer to GlobalTextList (see page 275)). In this case, the Text-
Ids may no longer be coherent with the visualization elements. Use the following error detection
and correction methods:

e Use the command Check Visualization Text Ids, such errors may be detected in the
visualizations.

e Use the command Update Visualization Text Ids, these errors may be resolved automatically.
The affected visualizations as well as the GlobalTextList must have write permission.

Use of Textlists for Changing Language in Visualizations

If an appropriate textlist is available, that is, a textlist defining several language versions for a text,
then the language used for the texts in a visualization can be switched in online mode by an input
on a visualization element. The Dynamic Texts properties of the element must specify the textlist
to be used, and an OnMouse.. input action, Change the language, must be configured specifying
the language which should be used after the mouse action has been performed.

NOTE: The language must be specified with exactly this string which is shown in the column
header of the respective textlist.

220 EI00000000067 06/2017

Program Components

Image Pool

Overview
The Image Pool functionality is only available if selected in the currently used feature set (Options
- Features — Predefined feature sets).

Image pools are tables defining the file path, a preview, and a string ID for each image. By
specifying the ID and (for unique accessing) additionally the image file name, the image can be
referenced, for example, when being inserted in a visualization (configuration of the properties of
an image element, refer to Using Images Which are Managed in Image Pools (see page 222)).

NOTE: It is recommended to reduce the size of an image file as far as possible before adding it to
an image pool. Otherwise, the project size and the loading and storing efforts of visualization
applications, including images, can become large.

Structure of an Image Pool
Example of an image pool

PLC_PRG " {] Images_1] GloballmagePool] Tedr

D File name Image
drive_icon C:\Programmelimages\SM_Drive.ico Lg;
base_icon C:\Programmelimages\logo.bmp Y]
12 CiProgrammelimages\INTERPOLATO... ||
Element Description
ID String ID (for example logo, y_icon, 2);

A unique referencing of an image is achieved by the
combination of image list name and ID (for example,
List1.basic_logo).

File name path of the image file (for example,
C:lprogramslimagesllogo.bmp)

Image preview of the image

Creating and Editing an Image Pool
A project can contain several image pools.

If a pool is not yet available in a project, then - as soon as you add the first image element and
enter an ID (static ID) for the respective image in the visual element properties - an image pool with
the default name GloballmagePool is created automatically. An entry for the image is inserted.
GloballmagePool is a global pool which is searched first when an image file is to be used. Besides
this pool, additional individually named pools can be used.

EI00000000067 06/2017 221

Program Components

To create image pools manually, proceed as follows: GloballmagePool is created via the command
Image Pool Editor Commands - Create Global Image Pool. You can insert the other pool objects
below an application node or below the Global node of the Applications tree by clicking the green
plus button and executing the commands Add other objects —» Image Pool.... In the Add Image
Pool dialog box, define a Name for the pool.

To add an image manually to a pool, either use the command Insert Image, or fill the pool table
manually. For the latter, select the ID field of the first empty line in the pool table, press the SPACE
key to open an edit frame, and enter an ID (string). The ID will automatically be made unique. Then
set the cursor to the File name field, press the SPACE key, and click the ... button to open the
Select image dialog box. Here you can specify the path of the desired image file.

Using Images Which Are Managed in Image Pools

If the ID of the image to be used is specified in multiple image pools:

e search order: If you choose an image managed in the GloballmagePool, you do not need to
specify the pool name. The search order for images corresponds to that for global variables:
1. GloballmagePool
2. image pools assigned to the currently active application
3. image pools in Global node of the Applications tree besides GloballmagePool
4. image pools in libraries

e unique accessing: You can directly call the desired image by adding the image pool name
before the ID according to syntax: <pool name>.<image ID> (For an example, see
i mgepool 1. dri ve_i con in the previous graphic.)

Using an Image in a Visualization Element of Type Image

When inserting an image element in a visualization, you can define it to be a static image or a
dynamic image. The dynamic image can be changed in online mode according to the value of a
project variable:

Static images:

In the configuration of the element (property Static ID), enter the image ID or the image pool name
+ image ID. Consider in this context the remarks on search order and unique accessing in the
previous paragraph.

Dynamic images:

In the configuration of the element (property Bitmap ID variable), enter the variable which defines
the ID, for example, PLC_PRG i magevar .

Using an Image for the Visualization Background

In the background definition of a visualization, you can define an image to be displayed as
visualization background. The image file can be specified as described previously for a
visualization element by the name of the image pool and the image file name.

222 EI00000000067 06/2017

Program Components

Section 7.4
Application

Application

Overview

An application is a set of objects which are needed for running a particular instance of the controller
program on a certain hardware device (controller). For this purpose, independent objects managed
in the Global node of the Applications tree are instantiated and assigned to a device. This meets
the concept of object-orientated programming. However, you can also use purely application-
specific POUs.

An application is represented by an application object in the Applications tree. Below an application
entry, insert the objects defining the application resource set.

One application is available for each controller. It is not possible to add further applications.

A part of each application is the Task Configuration controlling the run of a program (POU
instances or application-specific POUs). Additionally, it can have assigned resource objects like
global variable lists, libraries, and so on. These - in contrast to those managed in the Global node
of the Applications tree - can only be used by the particular application and children. For the rules,
refer to the description of arranging and configuring objects in the Devices tree (see page 42).

Consideration

When going to log in with an application on a target device (controller or simulation target), two
checks are performed: Which application is currently in the controller? Are the application
parameters in the controller matching those in the application within SoMachine? Appropriate
messages indicate mismatches and offer some ways to continue in this case. Also you have the
possibility to delete the application in the controller. Refer to the description of the Logincommand
(see page 232) for more details.

EI00000000067 06/2017 223

Program Components

224 EI00000000067 06/2017

Chapter 8

Task Configuration

What Is in This Chapter?

This chapter contains the following topics:

Topic Page
Task Configuration 226
Adding Tasks 226
EI00000000067 06/2017 225

Task Configuration

Task Configuration

Overview

The Task Configuration defines 1 or several tasks for controlling the processing of an application
program.

It is a resource object for an application (see page 223). It has to be inserted in the Applications
tree below an application node. A task can call an application-specific program POU, which is only
available in the Applications tree below the application. It can also call a program which is managed
in the Global node of the Applications tree. In the latter case, the program that is available globally
will be instantiated by the application.

You can edit a task configuration in the Task Editor (see page 4717).

In online mode, the Task Editor provides a monitoring view giving information on cycles, cycle
times, and task status.

As an additional functionality of the task configuration, if supported by the device, the monitoring
view allows a dynamic analysis of the POUs which are controlled by a task. It supplies information
about the cycle times, the quantity of function block calls and the unused code lines.

Adding Tasks

Introduction

You can add tasks to your application via the Applications tree.

Procedure

Step | Action

1 | In the Applications tree, select the Task Configuration node, click the green plus
button, and execute the command Task....

Alternatively, you can right-click the Task Configuration node, and select Add Object
- Task... from the context menu.

Result: The Add Task dialog box opens.

2 | In the Add Task dialog box, enter a name in the Name: text box.
Note: The name must neither contain any space nor exceed a length of 32
characters.

3 | Click Add.

226

EI00000000067 06/2017

Chapter 9
Managing Applications

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
9.1 General Information 228
9.2 Building and Downloading Applications 230
9.3 Running Applications 245
9.4 Maintaining Applications 246

EIO0000000067 06/2017

227

Managing Applications

Section 9.1

General Information

Introduction

Introduction

To run an application, you must first connect the PC to the controller, then download the application
to the controller.

NOTE: Due to memory size limitation, some controllers are not able to store the application source
but only a built application that is executed. This means that you are not able to upload the
application source from the controller to a PC.

A WARNING
UNINTENDED EQUIPMENT OPERATION

e Confirm that you have entered the correct device designation or device address in the
Communication Settings dialog when downloading an application.

e Confirm that machine guards and tags are in place such that any potential unintended
machine operation will not result in personal injury or equipment damage.

e Read and understand all user documentation of the software and related devices, as well as
the documentation concerning equipment or machine operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Preconditions

Verify that your application meets the following conditions before downloading it to the controller:
e the active path is set for the correct controller,

e the application you want to download is active,

e the application is free of compilation errors.

228 EI00000000067 06/2017

Managing Applications

Boot Application

The boot application is the application that is launched on controller start. This application is stored
in the controller memory. To configure the download of the boot application, right-click the
Application node in the Applications tree and select the Properties command.

At the end of a successful download of a new application, a message is displayed asking you if you
want to create the boot application.

You can manually create a boot application in the following ways:

e In offline mode: Click Online -~ Create boot application to save the boot application to a file.

e In online mode, with the controller being in STOP mode: Execute the Online — Create boot
application command (see SoMachine, Menu Commands, Online Help)to download the boot
application to the controller.

EI00000000067 06/2017 229

Managing Applications

Section 9.2

Building and Downloading Applications

What Is in This Section?
This section contains the following topics:

Topic Page
Building Applications 231
Login 232
Build Process at Changed Applications 234
Downloading an Application 235

230 EI00000000067 06/2017

Managing Applications

Building Applications

Overview

SoMachine provides different build procedures in the Build menu (see SoMachine, Menu
Commands, Online Help). These procedures serve to handle syntactical checks, either just on the
changed objects or on all objects of the active application.

You can perform an offline code generation in order to check for compilation errors before
downloading the code to the device. For a successful login, the code generation must have been
completed without detecting any errors.

Code Generation, Compile Information

Machine code will not be generated until the Application (see page 223) project is downloaded to
the target device (controller, simulation target). At each download, the compile information,
containing the code and a reference ID of the loaded application, is stored in the project directory
in afile <progjectname>.<devicename>.<application ID>.compileinfo. The compileinfofile is deleted
when the Clean or Clean all command is executed.

No code generation is performed when the project is compiled by the build commands (by default
in the Build menu). The build process checks the project in order to detect programming errors.
Any detected programming errors are displayed in the Messages view (message category Build).

During code generation, additional errors can be detected and displayed. These errors can only be
detected by the code generator or they are caused by memory allocation.

EI00000000067 06/2017 231

Managing Applications

Login

Overview

The Online - Login command connects the application to the target device (controller or
simulation target) and thus changes into the online mode.

The default shortcut is ALT + F8.

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Confirm that you have entered the correct device designation or device address in the
“Communication Settings” dialog when downloading an application.

e Confirm that machine guards and tags are in place such that any potential unintended
machine operation will not result in personal injury or equipment damage.

e Read and understand all user documentation of the software and related devices, as well as
the documentation concerning equipment or machine operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If there is an online user management (also refer to the chapter Users and Groups (see page 879))
established on the target device, at login you are prompted to enter the appropriate user name and
password. For this purpose, the dialog box Device User Logon opens.

Login Procedures

2 different login procedures are available, depending on the Dial-up mode selected in the Project
- Project Settings -~ Communication settings dialog box. The default setting of this Dial-up mode
depends on the SoMachine version. The device editor provides individual dialogs for each login

type.
Login type Dial-up mode Default setting for Dialog of the device editor
SoMachine version
IP address V4.0 and later Controller Selection (see page 98)
2 active path V3.1 and earlier Communication Settings
(see page 113)

232 EI00000000067 06/2017

Managing Applications

Login Procedure with Dial-up Mode IP Address

This is the default login procedure for SoMachine V4.0 and later versions. The Dial-up mode in the
Project —~ Project Settings -~ Communication settings dialog box is set to Dial up via “IP-address”.

For a successful login, the code generation must have been completed without detecting errors
(refer to the chapter Build Process Before Login (see page 234)).

Step

Action

1

#
Execute the command Online - Login, or click the Login button ,3 from the toolbar, or press
ALT + F8.

Result: Since no target address has been set before, the Controller selection view of the device
editor opens. A message box is displayed indicating that a valid address has not been defined.

If only one controller has been detected by SoMachine scanning the Ethernet network, this
controller is marked in the list and it is used as target device.
If several controllers have been detected, double-click the controller you want to log in.

~
Execute the command Online - Login, or click the Login button Js from the toolbar, or press
ALT + F8.
Result: A message box displays to inform you of potential hazards.

Click Cancel to abort the login operation or press ALT + F to confirm the message and to log in
to the selected controller.

Result: If you press ALT + F the connection to the controller is established, you can download
the application (see page 235).

EI00000000067 06/2017

233

Managing Applications

Login Procedure with Dial-up Mode Active Path

This is the default login procedure for SoMachine V3.1 and earlier versions. The Dial-up mode in
the Project Settings - Communication settings dialog box is set to Dial up via “active path”.

For a successful login, the code generation must have been completed without detecting errors
(refer to the chapter Build Process Before Login (see page 234)). Furthermore, the communication
settings (see page 98) of the device must be configured correctly.

Step Action

1 #
Execute the command Online — Login, or click the Login button Js from the toolbar, or press
ALT + F8.

Result: Since no target address has been set before, the Communication Settings view of the
device editor opens. A message box is displayed indicating that the active path has not been set
and that the network is being scanned.

2 If only one controller has been detected by SoMachine scanning the Ethernet network, this
controller is marked in the list and it is used as target device.
If several controllers have been detected, double-click the controller you want to log in.

NOTE: Only those controllers are listed that have the same Target ID as the selected controller.
To display all controllers in the list, set the Filter criterion to None.

3 ¢
Execute the command Online - Login, or click the Login button)3 from the toolbar, or press
ALT + F8.
Result: A message box displays to inform you of potential hazards.

4 Click Cancel to abort the login operation or press ALT + F to confirm the message and to log in

to the selected controller.
Result: If you press ALT + F the connection to the controller is established, you can download
the application (see page 235).

Build Process at Changed Applications

Build Process Before Login

Before Login and if the current affected application project has not been compiled since having
been opened or since the last modification, it will be compiled. This means that the project will be
built correspondingly to a Build run in offline mode and compilation code for the controller will be
generated.

If errors are detected during compilation, a message box opens with the following text: There are
compile errors. Do you want to login without download? You can choose to correct the detected
errors first, or to login nevertheless. In the latter case, you are logged in to that version of the
application which is possibly already available on the controller.

The detected errors are listed in the Messages view (category Build).

234

EI00000000067 06/2017

Managing Applications

Downloading an Application

Introduction

To run an application, first connect the PC to the controller, then download the application to the
controller.

Downloading a project allows you to copy the current project from SoMachine to the controller
memory.

NOTE: Due to memory size limitation, some controllers are not able to store the application source
but only a built application that is executed. This means that you are not able to upload the
application source from the controller to a PC.

A WARNING
UNINTENDED EQUIPMENT OPERATION

e Confirm that you have entered the correct device designation or device address in the
Communication Settings dialog when downloading an application.

e Confirm that machine guards and tags are in place such that any potential unintended
machine operation will not result in personal injury or equipment damage.

e Read and understand all user documentation of the software and related devices, as well as
the documentation concerning equipment or machine operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Preconditions

Verify that your application meets the following conditions before downloading it to the controller:
e The active path is set for the correct controller.

e The application you want to download is active.
e The application is free of compilation errors.

Boot Application

The boot application is the application that is launched on controller start. This application is stored
in the controller memory. To configure the download of the boot application, right-click the
Application node in the Devices view and select the Properties command.

At the end of a successful download of a new application, a message is displayed asking you if you
want to create the boot application.

You can manually create a boot application in the following ways:

e In offline mode: Click Online -~ Create boot application to save the boot application to a file.

e In online mode, with the application being in STOP mode: Click Online - Create boot
application to download the boot application to the controller.

EI00000000067 06/2017 235

Managing Applications

Operating Modes

The download method differs depending on the relationship between the loaded application and
the application you want to download. The 3 cases are:

Case 1: The application in the controller is the same as the one you want to load. In this case,
no download occurs, you just connect SoMachine to the controller.

Case 2: Modifications have been made to the application that is loaded in the controller in
comparison to the application in SoMachine. In this case, you can specify if you want to
download all or parts of the modified application or keep the application in the controller as it is.
Case 3: A different or a new version of application is already available on the controller. In this
case, you are asked whether this application should be replaced.

Case 4: The application is not yet available on the controller. In this case, you are asked to
confirm the download.

Downloading Your Application to the Controller: Case 1

The application in the controller is the same as the one you want to load. In this case, no download
occurs, you just connect SoMachine to the controller.

Step Action
To connect to the controller, select Online —» Login to *Application[YourApplicationName; Plc Logic]’.
2 You are connected to the controller.

236

EI00000000067 06/2017

Managing Applications

Downloading Your Application to the Controller: Case 2

Modifications have been made to the application that is loaded in the controller in comparison to
the application in SoMachine.

Step

Action

To connect to the controller, select Online - Login to *Application[YourApplicationName; Plc Logic]'.

In case you modified your application, and you want to reload it into the controller, the following message
appears:

SoMachine

? The code has been changed since the last download. What do you want to do?

@ Login with online change.

O Login with download.

O Login without any change.

OK Cancel Details...
| |)|

Login with online change Only the modified parts of an already running project is reloaded to the
controller.

Login with download The whole modified application is reloaded to the controller.

Login without any change The modifications are not loaded.

NOTE: If you select the option Login without any change, the changes you perform in the SoMachine
application are not downloaded to the controller. In this case, the information and status bar in SoMachine
will show RUN as operational state and will indicate Program modified (Online change). This differs from
the options Login with online change or Login with download, where the information and status bar
indicates Program unchanged.

In this case, monitoring of variables is possible, but the logic flow may be confusing because the values
on function block outputs may not match to the values on the inputs.

Examples

In LD, contact states are monitored based on the affected variables. This may have the effect that a blue
animated contact followed by a blue link (meaning true) is shown, although the coil connected to this
contact shows it as false.In ST logic flow, an IF statement or a loop seems to be executed, but it is actually
not executed because the condition expression is different in the project and on the controller.

Select the suitable option and click OK.

NOTE: See the Programming Guide for your controller for important safety-related information
concerning the downloading of applications.

EI00000000067 06/2017 237

Managing Applications

Downloading Your Application to the Controller: Case 3

A different or a new version of application is already available on the controller.

Step Action
1 To connect to the controller, select Online - Login to *Application[YourApplicationName; Plc Logic]'.
2a In case, the controller is not in RUN mode, and you want to load a different application than the one
currently in the controller, the following message appears:
SoMachine X
2 Unknown version of Application’Application’ on target: Do you want to perform a download and replace
.:‘) the application?
w) [w
Refer to the hazard messages below before you click Yes to download the new application to the
controller, or No to cancel the operation.
2b In case, the controller is in RUN mode, and you want to load a different application than the one currently
in the controller, the following message appears:
SoMachine Logic Builder
7 Warning: An unknown version of the application 'Application’ is currently in RUN mode on the PLC.
{‘) However, do you want to download the latest code and replace the existing application?
s] [
Refer to the build messages below before you click Yes to download the new application to the controller,
or No to cancel the operation.
UNINTENDED EQUIPMENT OPERATION
Verify that you have the correct application before confirming the download.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
If you click Yes, the application running in your controller will be overwritten.
238

EI00000000067 06/2017

Managing Applications

To help to prevent loss of information, cancel this operation by clicking No and execute the Source
Upload command beforehand. The application currently available on your controller will be loaded
to your PC. You can then compare it with the one you intend to download.

Downloading Your Application to the Controller: Case 4
The application is not yet available on the controller.

Step Action

To connect to the controller, select Online - Login to *Application[YourApplicationName; Plc Logic]'.

2 In case the application is not yet available on the controller, you are asked to confirm the download. For
this purpose, a dialog box with the following text displays:

SoMachine Logic Builder lﬁ

92 , Application <application name> does not exist on device. Do you want to create it and proceed with
\',) download?

(o=) Cw)

Click Yes to download the application to the controller, or No to cancel the operation.

NOTE: See the Programming Guide for your controller for important safety-related information
concerning the downloading of applications.

Online Change

The Online Change command modifies the running application program and does not affect a

restart process:

e The program code can behave other than after a complete initialization because the machine
keeps its state.

e Pointer variables keep their values from the last cycle. If there is a pointer on a variable, which
has changed its size due to an online change, the value will not be correct any longer. Verify
that pointer variables are reassigned in each cycle.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Thoroughly test your application code for proper operation before placing your system into
service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 239

Managing Applications

NOTE: For specific information, refer to the chapter Controller States Description in the
Programming Guide of your controller.

If the application project currently running on the controller has been changed in the programming
system since it has been downloaded last, just the modified objects of the project will be loaded to
the controller while the program keeps running.

Implicit Online Change

When you try to log in again with a modified application (checked via the COMPILEINFO, which
has been stored in the project folder during the last download), you are asked whether you want
to make an online change, a download, or login without changing.

Login dialog box:

? The code has been changed since the last download. What do you want to do?

@ Login with online change.

O Login with download.

O Login without any change.

[OK] [Cancel] [Details...

Description of the elements:

Element Description

Login with online change | This option is selected per default. If you confirm the dialog box by clicking OK, the
modifications will be loaded and immediately displayed in the online view (monitoring) of
the respective object or objects.

Login with download Activate this option to load and initialize the application project completely.

Login without any change | Activate this option in order to keep the program running on the controller unchanged.
Afterwards, an explicit download can be performed, thus loading the complete
application project. It is also possible that you are asked again whether an online change
should be performed at the next relogin.

Details Click this button to obtain the Application Information dialog box (Project name, Last
modification, IDE version, Author, Description) on the current application within the IDE
(Integrated Development Environment, i.e., SoMachine) in comparison to that currently
available on the controller. Refer to the following figure and to chapter Application
Information (see page 231).

240 EI00000000067 06/2017

Managing Applications

Application Information dialog box

Application Information .

Project name:
Last modification:
IDE version:
Author:

Version:

Description:

Application in the IDE:

testproj1

Tuesday, January 14, 2014 1:15 PM
V3.3 SP2 plus

Smith

1.1.01

Application in the PLC:

testproj1

Tuesday, January 14, 2014 0:15 PM
V3.3 SP2 plus

Smith

1.1.00

testproject for internal purposes only

testproject for internal purposes only

Close

For further information, refer to the Login chapter (see page 232).

If the online change will affect considerable changes in download code, like for example possible
moves of pointer addresses or necessary redirections of interface references (see page 768)
another message box is displayed after you have confirmed the Online change dialog box with OK
before download will be performed. It informs you about the effects you have to consider and
provides the option to abort the online change operation.

2 variable(s) will move to new memory locations. 7 interface reference(s) must be
tested for redirection. (See message window for details).
Pointer to changed variables may address invalid memory after the online change.
Do you want to continue?

[Yes] [No

NOTE: With SoMachine V4.0 and later, after having removed implicit check function (such as

CheckBounds) from your application, no Online Change is possible, just a download. An
appropriate message will appear.

Click the Details button in this message box to display detailed information, such as the number
and a listing of changed interfaces, POUs, affected variables, and so on.

EI00000000067 06/2017

241

Managing Applications

Detailed Online Change Information dialog box

Detailed Online Change Information

Number of changed interfaces:
Number of changed POUs:
Number of affected Variables:
- with changed location:

- to initialize:

- to copy:

- with changed VF-Table:

Number of Interfaces to Test:

3

Details:

List of POUs with changed interface:
-POU
-PLC_PRG
-FUN

List of affected variables:
-PLC_PRG.arinst (Location Changed, Initialized, Old value copied)
-PLC_PRG.inst (Location Changed, Initialized, Old value copied)

List of POUs with changed code:
-PLC_PRG
- POU.FB_INIT

List of interface reference to test for redirection:
- PLC_PRG.itf
- PLC_PRG.itf2
- PLC_PRG.itfff
- PLC_PRG.aritf
- PLC_PRG.itfdyn
-PLC_PRG.itf3
- PLC_PRG.itf4

Close

242

EI00000000067 06/2017

Managing Applications

Explicit Online Change

Execute the command Online Change (by default in the Online menu) to explicitly perform an
online change operation on a particular application.

An Online Change of a modified project is no longer possible after a Clean operation (Build -
Clean all, Build - Clean). In this case, the information on which objects have been changed since
the last download will be deleted. Therefore, only the complete project can be downloaded.

NOTE:

Consider the following before executing the Online Change command:

e Verify that the changed code is free from logical errors.

e Pointer variables keep their value from the last cycle. If you point to a variable which now has
been deplaced, the value will no longer be correct. For this reason, reassign pointer variables
in each cycle.

Information on the Download Process

When the project is loaded to the controller completely at Login or partially at Online Change, then
the Messages view will show information on the generated code size, the size of global data, the
needed memory space on the controller and in case of online change also on the affected POUs.

NOTE: In online mode, it is not possible to modify the settings of devices or modules. To change
parameters of the devices, the application must be logged out. Depending on the bus system, there
can be some special parameters which are allowed to be changed in online mode.

Boot Application (Boot Project)

At each successful download, the active application is automatically stored in the file
application.appin the controller system folder, thus making it available as a boot application. A boot
application is the project which is started automatically when the controller is started (booted). To
make the download of the active application the boot application, you must execute the command
Create boot application (available in the Online menu).

The Create boot application command will copy the application.app file to a file called
<projectname>.gpp and thereby making it the boot application for the controller. You can also
create the boot application while in offline mode (see page 235).

If you want to connect to the same controller from the programming system on different PC, or,
retrieve the active application from a different PC, without the need of an Online Change or
download, follow the steps described in the Transferring Projects to Other Systems paragraph.

Transferring Projects to Other Systems

For transferring a project to another computer, use a project archive (see SoMachine, Menu
Commands, Online Help).

You can transfer a project, which is already running on a controller xy, from the programming
system on PC1 to that on PC2. To be able to reconnect from PC2 to the same controller xy without
the need of an online change or download, verify the following project settings before creating a
project archive.

EI00000000067 06/2017 243

Managing Applications

Perform the following steps:

1.

Verify that only libraries with definitive versions are included in the project, except for the pure
interface libraries. (Open the Library Manager and check entries with an asterisk (*) instead of
a fix version (see SoMachine, Functions and Libraries User Guide).)

. Ensure that a definitive compiler version is set in the Project Settings -~ Compile options dialog

box (see SoMachine, Menu Commands, Online Help).

. Make sure that a definite visualization profile is set in the Project Settings —» Visualization Profile

dialog box (for more information, refer to the Visualization part of the SoMachine online help).

. Verify that the application currently opened is the same as that already available on the

controller. That is, the boot project (refer to the Online - Create boot application command
(see SoMachine, Menu Commands, Online Help)) must be identical to the project in the
programming system. If there is an asterisk behind the project title in the title bar of the
programming system window, the project has been modified but not yet saved. In this case, it
can differ from the boot project. If necessary, before transferring the project to another PC,
create a (new) bootproject - for some controllers this is done automatically at a download - and
then download and start the project on the controller.

. Create the project archive via SoMachine Central. Select the following information: Download

information files, Library profile, Referenced devices, Referenced libraries, Visualization Profile.

. Log out. If necessary, stop and restart controller xy before reconnecting from PC2.
. Extract the project archive on PC2 with the same information options activated as listed in

step 5.

244

EI00000000067 06/2017

Managing Applications

Section 9.3

Running Applications

Running Applications

Introduction
This part shows how to start/stop an application.

RUN/STOP with SoMachine

The controller can be started and stopped using SoMachine run on a PC connected to the
controller.

Click Online - Start ‘Application [ApplicationName: Plc logic] or CTRL + F5 or the Start
'Application [ApplicationName: Plc logic]’ button in the menu bar to start the application.

Click Online — Stop ‘Application [ApplicationName: Plc logic] or CTRL +SHIFT + F5 or the Stop
'Application [ApplicationName: Plc logic]' button in the menu bar to stop the application.

RUN/STOP Input for Controllers
Some controllers allow you to configure a Run/Stop input to control application start/stop.

Status | Description

0 Stop the application. RUN command in SoMachine is not possible.
Rising | Start the application.

Edge

1 The application runs. RUN/STOP command in SoMachine is possible.

Refer to the manual of your controller to find out whether it supports this function.

Configure and use the RUN/STOP input if you are going use remote commands to start and stop
the controller. It is the best method to help ensure local control over the running of the controller
and to help prevent the inadvertent start of the controller from a remote location.

A WARNING
UNINTENDED MACHINE OR PROCESS START-UP

e Verify the state of security of your machine or process environment before applying power to
the Run/Stop input.
e Use the Run/Stop input to help prevent the unintentional start-up from a remote location.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 245

Managing Applications

Section 9.4

Maintaining Applications

What Is in This Section?
This section contains the following topics:

Topic Page
Monitoring 247
Debugging 248

246

EI00000000067 06/2017

Managing Applications

Monitoring

Overview

In online mode, there are various possibilities to display the current values of the objects in the
controller:

You can see the values of the objects in a program editor screen while online. For details, see
the description of the respective editor.

You can view object values in the online view of the declaration editor. For details, refer to the
description of the declaration editor (see page 375).

You can view objects independently in lists through the command Watch. For details, refer to
the description of the watch view / watch list editor (see page 422). You can insert a variable in
a watch view by selecting it and executing the command Add watchlist from the context menu.
You can view values via trace sampling: recording and displaying of variable values from the
controller. For details, refer to the description of the trace object functionality (see page 454).
You can view object values that are contained in recipes: User-defined set of variables for
writing and watching these variables on the controller. Refer to the description of the recipe
manager (see page 437).

For information on monitoring of properties that are inserted beneath POUs or function blocks,
refer to the chapter Property (see page 766).

For information on monitoring of function calls, refer to the chapter Affribute Monitoring
(see page 562).

NOTE: If a value is not valid (for example, the result of calculating the square root of a negative
number), the result may be displayed as NaN (not a number) or | NF (infinite value) depending on
the operation, the object, and the particular controller platform. For more information, see the
Programming Guide for your particular controller.

EI00000000067 06/2017 247

Managing Applications

Debugging

Overview

To evaluate potential programming errors, you can use the debugging functionality in online mode.
You can also, to some degree, debug your application in simulation. While simulation avoids the
need to connect to physical hardware, there are limitations to which you may need to complete
debugging online.

You can set breakpoints at certain positions to force an execution break. Certain conditions, such
as which tasks are identified and in which cycles the breakpoint should be effective, can be set for
each breakpoint (conditional breakpoints). Refer to the description of Breakpoints in this chapter.

Stepping functions are available which allow a program to be executed in controlled steps. Refer
to the Stepping paragraph (see page 249).

At each break, you can examine the current values of the variables. You can view a Call Stack
(see SoMachine, Menu Commands, Online Help) for the current step position.

You can activate the Flow Control function in order to track the executed parts of the application
program. In contrast to the standard monitoring function which only shows the value of a variable
between 2 execution cycles, Flow Control provides the value at each particular execution step,
exactly at the time of execution.

Breakpoints

A breakpoint that is set in an application program will cause a break during the execution of the
program. Only the task having hit the breakpoint (called in the following the debug task) will be
halted; however, the others will continue to execute. The possible breakpoint positions depend on
the editor. In each case, there is a breakpoint at the end of a POU.

NOTE: The IOs handled by the debug task are not updated on a halt on a breakpoint. This applies
even if the option Update 10 while in stop is enabled in the PLC settings tab of the device editor
(see page 123).

Refer to the chapter Breakpoints Commands for a description of the commands concerning
breakpoints. The Breakpoints dialog box (see SoMachine, Menu Commands, Online Help)
provides an overview on all breakpoints, allowing you to add, remove, and modify breakpoints.

Conditional Breakpoints

The halt on a breakpoint can be made dependent based on the number of cycles of a given task,
or on which task is currently active. By declaring a specific debug task you can avoid that every
task sharing the same POU be affected but the breakpoint (refer to the Breakpoinits and Stepping
in Applications with Multiple Tasks paragraph (see page 249)).

248 EI00000000067 06/2017

Managing Applications

Breakpoint Symbols
Symbol Description
° breakpoint enabled
o breakpoint disabled
a halt on breakpoint in online mode
i current step position
indicated by a yellow arrow before the
respective line and a yellow shadow behind
the concerned operation
Stepping

Stepping allows a controlled execution of an application program, for debugging purposes.
Basically, you step from one instruction to the next by step into an instruction, step over the next
instruction or step out of an instruction. Refer to the chapter Breakpoint-Related Commands
(see SoMachine, Menu Commands, Online Help) for a description of the stepping commands.

Example of a Step Into Operation

Starting from the breakpoint you can execute each single command line with the stepping
command.

Step Into, example
@ 1dl():
ergl 0 |:=fbinst.ic

b=

W N

> IF bhvarFALSE| THEH
4 ivarl[& J=23;
& ELSE
6 ivarl[45 J:=45;
- e ol

Breakpoints and Stepping in Applications with Multiple Tasks

If a breakpoint can be hit by multiple tasks, because the POU is used by multiple tasks, only the
task that arrives first will be halted. Consider this in case of single stepping or if you continue
debugging after a halt. It could be the case that another task can be halted at the next hit (the cycle
is possibly not yet finished). If only 1 certain task should be concerned (debug task), you can
specify it in the breakpoint condition properties (Breakpoints — New Breakpoint dialog box, tab
Condition).

EI00000000067 06/2017 249

Managing Applications

250 EI00000000067 06/2017

Part IV

Logic Editors

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page
10 FBD/LD/IL Editor 253
11 Continuous Function Chart (CFC) Editor 305
12 Sequential Function Chart (SFC) Editor 325
13 Structured Text (ST) Editor 353

EIO0000000067 06/2017

251

Logic Editors

252 EI00000000067 06/2017

Chapter 10
FBD/LD/IL Editor

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
10.1 Information on the FBD/LD/IL Editor 254
10.2 FBD/LD/IL Elements 285
10.3 LD Elements 301

EIO0000000067 06/2017

253

FBD/LD/IL Editor

Section 10.1
Information on the FBD/LD/IL Editor

What Is in This Section?

This section contains the following topics:

Topic Page
FBD/LD/IL Editor 255
Function Block Diagram (FBD) Language 256
Ladder Diagram (LD) Language 257
Instruction List (IL) Language 258
Modifiers and Operators in IL 260
Working in the FBD and LD Editor 263
Working in the IL Editor 268
Cursor Positions in FBD, LD, and IL 274
FBD/LD/IL Menu 278
FBD/LD/IL Editor in Online Mode 279

254

EI00000000067 06/2017

FBD/LD/IL Editor

FBD/LD/IL Editor

Overview

A combined editor is available for editing POUs in the languages FBD (function block diagram
(see page 256)), LD (ladder diagram (see page 257)), and IL (instruction list (see page 258)).

Therefore, a common set of commands and elements is used and an automatic internal conversion
between the 3 languages is done. In offline mode, the programmer can switch between editor
views (View).

Keep in mind that there are some special elements which cannot be converted and thus will only
be displayed in the appropriate language. Also, there are some constructs which cannot be

converted unambiguously between IL and FBD and therefore will be normalized at a conversion
back to FBD; specifically, negation of expressions and explicit/implicit output assignments.

You can define the behavior, look, and menus of the FBD/LD/IL editor in the Customize and
Options dialog boxes. You also have options to define the display of comments and addresses.

The editor opens in a bipartite window. When you edit an object programmed in FBD/LD/IL, the
upper part contains a declaration editor (see page 376), the lower part contains a the coding area.
The programming language for a new object is specified when you create the object.

For further information refer to:
e Working in the FBD and LD Editor View (see page 263)
e Working in the IL Edjfor View (see page 268)

EI00000000067 06/2017 255

FBD/LD/IL Editor

Function Block Diagram (FBD) Language

Overview

The Function Block Diagram is a graphically oriented programming language. It works with a list
of networks. Each network contains a graphical structure of boxes and connection lines which
represents either a logical or arithmetic expression, the call of a function block, a jump, or a return
instruction.

FBD networks

1
T T2
TON TON
T2.0—IN Q O IN Q Blink
T#2s—PT ET[ETL T#ls—PT ET[ET2
2
Inst
UpAndDovn
TRUE—|Enable Value X
100—Auplitude UpFUp
Blink—GoHome Downf~Down
3
LEN SUB RIGHT CONCAT
stRotate—|STR —l stRotate—|STR STR1 —— stRotate
1— SIZE STR2
LEFT
stRotate—|5TR
1—SIZE

256 EI00000000067 06/2017

FBD/LD/IL Editor

Ladder Diagram (LD) Language

Overview

The Ladder Diagram is a graphics-oriented programming language which resembles the structure
of an electric circuit.

On the one hand, the Ladder Diagram is suitable for constructing logical switches, on the other
hand it also allows you to create networks as in FBD. Therefore, the LD is useful for controlling the
call of other POUs.

The Ladder Diagram consists of a series of networks, each being limited by a vertical current line
(power rail) on the left. A network contains a circuit diagram made up of contacts, coils, optionally
additional POUs (boxes), and connecting lines.

On the left side, there is 1 or a series of contacts passing from left to right the condition ON or OFF
which corresponds to the boolean values TRUE and FALSE. To each contact a boolean variable
is assigned. If this variable is TRUE, the condition will be passed from left to right along the
connecting line. Otherwise, OFF will be passed. Thus, the coil or coils, which is/are placed in the
right part of the network, receive an ON or OFF coming from left. Correspondingly the value TRUE
or FALSE will be written to an assigned boolean variable.

Ladder Diagram network.

1
Tl T2
TON TON Blink
IN (] pu— 8] Q gh
PT ET[-ETL ETFET2

—
~
=5

==

T#2s

PT

EI00000000067 06/2017 257

FBD/LD/IL Editor

Instruction List (IL) Language

Overview

Syntax

The instruction list (IL)is an assembler-like IEC 61131-3 conformal programming language.

This language supports programming based on an accumulator. The IEC 61131-3 operators are
supported as well as multiple inputs / multiple outputs, negations, comments, set / reset of outputs
and unconditional / conditional jumps.

Each instruction is primarily based on the loading of values into the accumulator by using the
LD operator. After that the operation is executed with the first parameter taken out of the
accumulator. The result of the operation is available in the accumulator, from where you should
store it with the ST instruction.

In order to program conditional executions or loops, IL supports both comparing operators such as
EQ, GT, LT, GE, LE, NE and jumps. The latter can be unconditional (JMP) or conditional (JMPC /
JMPCN). For conditional jumps, the value of the accumulator is referenced for TRUE or FALSE.

An instruction list (IL) consists of a series of instructions. Each instruction begins in a new line and
contains an operator and, depending on the type of operation, 1 or more operands separated by
commas. You can extend the operator by a modifier.

In a line before an instruction, there can be an identification mark (label) followed by a colon (:)
(m : in the example shown below). A label can be the target of a jump instruction (JMPC 1l in the
example shown below).

Place a comment as last element of a line.

You can insert empty lines between instructions.

Example
PROGRAM | L
VAR
instl: TON;
dwvar : DWORD;
dwRes: DWORD;
t1: Tl VE;
tout1: TI Mg
inst2: TON;
bVar: BOCL;
END_VAR
LD bVar vari abl e
ST instl.IN starts tinmer with risin...
JMPC m
258 EI00000000067 06/2017

FBD/LD/IL Editor

LD
ST
n :
LD
ADD
ST

i nst 1(
PT: =t 1,
ET: =>t out 1)

instl. Q is TRUE, PT seconds aft...
inst2.IN starts tinmer with risin...

dwvar
230
dwRes

For further information, refer to:
o Working in the IL Editor View (see page 268)
e Modifiers and operators in IL (see page 260)

EI00000000067 06/2017

259

FBD/LD/IL Editor

Modifiers and Operators in IL

Modifiers
You can use the following modifiers in Instruction List (see page 258).

C with JMP, CAL, RET: The instruction will only be executed if the result
of the preceding expression is TRUE.
N with JMPC, CALC, RETC: The instruction will only be executed if the result

of the preceding expression is FALSE.

N other operators according to the | Negation of the operand (not of the accumulator).
Operators table below (Nin
Modlifiers column)

NOTE: Generally, it is not good practice to use the statement CALC (/RETC/JMPC) directly after
an STN, S or R operator, as those instructions arbitrarily modify the value of the accumulator and
thus could lead to difficult-to-find programming errors.

Operators
The table shows which operators can be used in combination with the specified modifiers.

The accumulator stores the current value, resulting from the preceding operation.

Operator Modifiers Meaning Example
LD N Loads the (negated) value of the operand into the | LD i Var
accumulator.
ST N Stores the (negated) content of the accumulator | ST i Erg
into the operand variable.
S - Sets the operand (type BOOL) to TRUE when the |S bVar 1l
content of the accumulator is TRUE.
R - Sets the operand (type BOOL) to FALSE when the | R bVar1
content of the accumulator is TRUE.
AND N,(Bitwise AND of the accumulator and the (negated) | AND bVar 2
operand.
OR N, (Bitwise OR of the accumulator and the (negated) | OR xVar
operand.
XOR N,(Bitwise exclusive OR of the accumulator and the | XOR N, (bVar 1, bVvar 2)
(negated) operand.
NOT - Bitwise negation of the content of the accumulator. | —
ADD (Addition of accumulator and operand, result is ADD (iVarl,iVar?2)

copied to the accumulator.

SUB (Subtraction of accumulator and operand, resultis | SUB i Var 2
copied to the accumulator.

260 EI00000000067 06/2017

FBD/LD/IL Editor

Operator Modifiers Meaning Example

MUL (Multiplication of accumulator and operand, resultis | MJL i Var 2
copied to the accumulator.

DIV (Division of accumulator and operand, result is DV 44
copied to the accumulator.

GT (Verifies if accumulator is greater than or equalto | GT 23
the operand, result (BOOL) is copied into the
accumulator; >=

GE (Verifies if accumulator is greater than or equal to | GE i Var 2
the operand, result (BOOL) is copied into the
accumulator; >=

EQ (Verifies if accumulator is equal to the operand, EQ i Var2
result (BOOL) is copied into the accumulator; =

NE (Verifies if accumulator is not equal to the operand, | NE i Var1
result (BOOL) is copied into the accumulator; <>

LE (Verifies if accumulator is less than or equal to the |LE 5
operand, result (BOOL) is copied into the
accumulator; <=

LT (Verifies if accumulator is less than operand, result |LT cVar1l
(BOOL) is copied into the accumulator; <

JMP CN Unconditional (conditional) jump to the label JMPN next

CAL CN (Conditional) call of a PROGRAM or CAL progl
FUNCTION_BLOCK (if accumulator is TRUE).

RET - Early return of the POU and jump back to the RET
calling POU

RET C Conditional - if accumulator is TRUE,)early return | RETC
of the POU and jump back to the calling POU

RET CN Conditional - if accumulator is FALSE,)early return | RETCN

of the POU and jump back to the calling POU

Evaluate deferred operation

See also IEC operators (see page 627) and Work in IL editor (see page 268) for how to use and
handle multiple operands, complex operands, function / method / function block / program / action
calls and jumps.

EI00000000067 06/2017

261

FBD/LD/IL Editor

Example
Example IL program using some modifiers:

LD
ANDN
JVPC
LDN
ST
ml:
LD
ST

TRUE
bVar 1
mL
bVar 2
bRes

bVar 2
bRes

| oad TRUE to accunul at or
execute AND with negative value of bVarl
if accum is TRUE, junp to |abel "mL"
store negated val ue of bVar2...

in bRes

store val ue of bVar?2...
in bRes

262

EI00000000067 06/2017

FBD/LD/IL Editor

Working in the FBD and LD Editor

Overview

Networks are the basic entities in FBD and LD programming. Each network contains a structure
that displays a logical or an arithmetical expression, a POU (function, program, function block call,
and so on), a jump, a return instruction.

When you create a new object, the editor window automatically contains 1 empty network.

Refer to the general editor settings in the Options dialog box, category FBD/LD/IL for potential
editor display options.

Tooltip
Tooltips contain information on variables or box parameters.
The cursor being placed on the name of a variable or box parameter will prompt a tooltip. It shows

the respective type. In case of function block instances the scope, name, datatype, initial value,
and comment will be displayed. For IEC operators SEL, LI M T, and MJX a short description on

the inputs will display. If defined, the address and the symbol comment will be shown as well as
the operand comment (in quotation marks in a second line).

Example: Tooltip on a POU output

oiail- 222
: oii}— 222
2 ot/ VAR_OUTPUT foMy.oi2 : INT

Initial value : 12
integral power output

227 —=

Inserting and Arranging Elements

e The commands for working in the editor are by default available in the FBD/LD/IL menu
(see page 278). Frequently used commands are also available in the context menu. It depends
on the current cursor position or the current selection (multiselection possible, see below
Selecting (see page 265)) which elements can be inserted via menu command.

e You can also drag elements with the mouse from the toolbox (see page 286) to the editor
window or from one position within the editor to another (drag and drop). For this purpose select
the element to be dragged by a mouse-click, keep the mouse-button pressed and drag the
element into the respective network in the editor view. As soon as you have reached the
network, all possible insert positions for the respective type of element will be indicated by gray
position markers. When you move the mouse-cursor on one of these positions, the marker will
change to green and you can release the mouse-button in order to insert the element at that
position.

EI00000000067 06/2017 263

FBD/LD/IL Editor

Insert positions in LD editor

ERE — & H U k [I U 3 = Ladder elements

IN2 — 4% Negated contad]

Other Operators

AND bvarl bvar2 AND Function blocks

[{¥ Network

4% Contact

INI —

¢ Parallel contact

e You can use the cut, copy, paste, and delete commands, available in the Edit menu, to arrange

elements. You can also copy an element by drag and drop: select the element within a network
by a mouse-click, press the CTRL key and while keeping the mouse button and the key
pressed, drag the element to the target position. As soon as that is reached (green position
marker), a plus-symbol will be added to the cursor symbol. Then, release the mouse-button to
insert the element.

For possible cursor positions, refer to Cursor Positions in FBD, LD, and IL (see page 274).
Inserting of EN/ENO boxes is handled diversely in the FBD and LD editor.

Refer to the description of the Insert Box command for further information (Inserting of EN/ENO
boxes is not supported in the IL editor).

Navigating in the Editor

You can use the ARROW keys to jump to the next or previous cursor position (see page 274).
This is also possible between networks. The navigation with the « and - key follows the signal
flow which is normally from left to right and vice versa. In case of line breaks, the following cursor
position can also be left under the currently marked position. If you press the t or | key the
selection jumps to the next neighbor above or below the current position if this neighbor is in the
same logical group (for example, a pin of a box). If no such group exists, it jumps to the nearest
neighbor element above or below. Navigation through parallel connected elements is performed
along the first branch.

Press the HOME key to jump to the first element. Press the END key to jump to the last element
of the network.

Use the TAB key to jump to the next or previous cursor position (see page 274) within a
network.

Press CTRL + HOME to scroll to the begin of the document and to mark the first network.
Press CTRL + END to scroll to the end of the document and to mark the last network.

Press PAGE UP to scroll up 1 screen and to mark the topmost rectangle.

Press PAGE DOWN to scroll down 1 screen and to mark the topmost rectangle.

264

EI00000000067 06/2017

FBD/LD/IL Editor

Selecting
e You can select an element, also a network, via taking the respective cursor position by a mouse-
click or using the arrow or tab keys. Selected elements are indicated as red-shaded. Also refer
to Cursor Positions in FBD, LD, and IL (see page 274).
e Inthe LD editor, you can also select the lines between elements in order to execute commands,
for example, for inserting a further element at that position.

Selected line in LD editor

1

AND bvarl bvar2

T — | Hee———7=1

IN2 —

e Multi-selection of elements or networks is possible by keeping pressed the CTRL key while
selecting the desired elements one after the other.

Open a Function Block

If a function block is added to the editor, you can open this block with a double-click. Alternatively,
you can use the command Browse - Go To Definition from the context menu.

EI00000000067 06/2017 265

FBD/LD/IL Editor

FBD editor

o) Colltest |

A B W N e

L

PROGRAXM CallTest
VAR

// Vars for rirst network

T1, T2: TON:
ET1, ET2: TDE®:
Blink: BOOL:

MyCounter —{Counter
2 —|Decrement

POUToCall

DowmCount MyD Counter

bErxorf~Err
wErrorf~ErxCode

stRotate STR

_l stRotate —
.33 —

RIGHT
STR
SIZE

<0l

STRY
STRZ

stRotate

STR

1 —

SI1ZE

bCallResetAction —P Cont

266

EI00000000067 06/2017

FBD/LD/IL Editor

LD editor

1
3
4
s

0] Collfest” #] UpAndDown

hl'ctllll_su)d(UpAndDown IMPLEMENTS HomingDevice
VAR_INPUT

Enable: BOOL:

Amplitude: INT:

GoHome: BOOL:

4 b X

UE Home
L
u

Cont:

Enable

—/[F

<RETURNP

&y

For information on the languages, refer to:

e Function Block Diagram - FBD (see page 256)

e [ladder Diagram - LD (see page 257)

EI00000000067 06/2017

267

FBD/LD/IL Editor

Working in the IL Editor

Overview

The IL Instruction List (see page 258) editor is a table editor. The network structure of FBD or LD
programs is also represented in an IL program. Basically, one network (see page 288)is sufficient
in an IL program, but considering switching between FBD, LD and IL you also can use networks

for structuring an IL program.

Also refer to the general editor settings in the Options dialog box, category FBD/IL/LD.

Tooltip
Tooltips contain information on variables or box parameters.
Refer to Working in the FBD and LD Edijtor View (see page 263).

Inserting and Arranging Elements

e The commands for working in the editor are available in the FBD/LD/IL menu. Frequently used
commands are also available in the context menu.

e Programming units that are elements are inserted each at the current cursor position via the
Insert commands, available in the FBD/LD/IL menu.

e You can use the cut, copy, paste, and delete commands, available in the Edit menu, to arrange
elements.

e See also some information on the programming language Instruction List - IL (see page 258).

e Operators with EN/ENO functionality can be inserted only within the FBD and LD editor.

This chapter explains how the table editor is structured, how you can navigate in the editor and
how to use complex operands, calls and jumps.

268 EI00000000067 06/2017

FBD/LD/IL Editor

Structure of the IL Table Editor
IL table editor

PROGRAM myFuncCall

VAR
tonInstl: TON:
tonInst2: TON;
tl: TIME:
toucl: TIME:
tZ: TIME:
touc2: TIME:
b¥ar: BOOL:
bReady AT %0Bl: BOOL:

END_VAR

Standard Library function call

[

Two timers
CAL tonInstl(
IN: = bVar,
PT:=tl,
ET=> tlucl)
LD tonInstl.Q
ST tonInst2.IN
CAL tonInst2(
PT:= t2,
Q=> bReady, $#0B1
ET=> tOutz)

is TRUE, PT seconds after IN had a r.

starts timer with risirng edge, reset

B

Each program line is written in a table row, structured in fields by the table columns:

Column Contains...

Description

1 operator

This field contains the IL operator (LD, ST, CAL, AND, OR, and so on) or a function
name.

In case of a function block call, the respective parameters are also specified here.
Enter the prefix field : = or =>.

For further information, refer to Modlifiers and Operators in IL (see page 260).

2 operand

This field contains exactly one operand or a jump label. If more than one operand is
needed (multiple/extensible operators AND A, B, C, or function calls with several
parameters), write them in the following lines and leave the operator field empty. In
this case, add a parameter-separating comma.

In case of a function block, program or action call, add the appropriate opening
and/or closing brackets.

3 address

This field contains the address of the operand as defined in the declaration part. You
cannot edit this field. Use the option Show symbol address to switch it on or off.

4 symbol comment

This field contains the comment as defined for the operand in the declaration part.
You cannot edit this field. Use the option Show symbol address to switch it on or off.

5 operand comment

This field contains the comment for the current line. It is editable and can be switched
on or off via option Show operand comment.

EI00000000067 06/2017

269

FBD/LD/IL Editor

Navigating in the Table

UP and DOWN arrow keys: Moving to the field above or below.

TAB: Moving within a line to the field to the right.

SHIFT + TAB: Moving within in a line to the field to the left.

SPACE: Opens the currently selected field for editing. Alternatively, performs a further mouse-
click on the field. If applicable, the input assistant will be available via the ... button. You can
close a currently open edit field by pressing ENTER, confirming the current entries, or by
pressing ESC canceling the made entries.

CTRL + ENTER: Enters a new line below the current one.

DEL: Removes the current line that is where you have currently selected any field.

Cut, Copy, Paste: To copy 1 or several lines, select at least 1 field of the line or lines and
execute the Copy command. To cut a line, use the Cut command. Paste will insert the
previously copied/cut lines before the line where currently a field is selected. If no field is
selected, they will be inserted at the end of the network.

CTRL + HOME scrolls to the begin of the document and marks the first network.

CTRL + END scrolls to the end of the document and marks the last network.

PAGE UP scrolls up 1 screen and marks the topmost rectangle.

PAGE DOWN scrolls down 1 screen and marks the topmost rectangle.

Multiple Operands (Extensible Operators)

If the same operator (see page 260)is used with multiple operands, 2 ways of programming are
possible:

The operands are entered in subsequent lines, separated by commas, for example:
LD 7

ADD 2,
4,
7
ST i Var
The instruction is repeated in subsequent lines, for example:
LD 7
ADD 2
ADD 4
ADD 7
ST i Var

270

EI00000000067 06/2017

FBD/LD/IL Editor

Complex Operands

If a complex operand is to be used, enter an opening bracket before, then use the following lines
for the particular operand components. Below them, in a separate line, enter the closing bracket.

Example: Rotating a string by 1 character at each cycle.
Corresponding ST code:

stRotate : = CONCAT(RI GHT(st Rotate, (LEN(stRotate) -
1)), (LEFT(stRotate, 1)));

LD st Rot at e
Rl GHT(st Rot at e
LEN

SUB 1

)

CONCAT(st Rot at e
LEFT 1

)

ST st Rot at e

Function Calls
Enter the function name in the operator field. Give the (first) input parameter as an operand in a
preceding LD operation. If there are further parameters, give the next one in the same line as the
function name. You can add further parameters in this line, separated by commas, or in
subsequent lines.

The function return value will be stored in the accumulator. The following restriction concerning the
IEC standard applies.

NOTE: A function call with multiple return values is not possible. Only 1 return value can be used
for a succeeding operation.

Example: Function GeomAver age, which has 3 input parameters, is called. The first parameter is
given by X7 in a preceding operation. The second one, 25, is given with the function name. The
third one is given by variable t var , either in the same line or in the subsequent one. The return
value is assigned to variable Ave.

Corresponding ST code:
Ave : = CGeomAver age(X7, 25, tvar);

Function call in IL:

LD X7

CeomAver age 25
tvar

ST Ave

EI00000000067 06/2017 271

FBD/LD/IL Editor

Function Block Calls and Program Calls

Use the CAL- or CALC operator (see page 260). Enter the function block instance name or the
program name in the operand field (second column) followed by the opening bracket. Enter the

input parameters each in one of the following lines:
Operator field: Parameter name

Prefix field:
e : = for input parameters
e => for output parameter

Operand field: Current parameter

Postfix field:
e , if further parameters follow
) after the last parameter
e () in case of parameter-less calls

Example: Call of POUToCAl | with 2 input and 2 output parameters.
Corresponding ST code:

PQUToCal | (Counter : = iCounter, iDecrenent:=2, bError=>bErr,

sul t);

Program call in IL with input and output parameters:

1| |PROGRAM IL_EXAMPLE

VAR
4 bErr: BOOL:
4 wResult: WORD:
€ END VAR
1
CAL POUToCall(

Counter := iCounter
iDecrement:= 2
wError=> wResult)
LD POUToCall.bError
ST bErr

It is not necessary to use all parameters of a function block or program.

WET r or =>wWRe

NOTE: Complex expressions cannot be used. These must be assigned to the input of the function

block or program before the call instruction.

272

EI00000000067 06/2017

FBD/LD/IL Editor

Action Call

To be performed like a function block or program call, the action name is to be appended to the
instance name or program name.

Example: Call of action Reset Act i on.
Corresponding ST code:
I nst. Reset Action();

Action call in IL:
CAL I nst. Reset Acti on()

Method Call

Jump

To be performed like a function call, the instance name with appended method name is to be
entered in the first column (operator).

Example: Call of method Hone.

Corresponding ST code:

Z := | Home. Hone(TRUE, TRUE, TRUE);
Method call in IL:
LD TRUE
| Honme. Hone TRUE
TRUE
ST Z

A jump (see page 297)is programmed by JMP in the first column (operator) and a label name in
the second column (operand). The label is to be defined in the target network in the label
(see page 292)field.

The statement list preceding the unconditional jump has to end with one of the following
commands: ST, STN, S, R, CAL, RET, or another JMP.

This is not the case for a conditional jump (see page 297). The execution of the jump depends on
the value loaded.

Example: Conditional jump instruction; in case bCal | Rest Act i on is TRUE, the program should
jump to the network labeled with Cont .

Conditional jump instruction in IL:

LDN bCal | Reset Acti on
JMPC Cont

EI00000000067 06/2017 273

FBD/LD/IL Editor

Cursor Positions in FBD, LD, and IL

IL Editor

This is a text editor, structured in form of a table. Each table cell is a possible cursor position. Also
refer to Working in the IL Editor View (see page 268).

FBD and LD Editor

These are graphic editors, see below examples (1) to (15) showing the possible cursor positions:
text, input, output, box, contact, coil, return, jump, line between elements and network.

Actions such as cut, copy, paste, delete, and other editor-specific commands refer to the current
cursor position or selected element. See Working in the FBD and LD Edijtor (see page 263).

Basically, in FBD a dotted rectangle around the respective element indicates the current position
of the cursor. Additionally, texts and boxes become blue- or red-shadowed.

In LD, coils and contacts become red-colored as soon as the cursor is positioned on.

The cursor position determines which elements are available in the context menu for getting
inserted (see page 263).

Possible Cursor Positions
(1) Every text field

erg) 22— I»bva‘:Z
al—j

In the left image, the possible cursor positions are marked by a red-frame. The right image shows
a box with the cursor being placed in the ANDfield. Keep in mind the possibility to enter addresses

instead of variable names if configured appropriately in the FBD, LD and IL editor Options dialog
box.

(2) Every input:

ADD
ivar— ——erg
35—

274 EI00000000067 06/2017

FBD/LD/IL Editor

(3) Every operator, function, or function block:

ivar—
3351

ADD

——erg

(4) Outputs if an assignment or a jump comes afterward:

ivar—]
33—

ADD

[—erg

(5) Just before the lined cross above an assignment before a jump or a return instruction:

ivar—j
33—

ADD

ADD
|_ —erg
ergz ivarz—

(6) The right-most cursor position in the network or anywhere else in the network besides the other
cursor positions. This will select the whole network:

s

[0

Evaluation endswitches

eval. swi

XOR

TRUE — —— varoutput

222 —

(7) The lined cross directly in front of an assignment:

ivar—

ADD

—

Serg2

EI00000000067 06/2017

275

FBD/LD/IL Editor

(8) Every contact:

switchl

—

(9) Every coil:

lanpl

—()

(10) Every return and jump:

(11) The connecting line between the contacts and the coils:

bwvar 222

— [()
s

(12) Branch or subnetwork within a network:

ADD OR

iva;:: o k o >1

A%

Vv

aa — —1

bb —]

276 EI00000000067 06/2017

FBD/LD/IL Editor

(13) The connection line between parallel contacts (Pos. 1...4):

varl vars
| [| [
1 var2 vars 3
{ [{ [
varéd 4

(14) Before or after a network:

1 [

<1

222

™~

@

1 [

222
[P 222 |

You can add new networks on the left-most side of the editor. The insertion of a new network before
an existing network is only possible before network 1.

(15) Begin or end of a network:

[3

229

7

|ndd output or jump here|

You can add contacts and function blocks at the begin of a network on the field Start here. You can
add the elements return, jump, and coil at the end of a network on the field Add output or jump here.

EI00000000067 06/2017

277

FBD/LD/IL Editor

FBD/LD/IL Menu

Overview

When the cursor is placed in the FBD/LD/IL Editor (see page 255) window, the FBD/LD/IL menu
is available in the menu bar, providing the commands for programming in the currently set editor

view.

FBD/LD/IL menu in FBD editor view:

fan

(xx)
El
£F
iF
£

=VAR

«RET

FBD/LD/IL ’ Build Online

Debug Tools Win
Insert Network Ctrl+l
Insert Network (below) Ctrl+T
Insert label
Toggle network comment state Ctrl+O
Insert Box Ctrl+B
Insert Empty Box Ctrl+Shift+B
Insert Box with EN/JENO Ctrl+Shift+E
Insert Empty Box with ENJENO
Insert Input Ctr+Q
Insert Assignment Ctrl+A
Insert Jump Ctrl+L
Insert Return
Negation Ctrl+N
Edge Detection Ctrl+E
Set/Reset Ctrl+M
Set output connection Ctrl+W
Insert Branch Ctrl+Shift+V
Insert Branch above
Insert Branch below
Update parameters Ctrl+U

Remove unused FB call parameters

View

e For a description of the commands, refer to the chapter FBD/LD/IL Edifor Commands.
e For configuration of the menu, refer to the description of the Customize Menu.

278

EI00000000067 06/2017

FBD/LD/IL Editor

FBD/LD/IL Editor in Online Mode

Overview

In online mode, the FBD/LD/IL editor provides views for Monitoring (see page 279) and for writing
and forcing the values and expressions on the controller.

Debugging functionality (breakpoints, stepping, and so on) is available, see Breakpoint or Halt
Positions (see page 283).

e For information on how to open objects in online mode, refer to the chapter User Interface in
Online Mode (see page 50).

e Keep in mind that the editor window of an FBD, LD, or IL object also includes the Declaration
Editor in the upper part. Also refer to the chapter Declaration Editor in Online Mode
(see page 380).

Monitoring

If the inline monitoring is not explicitly deactivated in the Options dialog box, it will be supplemented
in FBD or LD editor by small monitoring windows behind each variable or by an additional
monitoring column showing the actual values (inline monitoring). This is even the case for
unassigned function block inputs and outputs.

The inline monitoring window of a variable shows a little red triangle in the upper left corner if the
variable is currently forced (see page 252), a blue triangle in the lower left corner if the variable is
currently prepared for writing or forcing. In LD, for contacts and coils the currently prepared value
(TRUE or FALSE) will be displayed down right below the element.

Example for a variable which is currently forced and prepared for releasing the force

MyCounter ! 40 }-

Example for a contact variable which is currently prepared to get written or forced with value TRUE

wvarl

— =T

EI00000000067 06/2017 279

FBD/LD/IL Editor

Online view of an FBD program

SP_for_Win32.App.CallTest

Expression | Comment | Type Value | Prepared value
= ¢ hs2 'UpAndDown [[
“# Enable |BooL
“# Amplitude INT
“# GoHome BOOL ALS
"# Value INT 41
P up BOOL
"% Down BOOL
Counter DINT |2159
diValue DINT 41
X \BOOL
® X INT o
' X2 INT 0
® Up BOOL
Down _ “BOOL _ _
MyCounter Vars for third network | DINT @ 40 <Unforce and restore>
MyDownCounter DINT 2
® Em BOOL ﬂﬂg
EnCode WORD o
siRotate Vars for fifth network | STRING 'peom’ ‘abe’
¢ Ave Vars for fifth network | DINT |38
a
TRUE
200
FALSE
4
POUToCall
MyCounterF 40 I—ﬁCounter DownCount —MynownCountex[Il
2 —Decrement bError —Err
wError [~ErrCode |I|
5|
LEN SUB
stRotate | ‘Eccvm’ I—STR _
71—

280 EI00000000067 06/2017

FBD/LD/IL Editor

Online view of an IL program

@ ar
iRes
@ iTemp
1
LD PLC_PRG.iX —
DD 22 add 22
ST iTeunp [11488 |store to temp
2z
LD PLC_PRG.iX
ADD 1
st iar
3
CAL PRGL (call programm PRG1
iIn:= iVar,
idut=> iRes) [11468 |store i0ut to iRes

In online view, ladder networks have animated connections:

e Connections with value TRUE are displayed in bold blue.

e Connections with value FALSE are displayed in bold black.

e Connections with no known value or with an analog value are displayed in standard outline
(black and not bold).

The values of the connections are calculated from the monitoring values.
Online view of an LD program

ACB1 ® PLC_PRG | ACP"# DESI 4bx
Device.Application.DES1
Expression Type Value Prepared value AJ
#T66 |TON | \ —
767 |TOF |
2750 TON \ _
2 T51 |TON [[
2T52 |TON \ } ;
® 753 | TON | |)
13 A
TEMPLATE CHAIN CONV
$IX143.0 $%IX143.6 $IX145.1 %IX145.1 $MX50.1
IP1430 IP1436 IP1451 IP1451 M501
—at {t {t {0t O
8MX50.1 $IX143.7
M501 IP1437
” —nt 0— av
[
|l i) 2

EI00000000067 06/2017 281

FBD/LD/IL Editor

Open a function by double-click or execute the command Browse - Go To Definition from the
context menu. Refer to the description of the User /nferface in Online Mode (see page 50) for
further information.

Forcing/Writing of Variables

In online mode, you can prepare a value for forcing or writing a variable either in the declaration
editor (see page 380)or within the editor. Double-click a variable in the editor to open the following
dialog box:

Dialog box Prepare Value

Prepare Value

Expression: | MyPIc.Application.FeaturesTest_1.MyDownCounter ’
Type: | DINT ‘
Current value: | ° ’

What do you want to do?

@ Prepare a new value for the next write or force operation:

’22

O Release the force, without modifying the value.

O Release the force and restore the variable to the value it had before forcing it.

[OK] [Cancel]

You find the name of the variable completed by its path within the device tree (Expression), its type,
and current value. By activating the corresponding item, you can do the following:

e Preparing a new value which has to be entered in the edit field.

e Removing a prepared value.

e Releasing the forced variable.

e Releasing the forced variable and resetting it to the value it was assigned to just before forcing.

The selected action will be carried out on executing the menu command Force values (in the
Online menu) or by pressing F7.

For information on how the current state of a variable (forced, prepared value) is indicated at the
respective element in the network, refer to the section Monitoring (see page 279).

282

EI00000000067 06/2017

FBD/LD/IL Editor

Breakpoint or Halt Positions

Possible positions you can define for a breakpoint (halt position) for debugging purposes are those
positions at which values of variables can change (statements), at which the program flow
branches out, or at which another POU is called.

These are the following positions:

e On the network as a whole such that the breakpoint will be applied to the first possible position
within the network.

e On a box (see page 292), if this contains a statement. Therefore it is not possible on operator
boxes like for example ADD, DI V. See the Note below.

e On an assignment.

e Atthe end of a POU at the point of return to the caller; in online mode, automatically an empty
network will be displayed for this purpose. Instead of a network number, it is identified by RET.

NOTE: You cannot set a breakpoint directly on the first box of a network. If, however, a breakpoint
is set on the complete network, the halt position will automatically be applied to the first box.

For the currently possible positions, refer to the selection list within the View — Breakpoints dialog
box.

A network containing any active breakpoint position is marked with the breakpoint symbol (red filled
circle) right to the network number and a red-shaded rectangle background for the first possible
breakpoint position within the network. Deactivated breakpoint positions are indicated by a non-
filled red circle or a surrounding non-filled red rectangle.

Breakpoint set and breakpoint reached

1® 1

Sh | T
e N

1 breakpoint set
2 breakpoint reached

EI00000000067 06/2017 283

FBD/LD/IL Editor

As soon as a breakpoint position is reached during stepping or program processing, a yellow arrow
will be displayed in the breakpoint symbol and the red shaded area will change to yellow.

Halt positions shown in FBD

R[]
fubinst
DIV fubl
ivarz 5 fivarl outvar|Terg
2 — ergs THous fubinst. ivarl
2|0
ADD
svarl [EB —ivarl
ol

Halt position shown in IL

e

LD ivar2 T§Oms
DIV 2 | | |
S1 erg | 1
ST fubinst.ivarl TEOms }
CAL fubinst() |
LD fubinst.outvar
ST erg3

RETH

NOTE: A breakpoint will be set automatically in all methods which may be called. If an interface-
managed method is called, breakpoints will be set in all methods of function blocks implementing
that interface and in all derivative function blocks subscribing the method. If a method is called via
a pointer on a function block, breakpoints will be set in the method of the function block and in all
derivative function blocks which are subscribing to the method.

284 EI00000000067 06/2017

FBD/LD/IL Editor

Section 10.2
FBD/LD/IL Elements

What Is in This Section?
This section contains the following topics:

Topic Page
FBD/LD/IL Toolbox 286
Network in FBD/LD/IL 288
Assignment in FBD/LD/IL 291
Jump in FBD/LD/IL 291
Label in FBD/LD/IL 292
Boxes in FBD/LD/IL 292
RETURN Instruction in FBD/LD/IL 293
Branch / Hanging Coil in FBD/LD/IL 294
Parallel Branch 297
Set/Reset in FBD/LD/IL 299
Set/Reset Coll 300

EI00000000067 06/2017 285

FBD/LD/IL Editor

FBD/LD/IL Toolbox

Overview

The FBD/LD/IL Editor (see page 255) provides a toolbox which offers the programming elements
for being inserted in the editor window by drag and drop. Open the toolbox by executing the
command ToolBox which is in the View menu.

It depends on the currently active editor view which elements are available for inserting (see the
respective description of the insert commands).

The elements are sorted in categories: General (general elements such as Network, Assignment
and so on), Boolean operators, Math operators, Other operators (for example,

SEL, MJX, LIM T, and MOVE), Function blocks (for example,

RTRIG F TRIG RS, SR TON, TOF, CTD, CTU), Ladder elements, and POUs (user-
defined).

The POUs category lists all POUs which have been defined below the same application as the
FBD/LD/IL object which is open in the editor. If a POU has been assigned a bitmap in its properties,
then this will be displayed before the POU name. Otherwise, the standard icon for indicating the
POU type will be used. The list will be updated automatically when POUs are added or removed
from the application.

The category Other operators contains among SEL, MJX, LI M T, and MOVE operators a
conversion placeholder element. You can drag and drop this element to the appropriate position
of the network. The conversion type is set automatically, dependent on the required type of the
insert position. In some situations however the required conversion type cannot be determined
automatically. Change the element manually in this case.

To unfold the category folders, click the button showing the respective category name. See in the
following image: The category General is unfolded, the others are folded. The image shows an
example for inserting an Assignment element by drag and drop from the toolbox.

Only the section General in the toolbox is unfolded:

286 EI00000000067 06/2017

FBD/LD/IL Editor

Insert from toolbox

[#] POUFBD |[E] PLC_PRG 4bx
1 PROGRAM POU_FBD A | General
g 2 VAR [i# Network
3 Reset Bool: BOOL; F Box
4 PV_Int: INT; (* pvint *) .
= =VAR Assignment
5 Q_Bool: BOOL;
6 CV_Int: INT; 5 > Jump
< > 4RET Return
1 %4 Input
NOT Boolean Operators
??7? = Math operators
?2?72? —< Function blocks
- Ladder elements
POUs
NOT
2?27 — 22?2

@

£y ki

To insert an element in the editor, select it in the toolbox by a mouse-click and bring it to the editor
window by drag and drop. The possible insert positions will be indicated by position markers, which
appear as long as the element is drawn - keeping the mouse button pressed - across the editor
window. The nearest possible position will light up green. When you release the mouse button, the
element will be inserted at the green position.

If you drag a box element on an existing box element, the new one replaces the old one. If inputs
and outputs already have been assigned, those will remain as defined, but they will not be
connected to the new element box.

EI00000000067 06/2017 287

FBD/LD/IL Editor

Network in FBD/LD/IL

Overview

A network is the basic entity of an FBD (see page 256) or LD (see page 257) program. In the
FBD/LD editor, the networks are arranged in a vertical list. Each network is designated on the left
side by a serial network number and has a structure consisting of either a logical or an arithmetic
expression, a program, function or function block call, and possibly jump or return instructions.

The IL Editor (see page 258), due to the common editor base with the FBD and LD editors, also

uses the network element. If an object initially was programmed in FBD or LD and then is converted
to IL, the networks will be still present in the IL program. Vice versa, if you start programming an

objectin IL, you need at least 1 network element which might contain all instructions, but you can
also use further networks to structure the program.

A network optionally can get assigned a title, a comment and a label (see page 292).

You can switch the availability of the title and the comment fields on and off in the FBD, LD and IL
editor options dialog box. If the option is activated, click in the network directly below the upper
border to open an edit field for the title. For entering a comment, correspondingly open an edit field
directly below the title field. The comment can be multi-lined. Press ENTER to insert line breaks.
Press CTRL + ENTER to terminate the input of the comment text.

Whether and how a network comment is displayed in the editor, is defined in the FBD, LD, and
IL editor options dialog box.

To add a label (see page 292), which then can be addressed by a jump (see page 297), use the
command Insert label . If a label is defined, it will be displayed below the title and comment field or
- if those are not available - directly below the upper border of the network.

288

EI00000000067 06/2017

FBD/LD/IL Editor

Comments and label in a network

1| PROGRAM POU

You can set a network in comment state. This indicates that the network is not processed but
displayed and handled as a comment. To achieve this, use the command Toggle network
comment state.

On a currently selected network (cursor position 6 (see page 274)), you can apply the default
commands for copying, cutting, inserting, and deleting.

NOTE: Right-clicking (cursor position 6 (see page 274)) titles, comments, or labels will select this
entry only instead of the whole network. So the execution of the default commands does not affect
the network.

To insert a network, use command Insert Network or drag it from the toolbox (see page 256). A
network with all belonging elements can also be copied or moved (see page 263)by drag and drop
within the editor.

You can also create subnetworks (see page 294) by inserting branches.

EI00000000067 06/2017 289

FBD/LD/IL Editor

RET Network

In online mode, an additional empty network will be displayed below the existing networks. Instead
of a network number, it is identified by RET.

It represents the position at which the execution will return to the calling POU and provides a
possible halt position (see page 279).

290 EI00000000067 06/2017

FBD/LD/IL Editor

Assignment in FBD/LD/IL

Overview
Depending on the selected cursor position (see page 274)in FBD or LD, an assignment will be
inserted directly in front of the selected input (cursor position 2 (see page 274)), directly after the
selected output (cursor position 4 (see page 274)) or at the end of the network (cursor position 6
(see page 274)). In an LD network, an assignment will be displayed as a coil (see page 303).
Alternatively, drag the assignment element from the toolbox (see page 286) or copy or move
(see page 263)it by drag and drop within the editor view.

After insertion, the text string ??? can be replaced by the name of the variable that is to be
assigned. For this, use the ... button to open the Input Assistant.

InIL (see page 258), an assignment is programmed via LD and ST instructions. Refer to Modiifiers
and Operators in IL (see page 260).

Jump in FBD/LD/IL

Overview
Depending on the selected cursor position (see page 274)in FBD (see page 256) or LD
(see page 257), a jump will be inserted directly in front of the selected input (cursor position 2),
directly after the selected output (cursor position 4) or at the end of the network (cursor position 6).
Alternatively, drag the jump element from the toolbox (see page 286) or copy or move
(see page 263)it by drag and drop within the editor.

After insertion, you can replace the automatically entered ??? by the label to which the jump should
be assigned.

In IL (see page 258), a jump is inserted via a JMP instruction. See in this context the description
of the operators and modifiers in IL (see page 260).

EI00000000067 06/2017 291

FBD/LD/IL Editor

Label in FBD/LD/IL

Overview

Below the network comment field each FBD (see page 256), LD (see page 257)or IL network have
a text input field for defining a label. The label is an optional identifier for the network and can be
addressed when defining a jump (see page 297). It can consist of any sequence of characters.

Position of a label in a network

Label:

ADD

a —— —

See the Tools —» Options -~ FBD, LD and IL editor dialog box for defining the display of comment
and title.

Boxes in FBD/LD/IL

Overview

A box, insertable in an FBD (see page 256), LD (see page 257), or IL (see page 258) network, is
a complex element and can represent additional functions like timers, counters, arithmetic
operations, or also programs, IEC functions and IEC function blocks.

A box can have one or more inputs and outputs and can be provided by a system library or can be
programmed. At least 1 input and 1 output however must be assigned to boolean values.

If provided with the respective module and if the option Show box icon is activated, an icon will be
displayed within the box.

Use in FBD, LD

You can position a box in a LD network or in an FBD network by using the command Insert Box,
Insert Empty Box. Alternatively, you can insert it from the toolbox (see page 286) or copy or move
it within the editor via drag and drop. For further information, refer to the description of the Insert
Box command.

UseinIL

Inan L (see page 258)program, a CAL (see page 260)instruction with parameters will be inserted
in order to represent a box element.

You can update the box parameters (inputs, outputs) - in case the box interface has been modified
- with the current implementation without having to reinsert the box by executing the Update
parameters command.

292

EI00000000067 06/2017

FBD/LD/IL Editor

RETURN Instruction in FBD/LD/IL

Overview

With a RETURN instruction, the FBD (see page 256), LD (see page 257)or IL (see page 258) POU
can be exited.

In an FBD or LD network, you can place it in parallel or at the end of the previous elements. If the
input of a RETURN is TRUE, the processing of the POU will immediately be exited.

Execute the command Insert Return to insert a RETURN instruction. Alternatively, drag the element
from the toolbox (see page 286) or copy or move (see page 263)it from another position within the

editor.
RETURN element
in FBD: in LD:
RETURNM
—4 RETURNP 79

In IL, the RET (see page 260) instruction is used for the same purpose.

EI00000000067 06/2017 293

FBD/LD/IL Editor

Branch / Hanging Coil in FBD/LD/IL

Overview

ivar —

In a Function Block Diagram (see page 256) or Ladder Diagram (see page 257)network, a branch
or a hanging coil splits up the processing line as from the current cursor position. The processing
line will continue in 2 subnetworks which will be executed 1 after each other from top to bottom.
Each subnetwork can get a further branch, such allowing multiple branching within a network.

Each subnetwork gets an own marker (an upright rectangle symbol). You can select it (cursor
position 11 (see page 274)) in order to perform actions on this arm of the branch.

Branch markers

ADD OR
= — | 3 >1 bvar
AND

— & Pnet a
H—resl

H—b

TRUE — 21 I
OR
«— =

In FBD, insert a branch via command Insert branch. Alternatively, drag the element from the
toolbox (see page 286). For the possible insert positions, refer to the description of the Insert
branch command.

NOTE: Cut and paste is not implemented for subnetworks.

A branch has been inserted at the SUB box output in the example shown below. This created 2
subnetworks, each selectable by their subnet marker. After that, an ADD box was added in each
subnetwork.

294

EI00000000067 06/2017

FBD/LD/IL Editor

Network in FBD with inserted branch

SUB
ivar — bt
a —
SUB

ivar — —E
o =
a

SUB ADD
ivar — ——b

a — - 2 — +

ADD

s —IEE

To delete a subnetwork, first remove all elements of the subnetwork, that is all elements which are
positioned to the right of the marker of the subnetwork. Then select the marker and execute the
standard Delete command or press the DEL key.

In the following image, the 3-input-OR element has to be deleted before you can select and delete
the marker of the lower subnetwork.

EI00000000067 06/2017 295

FBD/LD/IL Editor

Delete branch or subnetwork

ADD OR

ivar —

p— F o 21

Execution in Online Mode
The particular branches will be executed from left to right and then from top to bottom.

IL (Instruction List)

The IL (see page 255) does not support networks with branches. They will stay in the original
representation.

Parallel Branches

You can use parallel branches for setting up parallel branch (see page 297) evaluation in ladder
networks.

In contrast to the open branch (without the junction point), the parallel branches are closed. They
have common split and junction points.

296 EI00000000067 06/2017

FBD/LD/IL Editor

Parallel Branch

Overview

A parallel branch allows you to implement a parallel evaluation of logical elements. This is
accomplished via a methodology described as Short Circuit Evaluation (SCE). SCE allows you to
by-pass the execution of a function block with a boolean output if certain parallel conditions are
evaluated to be TRUE. The condition can be represented in the LD editor by a parallel branch to
the function block branch. The SCE condition is defined by 1 or several contacts within this branch,
connected parallel or sequentially.

NOTE: The term branch is also used for another element that splits off a signal flow. This branch
(see page 294) as opposed to the parallel branch has no junction point.

The parallel branch works as follows: first it will be parsed for the branches not containing a function
block. If 1 of such branches is evaluated to be TRUE, then the function block in the parallel branch
will not be called and the value at the input of the function block branch will be passed to the output.
If the SCE condition is evaluated to be FALSE, then the function block will be called and the
boolean result of the function block execution call will be passed on.

If all branches contain function blocks, then they will be evaluated in top-to-bottom order and the
outputs of them will be combined with logical OR operations. If there are no branches containing a
function block call, then the normal OR operation will be performed.

To insert a parallel branch with SCE function, select the function block box and execute the
command Insert Contact Parallel above or Insert Contact Parallel below. This is only possible if the
first input and the main output of the function block are of type BOOL.

Below is an example of the generated language model for the given network.

Example for SCE

The function block instance x1 (TON) has a boolean input and a boolean output. Its execution

can be skipped if the condition in the parallel branch is evaluated to be TRUE. This condition value
results from the OR and AND operations connecting the contacts cond1, cond2 and cond3.

Parallel branch for SCE in a ladder network

1 %1
bl b2 TON b3
i non
{ [UL b 0] [
t#2s —PT ET tElapsed

condl cond2

! n

1 U

cond3

nn

EI00000000067 06/2017 297

FBD/LD/IL Editor

The processing is as shown in the following, whereby P_I N and P_QUT represent the boolean
value at the input (split point) and output (junction point) of the parallel branch, respectively.

P_IN := bl AND b2;

IF ((P_IN
P OQUT := P_IN
ELSE
x1(IN : =
t El apsed : = x1. ET
P QUT := x1.Q
END | F
bRes := P_QUT AND b3

AND condl) AND (cond2 OR cond3)) THEN

PIN, PT := {p 10}t#2s);

The following images show the dataflow (blue) in case the function block is executed (condition
resulting from condl, cond2 and cond3 is FALSE) or bypassed (condition is TRUE).

Condition=FALSE, function block is executed:

| x1
bl b2 TON b3 bRes
Wl W m 0 LIk D
t#2s —PT ET |- tElapsed
condl cond2
I !
e i
cond3
I
Uy
Condition=TRUE, function block is bypassed:
b x1
bl b2 TON b3 bRes
il il m 0 I {D
t#2s —PT ET |- tElapsed
condl cond2
cond3
N0
i
298

EI00000000067 06/2017

FBD/LD/IL Editor

Set/Reset in FBD/LD/IL

FBD and LD

A boolean output in FBD (see page 256) or correspondingly an LD (see page 257) coil can be set
or reset. To change between the set states, use the respective command Set/Reset from the
context menu when the output is selected. The output or coil will be marked by an Soran R.

Set If value TRUE arrives at a set output or coil, this output/coil will become TRUE
and remain TRUE. This value cannot be overwritten at this position as long as
the application is running.

Reset If value TRUE arrives at a reset output or coil, this output/coil will become FALSE
and remain FALSE. This value cannot be overwritten at this position as long as
the application is running.

Set output in FBD

AND
bvarl—] bv arl
bvarz—

In the LD editor, you can insert set and reset coils by drag and drop. To perform this action, use
either the ToolBox, category Ladder elements, or the S and R elements from the tool bar.

Example:

Set coil, reset coil

bwvar2 bwvar2

—) R

For further information, see Set/Reset Coil (see page 300).

In an Instruction List, use the S and R (see page 260) operators to set or reset an operand.

EI00000000067 06/2017 299

FBD/LD/IL Editor

Set/Reset Coil

Overview
Coils (see page 303) can also be defined as set or reset coils.

You can recognize a set coil by the Sin the coil symbol: (S) . A set coil will not overwrite the value
TRUE in the appropriate boolean variable. That is, the variable once set to TRUE remains TRUE.

You can recognize a reset coil by the Rin the coil symbol: (R) . A reset coil will not overwrite the
value FALSE in the appropriate boolean variable. That is, the variable once set to FALSE will
remain FALSE.

In the LD editor, you can insert set coils and reset coils directly via drag and drop from the ToolBox,
category Ladder elements.

Set coil, reset coil

bwvar2 bwvar2

—) R

300 EI00000000067 06/2017

FBD/LD/IL Editor

Section 10.3
LD Elements

What Is in This Section?

This section contains the following topics:

Topic Page
Contact 302
Coil 303
EI00000000067 06/2017 301

FBD/LD/IL Editor

Contact

Overview
This is an LD element.

In LD (see page 257)in its left part, each network contains 1 or several contacts. Contacts are
represented by 2 vertical, parallel lines.

bwvarl

I

Contacts pass on condition ON (TRUE) or OFF (FALSE) from left to right. A boolean variable is
assigned to each contact. If this variable is TRUE, the condition is passed from left to right and
finally to a coil in the right part of the network. Otherwise the right connection receives the value
FALSE.

You can connect multiple contacts in series as well as in parallel. Contacts in parallel represent a
logical 'OR' condition such that only one of them need be TRUE to have the parallel branch transmit
the value TRUE. Conversely, contacts in series represent a logical '"AND' condition whereas all the
contacts must be TRUE to have the final contact transmit TRUE.

Therefore, the contact arrangement corresponds to either an electric parallel or a series circuit.
A contact can also be negated. This is indicated by the slash in the contact symbol.

bwvarl

—-

A negated contact passes on the incoming condition (TRUE or FALSE) only if the assigned
boolean variable is FALSE.

You can insert a contact in an LD network via one of the commands Insert Contact or Insert
Contact (right) Insert Contact Parallel (above), Insert Contact Parallel (below), Insert Rising Edge
Contact, or Insert Falling Edge Contact which are part of the LD menu. Alternatively, you can insert
the element via drag and drop from the ToolBox (see page 2586) or from another position within the
editor (drag and drop).

FBD and IL

If you are working in FBD (see page 256) or IL (see page 258) view, the command will not be
available. But contacts and coils inserted in an LD network will be represented by corresponding
FBD elements or IL instructions.

302 EI00000000067 06/2017

FBD/LD/IL Editor

Coill
Overview
This is an LD element.
On the right side of an LD network, there can be any number of coils which are represented by
parentheses.
bwvarZ
They can only be arranged in parallel. A coil transmits the value of the connections from left to right
and copies it to an appropriate boolean variable. At the entry line, the value ON (TRUE) or the value
OFF (FALSE) can be present.
Coils can also be negated. This is indicated by the slash in the coil symbol.
bwvar2
—{/)
In this case the negated value of the incoming signal will be copied to the appropriate boolean
variable.
You can insert a coil in a network via one of the commands Insert Coil, Insert Set Coil, Insert Reset
Coil, or Insert Negated Coil in the LD menu. Alternatively, you can insert the element via drag and
drop from the ToolBox (Ladder elements) or via drag and drop from another position within the
editor. Also refer to Sef and Reset Coils (see page 300).
FBD and IL

If you are working in FBD (see page 256) or IL (see page 258) view, the command will not be
available. But contacts and coils inserted in an LD network will be represented by corresponding
FBD elements or IL instructions.

EI00000000067 06/2017 303

FBD/LD/IL Editor

304 EI00000000067 06/2017

Chapter 11
Continuous Function Chart (CFC) Editor

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Continuous Function Chart (CFC) Language 306
CFC Editor 307
Cursor Positions in CFC 309
CFC Elements / ToolBox 311
Working in the CFC Editor 317
CFC Editor in Online Mode 320
CFC Editor Page-Oriented 322

EI00000000067 06/2017 305

Continuous Function Chart (CFC) Editor

Continuous Function Chart (CFC) Language

Overview

The Continuous Function Chart is an extension to the IEC 61131-3 standard, and is a graphical
programming language based on the Function Block Diagram (FBD) language (see page 256).
However, in contrast to the FBD language, there are no networks. CFC allows the free positioning
of graphic elements, which in turn allows for feedback loops.

For creating CFC programming objects in SoMachine, see the description of the CFC editor
(see page 307).

306

EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

CFC Editor

Overview

The CFC editor is a graphical editor available for programming objects in the continuous function
chart (CFC) programming language (see page 306), which is an extension to the IEC 61131-3
programming languages. Choose the language when you add a new program organization unit
(POU) object to your project. For large projects, consider using the page-oriented version

(see page 322).

The editor will be available in the lower part of the window which opens when opening a CFC POU
object. This window also includes the declaration editor (see page 376)in its upper part.

CFC editor
‘ﬂ] Main x" -
1 FUNCTION BLOCK Main S
= z VAR D
3 prgInputFlag: BOOL:
L prgValue: INT:
s prglutputFlag: BOOL;
& prgResult: INT:
2 prgEN: BOOL:
8 prgENO: BOOL:
9 prghctInputFlag: BOOL; >
< >
a v
: A
PRG 1 L
g Input Fla nput Flag output Flag rgQutput Fl— 9
rg\value alue result Result
PRG -
EEEN I EN ENO! prgEND m -
——Cinput Flag output Flag| ElgUutEukFt,- g
value result prgResult
Fogrammakiion
PRGACT z
rgActinput Fla nput Flag output Flag 2ot Qutput F— g
rgAct\Value 1 value result rgAct Result
‘ I FRaAe R I+Q |80% R
< >

EI00000000067 06/2017 307

Continuous Function Chart (CFC) Editor

The CFC editor in contrast to the FBD / LD editor allows free positioning (see page 377) of the
elements, which allows direct insertion of feedback paths. The sequence of processing is
determined by a list which contains all currently inserted elements and can be modified.

The following elements are available in a toolbox (see page 377)and can be inserted via drag and
drop:

e box (operators, functions, function blocks, and programs)
input

output

jump

label

return

composer

selector

connection marks

comments

You can connect the input and output pins of the elements by drawing a line with the mouse. The
path of the connecting line will be created automatically and will follow the shortest possible route.
The connecting lines are automatically adjusted as soon as the elements are moved. For further
information, refer to the description of inserting and arranging elements (see page 3177). For
complex charts, you can use connection marks (see page 3717)instead of lines. You may also
consider the possibility of modifying the routing.

It may happen that elements get positioned in a way that they cover already routed connections.
These collisions are indicated by red connection lines. If there are any collisions in the chart, the

button in the upper right corner of the editor view gets a red outline: . To edit the collisions step
by step, click this button and execute the command Show next collision. Then the next found
concerned connection will be selected.

For complex charts, you can use connection marks (see page 3177)instead of lines. You may also
wish to use the page-oriented version of the CFC editor.

A zoom function allows you to change the dimension of the editor window: Use the @‘ button in
the lower right corner of the window and choose between the listed zoom factors. Alternatively, you
can select the entry ... to open a dialog box where you can type in any arbitrary factor.

You can call the commands for working in the CFC editor from the context menu or from the CFC
menu which is available as soon as the CFC editor is active.

308 EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

Cursor Positions in CFC

Overview
Cursor positions in a CFC program are indicated by a gray background when hovering over the
programming element.

When you click one of these shadowed areas, before releasing the mouse-button, the background
color will change to red. As soon as you release the mouse-button, this will become the current
cursor position, with the respective element or text being selected and displayed as red-colored.
There are 3 categories of cursor positions. See the possible positions indicated by a gray shaded
area as shown in the illustrations of the following paragraphs.

Cursor Positioned on a Text

If the cursor is positioned on a text and you click on the mouse-button, it is displayed as blue-
shaded and can be edited. The ... button is available for opening the input assistant. Primarily after
having inserted an element, the characters ??? represent the name of the element. Replace these

characters by a valid identifier. After that a tool tip is displayed by positioning the cursor on the
name of a variable or a box parameter. The tool tip contains the type of the variable or parameter
and, if it exists, the associated comment in a second line.

Possible cursor positions and an example of selected text:

—r ()

inst1

TON @]
IN Q [<Enter your comment here...>)
PT El

Cursor Positioned on the Body of an Element

If the cursor is positioned on the body of an element (box, input, output, jump, label, return,
comment, connection mark), these will be displayed as red-colored and can be moved by moving
the mouse.

EI00000000067 06/2017 309

Continuous Function Chart (CFC) Editor

Possible cursor positions and example of a selected body:

inst1 5
N QF
PT ETH

b

| comment zyz

Cursor Positioned on the Body on Input or Output Connection of an Element

If the cursor is positioned on an input or output connection of an element, a red filled square will

indicate that position (point of connection). It can be negated or set/reset.

Possible cursor positions (gray shadows) and examples of selected output and input positions (red

squares):

TON =
inst1 r?—. inst1
TON “—i TON

IN QF
PT ETH

PT

ET

310

EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

CFC Elements / ToolBox

Overview

The graphical elements available for programming in the CFC editor (see page 307)window are
provided by a toolbox. Open the toolbox in a view window by executing the command ToolBox in

the View menu.

ToolBox v 3
[=] |CFC

R Pointer

I Control Point

= Input

= Output

4F Box

= Jump

= Label

< Return

41 Composer

Ik Selector

= Comment

== Connection Mark - Source

«= Connection Mark - Sink

2 & Input Pin

= Output Pin

Select the desired element in the toolbox and insert (see page 377)it in the editor window via drag
and drop.

Besides the programming elements, there is an entry k Pointer , at the top of the toolbox list. As
long as this entry is selected, the cursor has the shape of an arrow and you can select elements in

the editor window for positioning and editing.

CFC Elements

Name

Symbol Description

page

The number of the page is given automatically according to its
. position. You can enter the name (Over vi ewin this example) in
Overview the orange field at the top of the page.

311

EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

Name

Symbol

Description

control point

A control point is needed to fix a manually modified connection
line routing. This helps to prevent the modification from being
reverted by the command Route all Connections. By 2 control
points you can mark a definite segment of a line for which you
want to modify the routing.

input

27?7

output

?7?

You can select the text offered by ??? and replace it by a variable
or constant. The input assistance serves to select a valid
identifier.

box

-~
"
-

You can use a box to represent operators, functions, function
blocks, and programs. You can select the text offered by ??? and
replace it by an operator, function, function block, or program
name. The input assistance serves to select one of the available
objects.

If you insert a function block, another ??? will be displayed above
the box. Replace the question marks by the name of the function
block instance.

If you replace an existing box by another (by modifying the
entered name) and the new one has a different minimum or
maximum number of input or output pins, the pins will be adapted
correspondingly. If pins are to be removed, the lowest one will be
removed first.

jump

177

Use the jump element to indicate at which position the execution
of the program should continue. This position is defined by a label
(see below). Therefore, replace the text offered by ??? by the
label name.

label

Y

A label marks the position to which the program can jump (see the
element jump).

In online mode, a return label for marking the end of POU is
automatically inserted.

return

—<|RETURN [

In online mode, a return element is automatically inserted in the
first column and after the last element in the editor. In stepping, it
is automatically jumped to before execution leaves the POU.

composer

Use a composer to handle an input of a box which is of type of a
structure. The composer will display the structure components
and thus make them accessible in the CFC for the programmer.
For this purpose name the composer like the concerned structure
(by replacing ??? by the name) and connect it to the box instead
of using an input element.

312

EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

Name

Symbol

Description

selector

—7??

A selector in contrast to the composer is used to handle an output
of a box which is a type of structure. The selector will display the
structure components and thus make them accessible in the CFC
for the programmer. For this purpose, name the selector like the
concerned structure (replace ??7? by the name) and connect it to
the box instead of using an output element.

comment

[<Enferyour comment hese...>

Use this element to add any comments to the chart. Select the
placeholder text and replace it with any desired text. To obtain a
new line within the comment, press CTRL + ENTER.

connection
mark —
source
connection
mark — sink

1 B

You can use connection marks instead of a connection line

(see page 318) between elements. This can help to clear
complex charts.

For a valid connection, assign a connection mark — source
element at the output of an element and assign a connection mark
- sink (see below) at the input of another element. Assign the
same name to both marks (no case-sensitivity).

Naming:

The first connection mark — source element inserted in a CFC by
default is named C- 1 and can be modified manually. In its
counterpart connection mark — sink, replace the ??? by the same
name string as used in the source mark.The editor will verify that
the names of the marks are unique. If the name of a source mark
is changed, the name of the connected sink mark will
automatically be renamed as well. However, if a sink mark is
renamed, the source mark will keep the old name. This allows you
to reconfigure connections. Likewise, removing a connection
mark does not remove its counterpart.

To use a connection mark in the chart, drag it from the toolbox to
the editor window and then connect its pin with the output or input
pin of the respective element. Alternatively you can convert an
existing normal connection line by using the command
Connection Mark. This command allows you to change
connection marks back to normal connection lines as well.

For figures showing some examples of connection marks, refer to
the chapter Connection Mark.

input pin

i

i2

[]

Depending on the box type, you can add an additional input. For
this purpose, select the box element in the CFC network and draw
the input pin element on the box.

output pin

Depending on the box type, you can add an additional output. For
this purpose, select the box element in the CFC network and draw
the output pin element on the box.

EI00000000067 06/2017

313

Continuous Function Chart (CFC) Editor

Example of a Composer

A CFC program cf c_pr og handles an instance of function block f ubl 01, which has an input
variable st r uvar of type structure. Use the composer element to access the structure
components.

Structure definition st rul :

TYPE strul :
STRUCT
ivar: | NT;
strvar: STRING =" hal |l o' ;
END_STRUCT
END_TYPE

Declaration and implementation of function block f ubl o1:
FUNCTI ON_BLOCK f ubl o1

VAR_| NPUT
struvar: STRUL;
END VAR
VAR _OUTPUT
fbout _i: I NT;
fbout _str: STRI NG
END_VAR
VAR
fbvar: STRING =' worl d' ;
END VAR
fbout i:=struvar.ivar+2;

fbout _str:=CONCAT (struvar.strvar, fbvar);

Declaration and implementation of program cf c_pr og:

PROGRAM cf c_prog
VAR
intvar: |NT;
stringvar: STRI NG
fbinst: fublol;

ergl: | NT,;
erg2: STRING
END_VAR

314 EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

Composer element

fonst
fublof

mlval twa strul shruvas foout_i egl
strngval shrvar foout_str ec&
L 2}
1 composer

2 function block with input variable st r uvar of type structure st rul

|1

Example of a Selector

A CFC program cf c_pr og handles an instance of function block f ubl 02, which has an output
variable f bout of type structure st r ul. Use the selector element to access the structure
components.

Structure definition st rul:

TYPE strul :
STRUCT
i var: | NT;
strvar: STRING =" hal |l o' ;
END_STRUCT
END_TYPE

Declaration and implementation of function block f ubl o01:

FUNCTI ON_BLOCK f ubl 02
VAR | NPUT CONSTANT
f bi n1: | NT;
f bi n2: DNORD: =24354333;
fbi n3: STRING =" hal | o' ;
END_VAR
VAR _| NPUT
fbin : | NT;
END_ VAR
VAR _OUTPUT
fbout : struil;
f bout 2: DWORD;

END_VAR
VAR

f bvar : | NT;

f bvar 2: STRI NG,
END_VAR

EI00000000067 06/2017 315

Continuous Function Chart (CFC) Editor

Declaration and implementation of program cf c_pr og:

VAR

1
2

intvar: | NT;

stringvar: STRI NG
fbinst: fublol;

ergl: | NT,;
erg2: STRI NG

f bi nst2: fubl 02;
END VAR

The illustration shows a selector element where the unused pins have been removed by executing
the command Remove Unused Pins.

fonst2

fublo2
foout

o

function block with output variable f bout of type structure st rul

selector

stiul

vat
shivar

ergl

ctg2

7]

316

EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

Working in the CFC Editor

Overview

The elements available for programming in the CFC editor are provided in the ToolBox
(see page 3177)which by default is available in a window as soon as the CFC editor is opened.

The Tools -~ Options -~ CFC editor defines general settings for working within the editor.

Inserting

To insert an element, select it in the ToolBox (see page 377) by a mouse-click, keep the mouse-
button pressed and drag the element to the desired position in the editor window. During dragging,
the cursor will be displayed as an arrow plus a rectangle and a plus-sign. When you release the

mouse-button, the element will be inserted.

Selecting

To select an inserted element for further actions such as editing or rearranging, click an element
body to select the element. It will be displayed by default as red-shaded. By additionally pressing
the SHIFT key, you can click and select further elements. You can also press the left mouse-button
and draw a dotted rectangle around all elements which you want to select. As soon as you release
the button the selection will be indicated. By command Select all , all elements are selected at
once.

By using the arrow keys you can shift the selection mark to the next possible cursor position. The
sequence depends on the execution order or the elements, which is indicated by element numbers
(see page 319).

When an input pin is selected and you press CTRL + LEFT ARROW, the corresponding output will

be selected. When an output pin is selected and you press CTRL + LEFT ARROW, the
corresponding outputs will be selected.

Replacing Boxes

To replace an existing box element, replace the currently inserted identifier by that of the desired
new element. The number of input and output pins will be adapted if necessary due to the definition
of the POUs and thus some existing assignments could be removed.

Moving

To move an element, select the element by clicking the element body (see possible cursor
positions (see page 309)) and drag it, while keeping the mouse-button pressed, to the desired
position. Then release the mouse-button to place the element. You also can use the Cut and Paste
commands for this purpose.

EI00000000067 06/2017 317

Continuous Function Chart (CFC) Editor

Connecting

You can connect the input and output pins of 2 elements by a connection line or via connection
marks.

Connection line: You can either select a valid point of connection that is an input or output pin of
an element (refer to Cursor Positions in CFC (see page 309)), and then draw a line to another point
of connection with the mouse. Or you can select 2 points of connection and execute the command
Select connected pins. A selected possible point of connection is indicated by a red filled square.
When you draw a line from such a point to the target element, you can identify the possible target
point of connection. When you then position the cursor over a valid connection point, an arrow

symbol is added to the cursor when moving over that point, indicating the possible connection.

The following figure provides an example: After a mouse-click on the input pin of the var 1 element,
the red rectangle is displayed showing that this is a selected connection point. By keeping the

mouse button pressed, move the cursor to the output pin of the ADD box until the cursor symbol
appears as shown in the figure. Now release the mouse button to establish the connection line.

ADD - ;
-L'_——i var '—
)

The shortest possible connection will be created taking into account the other elements and
connections. If the route of connection lines overlaps other connection lines, they are colored light-
gray.

Connection marks: you could as well use connection marks instead of connection lines in order to
simplify complex charts. Refer to the description of connection marks (see page 377).

Copying
To copy an element, select it and use the Copy and Paste commands.

Editing
After you have inserted an element, by default the text part is represented by ???. To replace this

by the desired text (POU name, label name, instance name, comment, and so on), click the text to
obtain an edit field. Also the button ... will be available to open the Input Assistant.

Deleting

You can delete a selected element or connection line by executing the command Delete, which is
available in the context menu or press the DEL key.

Opening a Function Block

If a function block is added to the editor, you can open this block with a double-click. Alternatively,
use the command Browse - Go To Definition from the context menu.

318 EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

Execution Order, Element Numbers

The sequence in which the elements in a CFC network are executed in online mode is indicated
by numbers in the upper right corner of the box, output, jump, return, and label elements. The
processing starts at the element with the lowest number, which is 0.

You can modify the execution order by commands which are available in the submenu Execution
Order of the CFC menu.

When adding an element, the number will automatically be given according to the topological
sequence (from left to right and from top to bottom). The new element receives the number of its
topological successor if the sequence has already been changed, and all higher numbers are
increased by 1.

Consider that the number of an element remains constant when it is moved.

Consider that the sequence influences the result and must be changed in certain cases.

L—rﬁrr@ TOF
_H [T#s }—

Changing Size of the Working Sheet

In order to get more space around an existing CFC chart in the editor window, you can change the
size of the working area (working sheet). Do this by selecting and dragging all elements with the
mouse or use the cut-and-paste commands (refer to Moving (see page 317))

Alternatively, you can use a special dimension settings dialog box. This may save time in the case
of large charts. Refer to the description of the Edit Working Sheet dialog box (see SoMachine,
Menu Commands, Online Help). In case of page-oriented CFC, you can use the Edit Page Size
command (see SoMachine, Menu Commands, Online Help).

EI00000000067 06/2017 319

Continuous Function Chart (CFC) Editor

CFC Editor in Online Mode

Overview

In online mode, the CFC editor provides views for monitoring. The views for writing and forcing the
variables and expressions on the controller are described in separate chapters. The debugging
functionality (breakpoints, stepping, and so on) is available as described below.

e Forinformation on how to open objects in online mode refer to the description of the user
interface in online mode (see page 50).

e The editor window of a CFC object also includes the declaration editor in the upper part. Refer
to the description of the declaration editor in online mode (see page 350).

Monitoring

The actual values are displayed in small monitoring windows behind each variable (inline
monitoring).

Online view of a program object PLC_PRG:

[£] PLC_PRG | [prog 2 [g] prog2 | (5] 1 |

PLC.Application.prog 2

_ Expression _ T_y_pe Value __Prepared value
®i1 INT 23
® i2 INT 24
® i3 INT 25
® divvar INT 2
® res INT 36
® fbinst b1
® inl INT
® res2 INT 37
® start BOOL
® ImpVar_8 INT 72
® ImpVar 42 INT 36
—— — @

. 23 2
7 T e
i 55 divvar

i3

fhinst
- T E— ;
res = fbi1 fbout1 res2

[
=

320 EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

Breakpoint Positions in CFC Editor

The possible breakpoint positions basically are those positions in a POU at which values of

variables can change or at which the program flow branches out or another POU is called. See
possible positions in the following image.

Breakpoint positions in CFC editor:

il =
2

i3 = [divvar g:'_

fbinst 3
fb1
e 1 i thoutt |

NOTE: A breakpoint will be set automatically in all methods which may be called. If an interface-
managed method is called, breakpoints will be set in all methods of function blocks implementing
that interface and in all derivative function blocks subscribing the method. If a method is called via
a pointer on a function block, breakpoints will be set in the method of the function block and in all
derivative function blocks which are subscribing to the method.

EI00000000067 06/2017 321

Continuous Function Chart (CFC) Editor

CFC Editor Page-Oriented

Overview

In addition to the CFC standard editor, SoMachine provides the CFC editor pagination. Besides
the tools (see page 377)and commands of the standard CFC editor, this editor allows you to
arrange the elements on any number of different pages.

NOTE: You cannot convert POUs created in the language CFC page-oriented to normal CFC and
vice versa. You can copy elements between these 2 editors with the copy and paste commands
(via clipboard) or the drag and drop function.

CFC pagination

1 Page1 = - %
D Page2 :) Z
> Page3 ?_b_ajrg J IZ
4 Page4) _/
5 Pages ”{—_"—.—__Elﬁ_g) _-—Z
7 Page7 £ /
7 pag %
& Pages = /
O Page? B o j Z
10 rPage10 - g — : Z
7777722222277/

To change the size of the page execute the command Edit Page Size.

322 EI00000000067 06/2017

Continuous Function Chart (CFC) Editor

Connections Between 2 Pages

Connections between 2 pages are realized with the elements connection mark — source and
connection mark — sink (refer to the description of connection marks). You can place the
connection mark — source by drag and drop to the right margin - the connection mark — sink to the
left margin. If you draw a connection line from an input or output of an element to the margin, the
connection mark is placed automatically.

Insertion of connection marks

Page 1 Dverview

Pagez | BT @:L_‘
[-
; o

Page 3

Page 4 207

M coT|

Page 5 M
% Di&Time]

n &

Execution Order

The execution order of the pages is from top to the bottom. Within a page, the order follows the
rules of the standard CFC editor (refer to further information of execution order (see page 379)).
You can change the execution order of elements only within the associated page. You cannot
change the execution order of elements on different pages.

EI00000000067 06/2017 323

Continuous Function Chart (CFC) Editor

324 EI00000000067 06/2017

Chapter 12
Sequential Function Chart (SFC) Editor

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
SFC Editor 326
SFC - Sequential Function Chart Language 327
Cursor Positions in SFC 328
Working in the SFC Editor 329
SFC Element Properties 331
SFC Elements / ToolBox 333
Qualifier for Actions in SFC 344
Implicit Variables - SFC Flags 345
Sequence of Processing in SFC 350
SFC Editor in Online Mode 352

EI00000000067 06/2017 325

Sequential Function chart (SFC) Editor

SFC Editor

Overview

The SFC editor is available for programming objects in the IEC 61131-3 programming language
SFC - Sequential Function Chart (see page 327). Choose the language when you add a new POU
object to the project.

The SFC editor is a graphical editor. Perform general settings concerning behavior and display in
the Options - SFC editor dialog box.

The SFC editor is available in the lower part of the window which opens when you edit an SFC
POU object. This window also includes the Declaration Editor (see page 376)in the upper part.

SFC editor

"y Bspdt.project* - CoDeSys

SFC | Visualization ~ Build Onlne Tools ~ Window Help
B3 Initstep | |
| (RSt aplieh /18] Atternative1_Action [AS_EXAMPLE] [¥] AS_EXAMPLE 4 b X
F4 Insert step-transition after 1 PROGRAM AS_EXAMPLE]

5 2 var |

3 SFCError:BOOL;
4 SFCQuitError:BOOL;
$8 |nsert branch 5 SFCErrorStep:STRING(20) ;
S . 6 Starte As : BOOL; v/
#}‘ Insert branch right ; - S —
)
= Insert action association A
= Insert action association after Init —| s I CopyError
Lot Insertjump
lod Insert jump after
\J:l Starte_As
Bt Insert macro
|

@]} Insert macro after
B Step8 —| S I Test | Parallel2

;OFind Jl:l Testx é’:l Testy
Parallell Step9 _| R

E|:|TRUE - @:‘

326 EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Working with the SFC Editor

The elements (see page 333) used in an SFC diagram are available in the SFC menu. The menu
is available as soon as the SFC editor is active. Arrange them in a sequence or in parallel
sequences of steps which are connected by transitions. For further information, refer to Working in
the SFC Editor (see page 329).

You can edit the properties of steps in a separate properties (see page 337) window. Among
others, you can define the minimum and maximum time of activity for each step.

You can access implicit variables (see page 345) for controlling the processing of an SFC (for
example, step status, timeout analyzation, reset).

SFC - Sequential Function Chart Language

Overview

The Sequential Function Chart (SFC) is a graphically oriented language which describes the
chronological order of particular actions within a program. These actions are available as separate
programming objects, written in any available programming language. In SFC, they are assigned
to step elements and the sequence of processing is controlled by transition elements. For a
detailed description on how the steps will be processed in online mode, refer to Sequence of
Processing in SFC (see page 350).

For information on how to use the SFC editor in SoMachine, refer to the description of the SFC
Edlitor (see page 326).

Example
Example for a sequence of steps in an SFC module:

Init —{ 5] CopyError I
J: Starte_As
|
Steps |5 |Test | | rararzeiz
:}:Testx :}:Testy
Parallell Stepd R |Test |

J::TRUE

I Y o~ LIPS A 1

EI00000000067 06/2017 327

Sequential Function chart (SFC) Editor

Cursor Positions in SFC

Overview

Possible cursor positions in an SFC diagram in the SFC editor (see page 326) are indicated by a
gray shadow when moving with the cursor over the elements.

Cursor Positions in Texts

There are 2 categories of cursor positions: texts and element bodies. See the possible positions
indicated by a gray shaded area as shown in the following illustrations:

Possible cursor positions in texts:
|

stepl B (=1
|
step name transition name
Branch0 H N | act32 l
t4
branch name action qualifier
—|—| N |act32 |
IDStepl
jump target action name

When you click a text cursor position, the string will become editable.

Select action name for editing:

—| N | actll I

Cursor Positions in Element Bodies
Possible cursor positions in element bodies:

|
stapi - —| N | actl |

action

step I

t4
transition

Macro Count

macro T

328 EI00000000067 06/2017

Sequential Function chart (SFC) Editor

When you click a shadowed area, the element is selected. It gets a dotted frame and is displayed
as red-shaded (for multiple selection, refer to Working in the SFC Edifor (see page 329)).

Selected step element

Init

tl

N actl I
stepl

Working in the SFC Editor

Overview

By default, a new SFC POU contains an initial step and a subsequent transition. This chapter
provides information on how to add further elements, and how to arrange and edit the elements.

Possible Cursor Positions
For further information, refer to the chapter Cursor Positions in SFC (see page 325).

Navigating
Use the arrow keys to jump to the next or previous element in the chart.

Inserting Elements

To insert the particular SFC elements (see page 333), execute the respective commands from the
SFC menu. For further information, refer to the description of the SFC editor commands

(see SoMachine, Menu Commands, Online Help). Double-click an already inserted step,
transition, or action element, which does not yet reference a programming object, to open a dialog
box for assigning one.

Selecting Elements

Select an element or text field by clicking a possible cursor position. You can also give the selection
to an adjacent element by using the arrow keys. The element will change color to red. For example,
see the chapter Cursor Positions in SFC (see page 328).

NOTE: In contrast to previous versions of SoMachine, you can select and thus also move (cut,
copy, paste) or delete steps and transitions separately.

EI00000000067 06/2017 329

Sequential Function chart (SFC) Editor

For multiple selection, the following possibilities are available:

o Keep the SHIFT key pressed and then click the particular elements to be selected.

e Press the left mouse-key and draw a rectangle (dotted line) around the elements to be selected.
e Execute the command Select All, by default from the Edit menu.

Editing Texts

Click a text cursor position to open the edit field, where you can edit the text. If a text area has been
selected via the arrow keys, open the edit field explicitly by using the SPACE bar.

Editing Associated Actions

Double-click a step (entry, active, or exit) or transition action association to open the associated
action in the corresponding editor. You can, for example, double-click the transition element or the
triangle indicating an exit action in a step element.

Cutting, Copying, Pasting Elements

Select the elements and execute the command Cut, Copy, or Paste (from the Edit menu) or use
the corresponding keys.

NOTE:

e When you paste one or several cut or copied elements, the content of the clipboard will be
inserted before the currently selected position. If nothing is selected, the elements will be
appended at the end of the currently loaded chart.

e |f you paste a branch while the currently selected element is also a branch, the pasted branch
elements will be inserted to the left of the existing elements.

e Ifyou paste an action (list) at a currently selected step, the actions will be added at the beginning
of the action list of the step or an action list for the step will be created.

e Incompatible elements when cutting/copying:

If you select an associated action (list) and additionally an element which is not the step to which
the action (list) belongs, a message box will display: The current selection contains incompatible
elements. No data will be filed to the clipboard. The selection will not be stored and you cannot
paste or copy it somewhere else.

e Incompatible elements when pasting:

If you try to paste an action (list) while the currently selected element is not a step or another
association, a message box will display: The current clipboard content cannot be pasted at the
current selection. If you try to paste an element like a step, branch, or transition when currently
an associated action (list) is selected, the same message box will display.

330 EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Deleting Elements

Select the elements and execute the command Delete or press the DEL key.

Consider the following:

e Deleting a step also deletes the associated action list.

e Deleting the initial step automatically sets the following step to be the initial one. This option
Initial step will be activated in the properties of this step.

e Deleting the horizontal line preceding a branched area will delete all branches.

e Deleting all particular elements of a branch will delete the branch.

SFC Element Properties

Overview

You can view and edit the properties of an SFC element in the Element Properties dialog box.
Open this dialog box via the command Element Properties, which is part of the View menu.

It depends on the currently selected element which properties are displayed. The properties are
grouped. You can open and close the particular group sections by using the plus or minus signs.

You can configure whether the particular types of properties should be displayed next to an
element in the SFC chart from the View tab of the SFC editor options.

Common Properties

Property Description

Name Element name, by default <element><running number> Examples: step name Step0, Step1,
branch name branch0 and so on.

Comment Element comment, text stringExample: Reset the counter.
Press CTRL + ENTER to insert line breaks.

Symbol For each SFC element implicitly a flag is created, named like the element.

Here you can specify whether this flag variable should be exported to the symbol configuration
and how the symbol then should be accessible in the controller.

Double-click the value field, or select the value field and press the SPACE key in order to open
a selection list from which you can choose one of the following access options:

None: The symbol will be exported to the symbol configuration, but it will not be accessible in the
controller.

Read: The symbol will be exported to the symbol configuration and it will be readable in the
controller.

Write: The symbol will be exported to the symbol configuration and it will be written in the
controller.

Read/Write: Combination of read and write.

By default,this field is left empty. That is that no symbol is exported to the symbol configuration.

EI00000000067 06/2017

331

Sequential Function chart (SFC) Editor

Specific Properties
Specific Property Description
Initial step This option is activated in the properties of the current initial step (init step)
(see page 333). By default, it is activated for the first step in an SFC and deactivated
for other steps. If you activate this option for another step, you must deactivate it in the
previous init step. Otherwise, a compiler error will be generated.
Times: Defines the minimum and maximum processing times for the step.

NOTE: Time outs in steps are indicate by the implicit variable (see page 345)
SFCError flag.

Minimal active

Minimum length of time the processing of this step should take. Permissible values:
time according to IEC syntax (for example, t #8s) or TIME variable; default: t #0s.

Maximal active

Maximum length of time the processing of this step should take. Permissible values:
time according to IEC syntax (for example, t #8s) or TIME variable; default: t #0s

Actions:

Defines the actions (see page 336)to be performed when the step is active. Refer to
the description of the Sequence of Processing in SFC (see page 350) for details.

Step entry This action will be executed after the step has become active.

Step active This action will be executed when the step is active and possible entry actions have
already been processed.

Step exit This action will be executed in the subsequent cycle after a step has been deactivated

(exit action).

NOTE: Use the appropriate implicit variables to determine the status of actions and time outs via
SFC flags (see page 345).

332

EI00000000067 06/2017

Sequential Function chart (SFC) Editor

SFC Elements / ToolBox

Overview

You can insert the graphic elements usable for programming in the SFC editor window by
executing the commands from the SFC menu.

For information on working in the editor, refer to the description in the chapter Working in the SFC
Edifor (see page 329)

The following elements are available and are described in this chapter:
e step (see page 333)

e transition (see page 333)

e action (see page 336)

e branch (alternative) (see page 340)

e branch (parallel) (see page 340)

® jump (see page 342)

® macro (see page 342)

Step / Transition

To insert a single step or a single transition, execute the command Step or Transition from the
ToolBox. Steps and transitions can also be inserted in combination, via command Insert step-

transition (¥ 1) or Insert step-transition after (¥+) from the toolbar.

A step is represented by a box primarily containing an automatically generated step name. It is
connected to the preceding and subsequent transition by a line. The box frame of the first step
within an SFC, the initial step, is double-lined.

The transition is represented by a small rectangle. After inserting it has a default name, Tr ans<n>,
whereby n is a running number.

Example for step and subsequent transition:

Example for initial step and subsequent transition:

Init

4:'1'RUE

You can edit the step and transition names inline.

EI00000000067 06/2017 333

Sequential Function chart (SFC) Editor

Step names must be unique in the scope of the parent POU. Consider this especially when using
actions programmed in SFC. Otherwise an error will be detected during the build process.

You can transform each step to an initial step by executing the command Init step or by activating
the respective step property. An initial step will be executed first when the IL-POU is called.

Each step is defined by the step properties (see page 337).

After you have inserted a step, associate the actions to be performed when the step is active
(processed); see below for further information on actions (see page 336).

Recommendations on Transitions

A transition has to provide the condition on which the subsequent step shall become active as soon
as the condition value is TRUE. Therefore, a transition condition must have the value TRUE or
FALSE.

A transition condition can be defined in the following 2 ways:

Type of Definition Type of Condition Description
direct inline Replace the default transition name by one of the following
elements:

® boolean variable

® boolean address

® boolean constant

e instruction having a boolean result (example: (i<100)
AND b).

You cannot specify programs, function blocks, or
assignments here.

using a separate multi-use Replace the default transition name by the name of a
transition or property (=4 Lj.P'
object transition (=") or property object (=) available in the

project. (This allows multiple use of transitions; see for
example condi t i on_xy in the figures below.)

The object like an inline transition can contain the following
elements:

® boolean variable

® address

® constant

® instruction

o multiple statements with arbitrary code

NOTE: If a transition produces multiple statements, assign the desired expression to a transition
variable.

NOTE: Transitions which consist of a transition or a property object are indicated by a small triangle
in the upper right corner of the rectangle.

334 EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Transition object (multiple use transition):

B3 sfet
=]] Device (...)

=&} PLC Logic
(=&} Application
m Library Manager
&-[£] sFc_Pou (PRO)
. E‘Tcondition_xy
--|E] PLC_PRG (PRG)
= @ Task Configuration

& MainTask

Examples of transitions:

Init

bVarl AND bVarZ

count

N actl

tcondition_xy
Init k

a

2
|} SFC_POU.condition_xy | D

condition_xy:=(iy=100) AND bVar;

1 Transition conditions entered directly
2 Transition condi t i on_xy programmed in ST

EI00000000067 06/2017

335

Sequential Function chart (SFC) Editor

Multiple use conditions (transitions or properties) are indicated by a triangle:

Init = [8] pou (PrG)
= 8 Prop_A
(5 Get
[5p set
TRUE |} condition_xy
Step2
@condition_xy
Stepl

@EP: op_A

In contrast to previous versions of SoMachine, a transition call is handled like a method call. It will
be entered according to the following syntax:

<transition name>:=<transition condition>;
Example: transl: = (a=100);

or just

<transition condition>;

Example: a=100;

See also an example (condi ti on_xy) in the figure Examples of transitions.

=
Action =R

An action can contain a series of instructions written in one of the valid programming languages. It
is assigned to a step and, in online mode, it will be processed according to the defined sequence
of processing (see page 350) .

Each action to be used in SFC steps must be available as a valid POU within the SFC POU or the

=
project (=M).

336 EI00000000067 06/2017

Sequential Function chart (SFC) Editor

POUS
I ¥gsotty v 2ls

= prt

Library Manager

[£] sFcPou (PRG)
EA act1
[Z2 ac2

count

t1

[E] PLc_PRG (PRO)

=)

A

TN
Il

Step names must be unique in the scope of the parent POU. An action may not contain a step
having the same name as the step to which it is assigned to. Otherwise, an error will be detected
during the build process.

Example of an action written in ST

|g] SFCPOL |23 count [SFCPOU]
l| iCount,:=iC0unt+l;|

The IEC conforming and the IEC extending step actions are described in the following paragraphs.

IEC Conforming Step Action (IEC Action)

This is an action according to the IEC61131-3 standard which will be processed according to its
qualifier (see page 344)when the step becomes active, and then a second time when it becomes
deactivated. In case of assigning multiple actions to a step, the action list will be executed from top
to bottom.

e Different qualifiers can be used for IEC step actions in contrast to a normal step action.

e A further difference to the normal step actions is that each IEC step action is provided with a
control flag. This permits that, even if the action is called also by another step, the action is
executed always only once at a time. This is not the case with the normal step actions.

e An |IEC step action is represented by a bipartite box connected to the right of a step via a
connection line. In the left part, it shows the action qualifier, in the right part the action name.
You can both edit inline.

e |EC step actions are associated to a step via the Insert action association command. You can
associate one or multiple actions with a step. The position of the new action depends on the
current cursor position and the command. The actions have to be available in the project and
be inserted with a unique action name (for example, pl c_pr g. al).

EI00000000067 06/2017 337

Sequential Function chart (SFC) Editor

IEC conforming step action list associated to a step:

Stepil — N actl
= N act2
N count

Each action box in the first column shows the qualifier and in the second the action name.

IEC Extending Step Actions

These are actions extending the IEC standard. They have to be available as objects below the
SFC object. Select unique action names. They are defined in the step properties.

The table lists the IEC extending step actions:

Action Type

Processing

Association

Representation

step entry action
(step activated)

This type of step action will
be processed as soon as
the step has become active
and before the step active
action.

The action is associated to
a step via an entry in the

Step entry field of the step
properties (see page 3317).

It is represented by an Ein
the lower left corner of the
respective step box.

step active action
(step action)

This type of step action will
be processed when the
step has become active
and after a possible step
entry action of this step has
been processed. However,
in contrast to an IEC step
action (see above) it is not
executed again when it is
deactivated and cannot get
assigned qualifiers.

The action is associated to
a step via an entry in the

Step active field of the step
properties (see page 3317).

It is represented by a small
triangle in the upper right
corner of the respective
step box.

step exit action
(step deactivated)

An exit action will be
executed once when the
step becomes deactivated.
However, this execution will
not be done in the same,
but at the beginning of the
subsequent cycle.

The action is associated to
a step via an entry in the
Step exit field of the step
properties (see page 3317).

It is represented by an Xin
the lower right corner of the
respective step box.

338

EI00000000067 06/2017

Sequential Function chart (SFC) Editor

IEC extending step actions

Property Value
[+ Common
(=] Specific
Initial step]
[#] Times
; (=] Actions
"""" Count 1 | Stepactive act_step
| —Stepentry act_entry
| ——Stepexit act_exit

Example: Difference Between IEC Matching / Extending Step Actions

The main difference between step actions and IEC actions with qualifier Nis that the IEC action is

at least executed twice: first time when the step is active and the second time when the step is
deactivated. See the following example.

Init Init
+mm TRUE
as1 as1 8 [Action as1 |
-t‘mm: TRUE
Init Init

Action Act i on_ASl is associated to step AS1 as a step action (left), or as an IEC action with
qualifier N (right). Due to the fact that in both cases 2 transitions are used, it will take 2 controller
cycles each before the initial step is reached again, assuming that a variable i Count er is
incremented in Act i on_AS1. After a reactivation of step | ni t, i Count er in the left example will

have value 1. In the right one however, it will have value 2 because the IEC action - due to the
deactivation of AS1 - has been executed twice.

For further information on qualifiers, refer to the list of available qualifiers (see page 344).

EI00000000067 06/2017 339

Sequential Function chart (SFC) Editor

Branches

A sequential function chart (SFC) can diverge; that is the processing line can be branched into 2 or
several further lines (branches). Parallel branches (see page 340) will be processed parallel
(simultaneously). In the case of alternative branches (see page 340), only one will be processed
depending on the preceding transition condition. Each branching within a chart is preceded by a
horizontal double (parallel) or simple (alternative) line and also terminated by such a line or by a
jump (see page 342).

Parallel Branch @ ?
TR
Bra..
I
Stepl1l Step21
+ t21
Step22

|

I:‘|:Jt‘.3

A parallel branch has to begin and end with a step. Parallel branches can contain alternative
branches or other parallel branches.

The horizontal lines before and after the branched area are double-lines.

Processing in online mode: If the preceding transition (t 2 in the example shown on the left) is
TRUE, the first steps of all parallel branches will become active (St ep11 and St ep21). The

particular branches will be processed in parallel to one another before the subsequent transition
(t 3) will be recognized.

To insert a parallel branch, select a step and execute the command Insert branch right.

You can transform parallel and alternative branches to each other by executing the commands
Parallel or Alternative.

Automatically a branch label is added at the horizontal line preceding the branching which is
named Br anch<n> whereby n is a running number starting with 0. You can specify this label when
defining a jump target (see page 34.2).

340

EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Alternative Branch ? ?

Step3

= t4 r:ll: tdl

Step32

P ea2

Step4

|

The horizontal lines before and after the branched area are simple lines.

An alternative branch has to begin and end with a transition. Alternative branches can contain
parallel branches and other alternative branches.

If the step which precedes the alternative beginning line is active, then the first transition of each
alternative branch will be evaluated from left to right. The first transition from the left whose
transition condition has value TRUE, will be opened, and the following steps will be activated.

To insert alternative branches, select a transition and execute the command Insert branch right.

You can transform parallel and alternative branches from one another by executing the commands
Parallel or Alternative.

EI00000000067 06/2017 341

Sequential Function chart (SFC) Editor

Jump o lod

N | actl |
’ stepl || I
c=atd + t4l

Step32

A jump is represented by a vertical connection line plus a horizontal arrow and the name of the
jump target. It defines the next step to be processed as soon as the preceding transition is TRUE.
You can use jumps to avoid that processing lines cross or lead upward.

Besides the default jump at the end of the chart, a jump may only be used at the end of a branch.
To insert a jump, select the last transition of the branch and execute the command Insert jump.

The target of the jump is specified by the associated text string which can be edited. It can be a
step name or the label of a parallel branch.

Macro Bt B
Main SFC editor view

Init

Macrol

Step3

342 EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Macro editor view for Macr ol

Stepl

P2

Step2
s

A macro is represented by a bold-framed box containing the macro name. It includes a part of the
SFC chart, which thus is not directly visible in the main editor view. The process flow is not
influenced by using macros; it is just a way to hide some parts of the program, for example, in order
to simplify the display. To insert a macro box, execute the command Insert macro (after). The
macro name can be edited.

To open the macro editor, double-click the macro box or execute the command Zoom into macro.
You can edit here just as in the main editor view and enter the desired section of the SFC chart.
To get out, execute the command Zoom out of macro.

The title line of the macro editor shows the path of the macro within the current SFC example:

Macrol -> Macro2
Bra.. '=

[I

EI00000000067 06/2017 343

Sequential Function chart (SFC) Editor

Qualifier for Actions in SFC

Overview

Available Qualifiers

In order to configure in which way the actions (see page 336) should be associated to the
IEC steps, some qualifiers are available, which are to be inserted in the qualifier field of an action

element.

Qualifier

Long Form

Description

N

non-stored

The action is active as long as the step is active.

RO

overriding reset

The action becomes deactivated.

SO

set (stored)

The action will be started when the step becomes active
and will be continued after the step is deactivated until
the action is reset.

time limited

The action will be started when the step becomes active.
It will continue until the step becomes inactive or a set
time has passed.

time delayed

A delay timer will be started when the step becomes
active. If the step is still active after the time delay, the
action will start and continue until it is deactivated.

NOTE: When two consecutive steps have a D (time
delayed) action for setting the same boolean variable,
this variable will not be reset during the transition from
one step to the other. In order to reset the variable, insert
an intermediate step between the two steps.

pulse

The action will be started when the step becomes
active/deactive and will be executed once.

SD

stored and time delayed

The action will be started after the set time delay and it
will continue until it is reset.

DS

delayed and stored

If the step is still active after the specified time delay, the
action will start and it will continue until it is reset.

SL

stored and time limited

The action will be started when the step becomes active
and it will continue for the specified time or until a reset.

The qualifiers L, D, SD, DS, and SL need a time value in the TIME constant format. Enter it directly
after the qualifier, separated by a blank space, for example L T#10s.

NOTE: When an IEC action has been deactivated, it will be executed one more time. The
implication is that each action will execute at least twice.

344

EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Implicit Variables - SFC Flags

Overview

Each SFC step and IEC action provides implicitly generated variables for watching the status
(see page 345) of steps and |IEC actions during runtime. Also, you can define variables for
watching and controlling the execution of an SFC (timeouts, reset, tip mode). These variables can
also be generated implicitly by the SFC object.

Basically, for each step and each IEC action, an implicit variable is generated. A structure instance,
named for the element, for example, step1 for a step with step name step1. You can define in the
element properties (see page 3317)whether for this flag a symbol definition should be exported to
the symbol configuration and how this symbol should be accessible in the controller.

The data types for those implicit variables are defined in library lecSFC.library. This library will
automatically be included in the project as soon as an SFC object is added.

Step and Action Status and Step Time

Basically, for each step and each IEC action, an implicit structure variable of type SFCSt epType
or SFCAct i onType is created. The structure components (flags) describe the status of a step or
action or the currently processed time of an active step.

The syntax for the implicitly done variable declaration is:
<stepname>: SFCStepType;

or

_<actionname>:SFCActionType;

NOTE: In contrast to previous versions of SoMachine, implicit variables for actions are preceded
by an underscore in V4.0 and later.

The following boolean flags for step or action states are available:

Boolean flags for steps:

Boolean Flag Description
<stepname>.x shows the current activation status
<stepname>._x shows the activation status for the next cycle

If <stepname>.x = TRUE, the step will be executed in the current cycle.

If <stepname>._x = TRUE and <stepname>.x = FALSE, the step will be executed in the following
cycle. This means that <stepname>._x is copied to <stepname>.x at the beginning of a cycle.

Boolean flags for actions:

Boolean Flag Description

_<actionname>.x is TRUE if the action is executed

EI00000000067 06/2017 345

Sequential Function chart (SFC) Editor

Boolean Flag Description

_<actionname>._x is TRUE if the action is active

Symbol generation

In the element properties (see page 337) of a step or an action, you can define if a symbol
definition should be added to a possibly created and downloaded symbol configuration for the step
or action name flag. For this purpose, make an entry for the desired access right in column Symbol
of the element properties view.

A WARNING

UNINTENDED EQUIPMENT OPERATION

If you use the boolean flag <stepname>.x to force a certain status value for a step (for setting a
step active), be aware that this will affect uncontrolled states within the SFC.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Time via TIME variables:

The flag t gives the current time span which has passed since the step had become active. This

is only for steps, no matter whether there is a minimum time configured in the step attributes
(see page 3317) or not (see below: SFCEr r or).

For steps:

<stepname>.t (<stepname>._t not usable for external purposes)
For actions:

The implicit time variables are not used.

Control of SFC Execution (Timeouts, Reset, Tip Mode)

You can use some implicitly available variables, also named SFC flags (see table below) to control
the operation of an SFC. For example, for indicating time overflows or enabling tip mode for
switching transitions.

In order to be able to access these flags you have to declare and activate them. Do this in the SFC
Settings dialog box. This is a subdialog box of the object Properties dialog box.

Manual declaration, as it was needed in SoMachine V3.1, is only necessary to enable write access
from another POU (refer to the paragraph Accessing Flags).

In this case, consider the following:

If you declare the flag globally, you have to deactivate the Declare option in the SFC Settings dialog
box.Otherwise this leads to an implicitly declared local flag, which then would be used instead of
the global one. Keep in mind, that the SFC settings for an SFC POU initially are determined by the
definitions set in the Options — SFC dialog box.

346

EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Consider that a declaration of a flag variable solely done via the SFC Settings dialog box will only
be visible in the online view of the SFC POU.

The following implicit variables (flags) can be used. For this purpose, you have to declare and
activate them in the SFC Settings dialog box.

Variable

Type

Description

SFCI ni t

BOOL

If this variable becomes TRUE, the sequential function chart will
be set back to the Init step (see page 333). All steps and actions
and other SFC flags will be reset (initialization). The initial step
will remain active, but not be executed as long as the variable is
TRUE. Set back SFCI ni t to FALSE in order to get back to
normal processing.

SFCReset

BOOL

This variable behaves similarly to SFCI ni t . Unlike the latter
however, further processing takes place after the initialization of
the initial step. Thus, in this case, a reset to FALSE of the
SFCReset flag could be done in the initial step.

SFCErr or

BOOL

As soon as any timeout occurs at 1 of the steps in the SFC, this
variable will become TRUE. Precondition: SFCEnabl eLi mi t
must be TRUE.

Consider that any further timeout cannot be registered before a
reset of SFCEr r or . SFCEr r or must be defined, if you want to
use the other time-controlling flags (SFCEr r or St ep,

SFCEr r or POU, SFCQui t Error).

SFCEnabl eLi m t

BOOL

You can use this variable for the explicit activation (TRUE) and
deactivation (FALSE) of the time control in steps via SFCEr r or .
This means, that if this variable is declared and activated (SFC
Settings) then it must be set TRUE in order to get SFCEr r or
working. Otherwise, any timeouts of the steps will not be
registered. The usage can be reasonable during start-ups or at
manual operation. If the variable is not defined, SFCEr r or will
work automatically.

Precondition: SFCEr r or must be defined.

SFCError Step

STRING

This variable stores the name of a step at which a timeout was
registered by SFCError. ti meout .
Precondition: SFCEr r or must be defined.

SFCEr r or POU

STRING

This variable stores the name of the SFC POU in which a timeout
has occurred.
Precondition: SFCEr r or must be defined.

SFCQui t Error

BOOL

As long as this variable is TRUE, the execution of the

SFC diagram is stopped, and variable SFCEr r or will be reset.
As soon as the variable has been reset to FALSE, all current time
states in the active steps will be reset.

Precondition: SFCEr r or must be defined.

EI00000000067 06/2017

347

Sequential Function chart (SFC) Editor

Variable Type Description

SFCPause BOOL As long as this variable is TRUE, the execution of the SFC
diagram is stopped.

SFCTr ans BOOL This variable becomes TRUE, as soon as a transition is actuated.

SFCCurr ent St ep STRING This variable stores the name of the currently active step,

independently of the time monitoring. In case of simultaneous
sequences, the name of the outer right step will be registered.

SFCTi pSFCTi pMode

BOOL These variables allow using the inching mode within the current
chart. When this mode has been switched on by

SFCTi pMode=TRUE, you can only skip to the next step by
setting SFCTi p=TRUE (rising edge). As long as SFCTi pMbde is
set to FALSE, it is possible to skip by the transitions.

The following figure provides an example of some SFC detected error flags in online mode of the

editor.

A timeout has been detected in step s1 in SFC object POU by flag SFCEr r or .

" [§] pou

4

MyPlIc.Application.POU

Expression Type Valu Prepared value

® 2111 BOOL

® 1222 BOOL

® SFCError |BOOL TRUE

® SFCErrorPOU STRING ‘POU’

® SFCErrorStep STRING ‘ST

® SFCQyitError jBOOL FALSE

L
TRUE
I
T#2h57m54s995ms

This is Step sl.
Minimal active: t#2s
Maximal active: t#4s

Step active: actl

348

EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Accessing Flags
For enabling access on the flags for the control of SFC execution (timeouts, reset, tip mode),
declare and activate the flag variables as described above (Control of SFC Execution
(see page 346)).
Syntax for accessing from an action or transition within the SFC POU:
<stepname>.<flag>
or
_<actionname>.<flag>
Examples:
status: =stepl. _Xx;
checkerror: =SFCerror;

Syntax for accessing from another POU:

<SFC POU>.<stepname>.<flag>

or

<SFC POU>_<actionname>.<flag>

Examples:

st at us: =SFC pr og. stepl. _x;

checkerror: =SFC_prog. SFCerror;

Consider the following in case of write access from another POU:

e The implicit variable additionally has to be declared explicitly as a VAR_INPUT variable of the
SFC POU

e or it has to be declared globally in a GVL (global variable list).

Example: Local declaration

PROGRAM SFC pr og
VAR_I NPUT

SFCi ni t : BOOL;
END_VAR

Example: Global declaration in a GVL
VAR _GLOBAL
SFCi ni t : BOOL;
END_VAR
Accessing the flag in PLC_PRG

PROGRAM PLC_PRG
VAR
setinit: BOQO;
END_VAR
SFC prog. SFCinit:=setinit; //Wite access to SFCinit in SFC prog

EI00000000067 06/2017 349

Sequential Function chart (SFC) Editor

Sequence of Processing in SFC

Overview

In online mode, the particular action types will be processed according a defined sequence; see
the table below.

Definition of Terms
The following terms are used:

Term Description

active step A step, whose step action is being executed.
In online mode active steps are filled with blue color.

initial step In the first cycle after an SFC POU has been called, the initial step automatically becomes
active and the associated step action (see page 336) is executed.

IEC actions IEC actions are executed at least twice:
® The first time when they became active.
® The second time - in the following cycle - when they have been deactivated.

alternative branches If the step preceding the horizontal start line of alternative branches is active, then the first
transition of each particular branch will be evaluated from left to right. The first transition from
the left whose transition condition has value TRUE will be searched and the respective
branch will be executed that is the subsequent step within this branch will become active.

parallel branches If the double-line at the beginning line of parallel branches is active and the preceding
transition condition has the value TRUE, then in all parallel branches each first step will
become active. The branches now will be processed in parallel to one another. The step
subsequent to the double-line at the end of the branching will become active when all
previous steps are active and the transition condition after the double-line has the value
TRUE.

Processing Order
Processing order of elements in a sequence:

Step Description

1. Reset of the IEC Actions All action control flags of the IEC actions (see page 336) get reset (not,
however, the flags of IEC actions that are called within actions).

2. Step exit actions (step All steps are checked in the order which they assume in the sequence chart (top

deactivated) to bottom and left to right) to determine whether the requirement for execution

of the step exit action is provided.If that is the case, it will be executed. An exit
action will be executed if the step is going to become deactivated

(see page 333). This means if the entry and step actions - if existing - have
been executed during the last cycle, and if the transition for the following step
is TRUE.

350 EI00000000067 06/2017

Sequential Function chart (SFC) Editor

Step

Description

3. Step entry actions(step activated) | All steps are tested in the order which they assume in the sequence to

determine whether the requirement for execution of the step entry action is
provided. If that is the case, it will be executed. An entry action will be executed
if the step-preceding transition condition is TRUE and thus the step has been

activated.
4. Timeout check, step active For non-IEC steps, the corresponding step active action is now executed in the
actions order in which they are positioned in the sequence (top -> down and left ->
right).
5. IEC actions IEC actions (see page 336) that are used in the sequence are executed in

alphabetical order. This is done in 2 passes through the list of actions. In the
first pass, all the IEC actions that are deactivated in the current cycle are
executed. In the second pass, all the IEC actions that are active in the current
cycle are executed.

6. Transition check, activating next | Transitions (see page 333) are evaluated. If the step in the current cycle was

steps

active and the following transition returns TRUE (and if applicable the minimum
active time has already elapsed), then the following step is activated.

NOTE: An action may be executed multiple times in 1 cycle because it is called from more than
one other IEC actions when there are multiple steps active. That is to say, the same IEC action is
used simultaneously in different levels of an SFC, and this could lead to undesired effects.
Example: An SFC could have 2 IEC actions A and B, which are both implemented in SFC, and
which both call IEC action C. Then in IEC actions A and B both can be active in the same cycle
and furthermore, in both actions IEC action C can be active. Then C would be called twice.

A WARNING

UNINTENDED EQUIPMENT OPERATION
Do not call IEC actions from multiple other IEC actions in the same cycle.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Use implicit variables (see page 345)for determining the status of steps and actions or the
execution of the chart.

EI00000000067 06/2017 351

Sequential Function chart (SFC) Editor

SFC Editor in Online Mode

Overview

In online mode, the SFC editor provides views for monitoring (see below) and for writing and
forcing the variables and expressions on the controller. Debugging functionality like for the other
IEC languages (breakpoints, stepping, and so on) is not available in SFC. However, consider the
following hints for debugging SFC:

Monitoring

For information on how to open objects in online mode, refer to the description of the user
interface in online mode (see page 50).

The editor window of an SFC object also includes the declaration editor in the upper part. For
general information, refer to the chapter Declaration Editor in Online Mode (see page 350) . If
you have declared implicit variables (SFC flags) (see page 345) via the SFC Settings dialog
box, they will be added here, but will not be viewed in the offline mode of the declaration editor.
Consider the sequence of processing (see page 350) of the elements of a Sequential Function
Chart.

See the object properties or the SFC editor options and SFC defaults for settings concerning
compilation or online display of the SFC elements and their attributes.

Consider the possible use of flags (see page 345) for watching and controlling the processing
of an SFC.

Active steps are displayed as filled with blue color. The display of step attributes depends on the
set SFC editor options.

Online view of program object SFC_pr og

%] SFC_prog 4> x
MyPIc.Application.SFC_prog

Expression Type Value | Prepared A

® count INT 504
e iExit INT 252
iEntry INT 252
iStepAction INT 252 ~

Init

352

EI00000000067 06/2017

Chapter 13
Structured Text (ST) Editor

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
13.1 Information on the ST Editor 354
13.2 Structured Text ST / Extended Structured Text (ExST) Language 360

EIO0000000067 06/2017

353

Structured Text (ST) Editor

Section 13.1

Information on the ST Editor

What Is in This Section?
This section contains the following topics:

Topic Page
ST Editor 355
ST Editor in Online Mode 356

354

EI00000000067 06/2017

Structured Text (ST) Editor

ST Editor

Overview

The ST editor is used to create programming objects in the IEC programming language Structured
Text (ST) or extended Structured Text which provides some extensions to the IEC 61131-3
standard.

The ST editor is a text editor. Therefore, use the corresponding text editor settings in the Options
and Customize dialog boxes to configure behavior, appearance, and menus. There you can define
the default settings for highlight coloring, line numbers, tabs, indenting, and many other options.

Further Information
To select blocks, press the ALT key and select the desired text area with the mouse.

The editor will be available in the lower part of a window which also includes the declaration editor
(see page 376)in the upper part.

If syntactic errors are detected during editing, the corresponding messages will be displayed in the
Precompile Messages window. This window is updated each time you reset the focus to the editor
window (for example, place your cursor in another window and then back to the editor window).

EI00000000067 06/2017 355

Structured Text (ST) Editor

ST Editor in Online Mode

Overview

In online mode, the structured text editor (ST editor) provides views for monitoring (see page 356),

and for writing, and forcing the variables and expressions on the controller. Debugging

(breakpoints, stepping, and so on) is available. See Breakpoint positions in ST Editor

(see page 358).

e For information on how to open objects in online mode, refer to the description of the user
interface in online mode (see page 50).

e Forinformation on how to enter prepared values for variables in online mode, see Forcing of
variables (see page 357).

e The editor window of an ST object also includes the declaration editor in the upper part. For
information on the declaration editor in online mode, see Declaration Editor in Online Mode
(see page 380).

Monitoring

If the monitoring is not explicitly deactivated in the Options dialog box, small monitoring boxes will
be displayed behind each variable showing the actual value.

Online view of a program object PLC_PRG with monitoring:

| /181 PLC_PRG x|

myDev.Application.PLC_PRG

Expression Type Value Prepared value | Address Comment
ivar [INT 2411 |%amwa
® bVar BOOL | |%ax0.3
= & myStruct TestStruct | Check address defined in “TestStru
nTestt INT |2411 ' [%MWO
nlest2 INT 0 | |%MW2
[+ ® aVar ARRAY [0.3] OF INT | [|%MW5
=] # fhinst 'FB1 [| instance of function block FB1
“# fbin |INT 0
" fout INT [0 [[
& fhuar INT n | =
< |] ¥
1 iVar := iVar WI[-I- 1; (* counter *)
2 bvar IIEH:= TRUE;
3| © myStruct.nTestl[241] := ivar[2411]:
4 aVar[2]:= iv’ar;
5 ergIl:= fbinst.ﬂaoutlIl:

356

EI00000000067 06/2017

Structured Text (ST) Editor

Forcing of Variables

In addition to the possibility to enter a prepared value for a variable within the declaration of any
editor, the ST editor offers double-clicking the monitoring box of a variable within the implemen-
tation part (in online mode). Enter the prepared value in the rising dialog box.

Dialog box Prepare Value

Prepare Value

Expression:

Type: |DINT

I MyPlc.Application.FeaturesTest 1.MyDownCounter |

Current value: |3

What do you want to do?

@ Prepare a new value for the next write or force operation:

izz

O Release the force, without modifying the value.

O Release the force and restore the variable to the value it had
before forcing it.

] l Cancel

You find the name of the variable completed by its path within the Devices Tree (Expression), its
type, and current value.

By activating the corresponding item, you can choose the following options:
preparing a new value which has to be entered in the edit field

removing a prepared value
releasing the variable that is being forced

releasing the variable that is being forced and resetting it to the value it was assigned before

forcing

To carry out the selected action, execute the command Debug — Force values (item Online) or
press the F7 key.

EI00000000067 06/2017

357

Structured Text (ST) Editor

Breakpoint Positions in ST Editor

You can set a breakpoint basically at the positions in a POU where values of variables can change
or where the program flow branches out or another POU is called. In the following descriptions,
{ BP} indicates a possible breakpoint position.

Assignment:

At the beginning of the line. Keep in mind that assignments as expressions (see page 362) define
no further breakpoint positions within a line.

FOR-loop:

1. before the initialization of the counter

2. before the test of the counter

3. before a statement

{BP} FORi := 12 TO {BP} x {BP} BY 1 DO

{BP} [statenentl]

{BP} [statenentn-2]
END_FOR

WHILE-loop:
1. before checking the condition
2. before an instruction

{BP} WHLEi < 12 DO
{BP} [statenentl]

{BP} [statenentn-1]
END_WHI LE

REPEAT-loop:
e before checking the condition

REPEAT
{BP} [statenentl]

{BP} [statenentn-1]

{BP} UNTIL i >= 12
END_REPEAT

Call of a program or a function block:
At the beginning of the line.

{{BP} POU);

358 EI00000000067 06/2017

Structured Text (ST) Editor

At the end of a POU:

When stepping through, this position will also be reached after a RETURN instruction.
Breakpoint display in ST

Breakpoint in Online Mode Disabled Breakpoint Program Stop at Breakpoint
1 1dl({): 1 1ldl({): 1 1ldl{):
2|@ BEG 0):=fbinst| 2|O pro[0 |=fbins' | 2|@ |re 0 J:=fbinst
2 TF hwarkEaieel THR 3 TF hwrarFAISFl THF) 3 TF hwarFaIsF THF}

NOTE: A breakpoint will be set automatically in all methods which may be called. If an interface-
managed method is called, breakpoints will be set in all methods of function blocks implementing
that interface and in all derivative function blocks subscribing the method. If a method is called via
a pointer on a function block, breakpoints will be set in the method of the function block and in all
derivative function blocks which are subscribing to the method.

EI00000000067 06/2017 359

Structured Text (ST) Editor

Section 13.2

Structured Text ST / Extended Structured Text (ExST)

Language

What Is in This Section?
This section contains the following topics:

Topic Page
Structured Text ST / Extended Structured Text ExST 361
Expressions 362
Instructions 364

360

EI00000000067 06/2017

Structured Text (ST) Editor

Structured Text ST / Extended Structured Text ExXST

Overview

Structured Text is a textual high-level programming language, similar to PASCAL or C. The
program code is composed of expressions (see page 362) and instructions (see page 364). In
contrast to IL (Instruction List), you can use numerous constructions for programming loops, thus
allowing the development of complex algorithms.

Example
| F value < 7 THEN
WH LE val ue < 8 DO
val ue: =val ue+1;
END_VHI LE;
END | F;

Extended Structured Text (ExST) is a SoMachine-specific extension to the IEC 61131-3 standard
for Structured Text (ST). Examples: assignment as expression, set/reset operators

EI00000000067 06/2017 361

Structured Text (ST) Editor

Expressions

Overview

An expression is a construction which after its evaluation returns a value. This value is used in

instructions.

Expressions are composed of operators (see page 627), operands (see page 713), and/or
assignments. An operand can be a constant, a variable, a function call, or another expression.

Examples

33 (* Constant *)

ivar (* Variable *)

fct(a, b, c) (* Function call*)

a AND b (* Expression *)

(x*y) I z (* Expression *)

real _var2 := int_var; (* Assignment, see below *)
Order of Operations

The evaluation of an expression is performed by processing the operators according to certain
rules. The operator with the highest order of operation is processed first, then the operator with the
next operating level, and so on, until all operators have been processed.

Below you find a table of the ST operators in the order of their ordinal operating level:

Operation Symbol Operating Level
placed in parentheses (expression) highest order
function call function name (parameterlist) |
exponentiation EXPT
negate - e
building of complements Nor
multiply S

divide [
modulo moD

add +

subtract -

compare V <> <=>=

equal to =

not equal to <>

boolean AND AND

362

EI00000000067 06/2017

Structured Text (ST) Editor

Operation Symbol Operating Level
boolean XOR XOR
boolean OR OR lowest order

Assignment as Expression

As an extension to the IEC 61131-3 standard (ExST), assignments can be used as an expression.

Examples:

int_varl :=int_var2 :=int_var3 + 9; (*int_varlandint_var2 both
equal to the value of i nt _var 3 +9%)

real _varl := real _var2 := int_var; (* correct assignments, real _var 1
and r eal _var 2 will get the value of
int_var *)

int_var :=real _varl :=int_var; (* amessage will be displayed due to
type mismatch r eal -i nt *)

IFb:=(i =1) THEN (*Expression used inside of IF

=0+ 1 condition statement: First b will be

END_I F assigned TRUE or FALSE,
depending on whether i is 1 or not,
then the result value of b will be
evaluated.*)

EI00000000067 06/2017

363

Structured Text (ST) Editor

Instructions

Overview

Instructions describe what to do with the given expressions (see page 362).

The following instructions can be used in ST:

Instruction

Example

assignment (see page 365)

A:=B; CV := CV + 1; C=SINX);

Calling a function block (see page 366) and using the
function block output

CMD_TMR(IN := % X5, PT := 300);
A =CMD_TMR Q

RETURN (see page 366)

RETURN;

| F (see page 366)

D: =B* B;

I F D<0.0 THEN

C. =A;

ELSI F D=0.0 THEN
C. =B;

ELSE

C. =D,

END | F;

CASE (see page 367)

CASE | NT1 OF
1: BOOL1 : =
2: BOOL2 : =
ELSE

BOOL1 : = FALSE;
BOOL2 : = FALSE;
END_CASE;

TRUE;
TRUE,

FOR (see page 368)

J: =101;

FOR |: =1 TO 100 BY 2 DO
IF ARR[I] = 70 THEN

J: =l

"EXIT;

END | F;

END_FOR;

WHI LE (see page 369)

J: =1;

WHI LE J<= 100 AND ARR[J] <> 70 DO
J: =J+2;

END_WVHI LE;

REPEAT (see page 370)

J: =J+2;
UNTIL J= 101 OR ARR[J] = 70
END_REPEAT;

EXI T (see page 371)

EXI T,

CONTI NUE (see page 371)

CONTI NUE;

364

EI00000000067 06/2017

Structured Text (ST) Editor

Instruction Example

JVP (see page 371) |I Ia:b.el 10 |THE|N+1
=
JMP | abel 2;
END_I F
JMP | abel 1;
| abel 2:

empty instruction ;

Assignment Operators
Standard Assignment

On the left side of an assignment, there is an operand (variable, address) to which the value of the
expression on the right side is assigned by the assignment operator : =.

Also refer to the description of the MOVE operator (see page 632) which has the same function.

Example

Varl := Var2 * 10;

After completion of this line, Var 1 has the tenfold value of Var 2.

Set operator S=

The value will be set: if it is once set to TRUE, it will remain TRUE.
Example

a S= b;

a gets the value of b: if once set to TRUE, it will remain TRUE, even if b becomes FALSE again.
Reset operator R=

The value will be reset: if it is once set to FALSE, it will remain FALSE.
Example

a R= b;

a is set to FALSE as soon as b = TRUE.

NOTE: In case of a multiple assignment, set and reset assignments refer to the last member of the
assignment.

Example
a S= b R= funl(parl, par?2)

In this case, b will be the reset output value of f unl. But a does not get the set value of b, but gets
the set output value of f unl.

Consider that an assignment can be used as an expression (see page 362). This is an extension
to the IEC 61131-3 standard.

EI00000000067 06/2017 365

Structured Text (ST) Editor

Calling Function Blocks in ST

A function block (abbreviated by FB) is called in structured text according to the following syntax:
<name of FB instance>(FB input variable:=<value or address>|, <further FB input variable:=<value
or address>|...further FB input variables);

Example

In the following example, a timer function block (TQON) is called with assignments for the parameters
I Nand PT. Then result variable Qis assigned to variable A. The timer function block is instantiated
by TMR: TON; . The result variable, as in IL, is addressed according to syntax <FB instance
name>.<FB variable>:

TMR(IN : = % X5, PT := 300);

A =TMR Q

There is also another syntax available for outputs:

fb(inl: =myvar, outl=>nyvar?2);

RETURN Instruction

You can use the RETURN instruction to leave a POU.

Syntax
RETURN;

Example

| F b=TRUE THEN

RETURN;

END | F;

a: =a+1;

If b is TRUE, instruction a: =a+1; will not be executed. As a result, the POU will be left
immediately.

| F Instruction

With the | F instruction you can test for a condition, and, depending upon this condition, execute
instructions.

Syntax

IF <boolean_expression1> THEN
<IF_instructions>

{ELSIF <boolean_expression2> THEN
<ELSIF_instructions1>

366

EI00000000067 06/2017

Structured Text (ST) Editor

ELSIF <boolean_expression n> THEN
<ELSIF_instructions-1>

ELSE

<ELSE_instructions>}

END_IF;

The segment in brackets {} is optional.

If the <boolean_expression1> returns TRUE, then only the <IF_instructions> are executed and, as
a result, none of the other instructions. Otherwise, the boolean expressions, beginning with
<boolean_expression2>, are evaluated one after the other until 1 of the expressions returns TRUE.
Then only those instructions after this boolean expression and before the next ELSE or ELSIF are
evaluated. If none of the boolean expressions produce TRUE, then only the <ELSE_instructions>
are evaluated.

Example

| F tenp<17

THEN heati ng_on : = TRUE;
ELSE heating_on := FALSE;

END | F;

Here, the heating is turned on when the temperature sinks below 17 degrees. Otherwise, it remains
off.

CASE Instruction

With the CASE instruction, you can combine several conditioned instructions with the same
condition variable in one construct.

Syntax

CASE <Var1> OF

<value1>: <instruction 1>

<value2>: <instruction 2>

<value3, value4, value5>: <instruction 3>

<value6..value10>: <instruction4>

<value n>: <instruction n>
ELSE <ELSE instruction>
END_CASE;

EI00000000067 06/2017 367

Structured Text (ST) Editor

A CASE instruction is processed according to the following model:

e If the variable in <Var 1> has the value <Value |>, then the instruction <Instruction > will be
executed.

e If <Var 1> has none of the indicated values, then the <ELSE Instruction> will be executed.

e |f the same instruction is to be executed for several values of the variables, then you can write
these values one after the other separated by commas and thus condition the common
execution.

e |f the same instruction is to be executed for a value range of a variable, you can write the initial
value and the end value separated by 2 dots. Therefore, you can condition the common

condition.
Example
CASE | NT1 OF
1, 5: BOO.1 : = TRUE;
BOOL3 : = FALSE;

2. BOOL2 : = FALSE;
BOOL3 : = TRUE;
10..20: BOOL1 := TRUE;

BOOL3: = TRUE;

ELSE

BOOL1 : = NOT BOOLZ;

BOOL2 := BOOL1 OR BOOL2;
END_CASE;

FOR Loop

With the FOR loop, you can program repeated processes.
Syntax
INT_Var:INT;

FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <step size>} DO
<instructions>

END_FOR,;

The segment in brackets {} is optional.

The <instructions> are executed as long as the counter <I NT_Var > is not greater than the
<END_VALUE>. This is checked before executing the <instructions> so that the <instructions> are
not executed if <INIT_VALUE> is greater than <END_VALUE>.

When <instructions> are executed, <I NT_Var > is increased by <Step size>. The step size can
have any integer value. If it is missing, then it is set to 1. The loop will terminate when <I NT_Var >
is greater than the <END_VALUE>.

Example

368 EI00000000067 06/2017

Structured Text (ST) Editor

FOR Counter:=1 TO5 BY 1 DO
Var 1: =Var 1* 2;

END_FOR;

Erg: =Var 1;

Assuming that the default setting for Var 1 is 1. Then it will have the value 32 after the FOR loop.

NOTE: If <END_VALUE> is equal to the limit value for the data type of <INT_Var> (Counter in the
above example), you will produce an infinite, or endless, loop. If Counter is of type SINT, for
example, and the <END_VALUE> is 127 (the maximum positive value for a SINT type variable),
then the loop can never terminate because adding 1 to this maximum value would result in the
variable becoming negative and never exceeding the limits imposed by the FOR instruction.

A WARNING

ENDLESS LOOP RESULTING IN UNINTENDED EQUIPMENT OPERATION

Ensure that the variable type used in FOR instructions is of a sufficient capacity (has a great
enough upper limit) to account for the <END_VALUE> + 1.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

You can use the CONTI NUE instruction within a FORloop. This is an extension to the IEC 61131-3
standard.

WHI LE Loop

An alternative to the FOR loop is the WHI LE loop, which executes the loop if, and for as long as, a
boolean condition is, and remains, TRUE. If the condition is not initially TRUE, the loop is not
executed. If the condition which was initially TRUE becomes FALSE, the loop is terminated.

Syntax

WHILE <boolean expression> DO
<instructions>

END_WHILE;

Evidently, the initial and ongoing boolean expression must assume a value of FALSE at some point
within the instructions of the loop. Otherwise, the loop will not terminate, resulting in an infinite, or
endless, loop condition.

A WARNING

ENDLESS LOOP RESULTING IN UNINTENDED EQUIPMENT OPERATION

Ensure that the WHI LE loop will be terminated within the instructions of the loop by creating a
FALSE condition of the boolean expression.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 369

Structured Text (ST) Editor

The following is an example of instructions in the loop causing the loop to terminate:
VWH LE Count er<>0 DO
Varl := Var1*2;
Counter := Counter-1;
END_WHI LE
The REPEAT instruction has not yet been introduced so moving paragraph (with modification) to
below.

You can use the CONTI NUE instruction within a WHI LE loop.

REPEAT Loop

The REPEAT loop is another alternative to the FOR loop, as it is for the WHI LE loop. The REPEAT
loop differs from the WHI LE loop in that the exit condition is evaluated only after the loop has been
executed at least once, at the end of the loop.

Syntax

REPEAT

<instructions>

UNTIL <boolean expression>

END_REPEAT;

The <instructions> are carried out repeatedly as long as the <boolean expression> returns TRUE.
If <boolean expression> is produced already at the first UNTIL evaluation, then <instructions> are
executed only once. The <boolean expression> must assume a value of TRUE at some point
within the instructions of the loop. Otherwise, the loop will not terminate, resulting in an infinite, or
endless, loop condition.

A WARNING

ENDLESS LOOP RESULTING IN UNINTENDED EQUIPMENT OPERATION

Ensure that the REPEAT loop will be terminated within the instructions of the loop by creating a
TRUE condition of the boolean expression.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The following is an example of instructions in the loop causing the loop to terminate:

REPEAT
Varl := Var1*2;
Counter := Counter-1;
UNTI L
Count er =0
END_REPEAT;

370

EI00000000067 06/2017

Structured Text (ST) Editor

You can use the CONTI NUE instruction within a REPEAT loop. This is an extension to the
IEC 61131-3 standard.

The WHI LE and REPEAT loops are, in a certain sense, more powerful than the FOR loop since you
do not have to know the number of cycles before executing the loop. In some cases, you will
therefore only be able to work with these two loop types. If, however, the number of the loop cycles
is clear, then a FOR loop is preferable since, in most cases, it inherently excludes endless loops
(see hazard message in the FOR loop paragraph (see page 368)).

CONTI NUE Instruction

As an extension to the IEC 61131-3 standard, the CONTI NUE instruction is supported within FOR,
WHI LE, and REPEAT loops. CONTI NUE makes the execution proceed with the next loop cycle.

Example

FOR Counter:=1 TO 5 BY 1 DO

I NT1: =I NT1/ 2;

I F INT1=0 THEN

CONTI NUE; (* to avoid division by zero *)

END_| F

Var1: =Var 1/ I NT1; (* only executed, if INT1l is not "0" *)
END_FOR;

Erg: =Var 1;

EXI T Instruction

The EXI T instruction terminates the FOR, WHI LE or REPEAT loop in which it resides without regard
to any condition.

JMP Instruction
You can use the JMP instruction for an unconditional jump to a code line marked by a jump label.
Syntax
JMP <label>;

The <label> is an arbitrary, but unique identifier that is placed at the beginning of a program line.
The instruction JMP has to be followed by the indication of the jump destination that has to equal
a predefined label.

A WARNING

ENDLESS LOOP RESULTING IN UNINTENDED EQUIPMENT OPERATION

Ensure that the use of the JMP instruction is conditional such that it does not result in an infinite,
or endless, loop.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 371

Structured Text (ST) Editor

The following is an example of instructions in the create logical conditions that avoid an infinite, or
endless, loop between the jump and its destination:

aaa: =0;

_l abel 1: aaa: =aaa+1;

(*instructions*)

|F (aaa < 10) THEN

JWP _| abel 1;

END | F;

As long as the variable i , being initialized with 0, has a value less than 10, the jump instruction of
the example above will affect a repeated flyback to the program line defined by label _| abel 1.

Therefore, it will affect a repeated processing of the instructions comprised between the label and
the JMP instruction. Since these instructions also include the increment of the variable i , the jump

condition will be infringed (at the ninth check) and program flow will proceed.

You can also achieve this functionality by using a WHI LE or REPEAT loop in the example.
Generally, using jump instructions reduces the readability of the code.

Comments in ST

There are 2 possibilities to write comments in a structured text object:

e Start the comment with (* and close it with *) . This allows you to insert comments which run
over several lines. Example: (*This is a comment.*)

e Single-line comments as an extension to the IEC 61131-3 standard: / / denotes the start of a
comment that ends with the end of the line. Example: // This is a comment.

You can place the comments everywhere within the declaration or implementation part of the

ST editor.

Nested comments: You can place comments within other comments.

Example

(*

a:=inst.out; (* to be checked *)

b: =b+1;

*)

In this example, the comment that begins with the first bracket is not closed by the bracket following

checked, but only by the last bracket.

372 EI00000000067 06/2017

Part V

Object Editors

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

14 Declaration Editors 375

15 Device Type Manager (DTM) Editor 381

16 Data Unit Type (DUT) Editor 383

17 Global Variables List (GVL) Editor 385

18 Network Variables List (NVL) Editor 387

19 Task Editor 411

20 Watch List Editor 421

21 Tools Within Logic Editors 427

EIO0000000067 06/2017 373

Object Editors

374 EI00000000067 06/2017

Chapter 14

Declaration Editors

Overview

The textual declaration editor serves to create the declaration part of a POU object. It can be
supplemented by a tabular view. Any modification made in 1 of the views is immediately applied to
the other one.

Depending on the current settings in the declaration editor options, either only the textual or only
the tabular view will be available. You can switch between both via buttons (Textual / Tabular) at
the right border of the editor window.

Usually, the declaration editor is used in combination with the programming language editors. This
means, it will be placed in the upper part of the window which opens when you are going to edit or
view (monitor) an object in offline or online mode. The declaration header describes the POU type
(for example: PROGRAM, FUNCTION_BLOCK, FUNCTION). It can be extended by POU-global
pragma attributes.

The online mode of the declaration editor (see page 380) is structured like that of a Watch view.

Variable declaration is also performed in Global Variable Lists and Data Unit Types, which are
created in separate editors.

Also refer to the Variables Declaration chapter (see page 505).

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Textual Declaration Editor 376
Tabular Declaration Editor 376
Declaration Editor in Online Mode 380

EI00000000067 06/2017 375

Declaration Editors

Textual Declaration Editor

Overview
Textual editor view

Z] PLC_PRG - X
1 '/ program for temp calcu Al
2| PROGRAM progl —
@
= 3 VAR =4
c
4 =3
5 O
6 I >
7 al: ARRAY[0..4, 0..2] OF DINT := {1, 2(0), 1, 2(0) §
8 varl AT%QBO:INT; -

9| END VAR b

< >

d varl:=varl+l; ~

Behavior and appearance are determined by the respective current text editor settings in the
Options and Customize dialog boxes. There you can define the default settings for highlight
coloring, line numbers, tabs, indenting, and many more options. The usual editing functions are
available such as copy and paste. Block selection is possible by pressing the ALT key while
selecting the desired text area with the mouse.

Tabular Declaration Editor

Overview
Tabular editor view

8] PLC_PRG |

v X
2lx & |X] PROGRAM PLC_PRG =
Scope Name Address Data type Initialization Comment Attributes E]
2 VAR a1 ARRAY[0..4,0.2]OF DINT [1,2,0,1,2,10(0)] attribute ‘displaymode’:= ‘de
¢ VAR varl %QBO INT
< i >
varl:=varl+l; A

The tabular view of the editor provides columns for the usual definitions for variable declaration
(see page 505). Scope, Name, Address, Data type, Initialization, Comment and (pragma)
Attributes. The particular declarations are inserted as numbered lines.

To add a new line of declaration above an existing one, first select this line and execute the
command “ Insert from the toolbar or the context menu.

To add a new declaration at the end of the table, click beyond the last existing declaration line and
also use the Insert command.

376 EI00000000067 06/2017

Declaration Editors

The newly inserted declaration by default first uses scope VAR and the recently entered data type.
The input field for the obligatory variable Name opens automatically. Enter a valid identifier and
close the field by pressing the ENTER key or by clicking another part of the view.

Double-click a table cell to open the respective possibilities to enter a value.

Double-click the Scope to open a list from which you can choose the desired scope and scope
attribute keyword (flag).

Type in the Data type directly or click the > button to use the Input Assistant or the Array wizard.

Type in the Initialization value directly or click the ... button to open the Initialization value dialog
box. This is useful especially in case of structured variables.

Each variable is declared in a separate line where the lines are numbered.
You can change the order of lines (line numbers) by selecting a line and move it one up or down
by the * Move up or ¥ Move down command from the toolbar or the context menu.

You can sort the list of declarations according to each of the columns by clicking the header of the
respective column. The column which currently determines the order is indicated by an arrow
symbol:

arrow up = ascending order

arrow down = descending order

Each further click in the column header changes between ascending and descending order.

To delete one or several declarations, select the respective lines and press the DEL key or execute
the Delete command from the context menu or click the X button in the toolbar.

EI00000000067 06/2017 377

Declaration Editors

Initialization Value
Initialization value dialog box

Initialization Value
Expression Init value Data type
B=-at ARRAY [0..4, 0..2] OF DINT
a1[0,0] 1 DINT
atfo1] o0 DINT
a1[0,2] 0 DINT
a1[1,0] 0 DINT
al[1,1] 0 DINT
a1[1,2] 0 DINT
at[2,0] 1 DINT
al21] o DINT
ai22] o0 DINT
a1[3,0] 0 DINT
al[3,1] 0 DINT
al[3,2] 0 DINT
a1[4,0] 0 DINT
al[41] o0 DINT
al[4,2] 0 DINT
‘1 H Apply value to selected lines][Reset selected lines to default values]
([ok [cance |

The Expressions of the variable are displayed with the current initialization values. Select the
desired variables and edit the initialization value in the field below the listing. Then click the Apply
value to selected lines button. To restore the default initializations, click the Reset selected lines
to default values button.

Press CTRL + ENTER to insert line breaks in the Comment entry.

Edit Declaration Header

You can edit the declaration header in the Edit Declaration Header dialog box. Open it by clicking
the header bar of the editor (PROGRAM PLC_PRG in the figure above) or via the command Edit
Declaration Header.

378 EI00000000067 06/2017

Declaration Editors

Edit Declaration Header dialog box

EditiDeclaration Header:

Declaration:

PROGRAM | [progt |

Comment:

program for temp calculation

The Edit Declaration Header dialog box provides the following elements:

Element Description

Declaration Insert type (from the selection list) and name of the POU object.

Comment Insert a comment. Press CTRL + ENTER to insert line breaks.

Attributes Opens the Attributes dialog box (see further below in this chapter) for
inserting pragmas and attributes.

Attributes
In the Edit Declaration Header dialog box, click the Attributes... button to open the Attibutes dialog
box. It allows you to enter multiple attributes and pragmas in text format. Insert them without
enclosing {} braces, use a separate line per each. For the example shown in the following image,
see the corresponding textual view above in the graphic of the textual editor view (see page 376).

Attributes dialog box
Attributes

You can enter attributes and pragmas here, without enclosing {braces}, one per line.

attribute ‘displaymode’:="hex’
warning ‘This is a warning’
text ‘Part xy has been compiled completely’

(o J[concel |

EI00000000067 06/2017 379

Declaration Editors

Declaration Editor in Online Mode

Overview

After log-in to the controller, each object which has already been opened in a window in offline
mode will automatically be displayed in online view.

The online view of the declaration editor presents a table similar to that used in watch views
(see page 424). The header line shows the actual object path <device name>.<application
name>.<object name>. The table for each watch expression shows the type and current value as
well as - if currently set - a prepared value for forcing or writing. If available, a directly assigned IEC
Address and / or Comment are displayed in further columns.

To establish a prepared value for a variable, either use the Prepare Value dialog box or click in the
assigned field of the column Prepared value and directly type in the desired value. In case of
enumerations, a list showing the enumeration values will open to select a value. In case of a
boolean variable, the handling is even easier.

You can toggle boolean preparation values by use of the RETURN or SPACE key according to the
following order:

e If the value is TRUE, the preparation steps are FALSE -> TRUE -> nothing.

e If the value is FALSE, the preparation steps are TRUE -> FALSE -> nothing.

If a watch expression (variable) is a structured type, for example, an instance of a function block
or an array variable, then a plus or minus sign precedes the expression.With a mouse-click on this
sign the particular elements of the instanced object can be additionally displayed (see f bi nst in

the following image) or hidden (see aVar). Icons indicate whether the variable is an input h""',

[3
output ¥ or an ordinary variable .

When you point with the cursor on a variable in the implementation part, a tooltip will show the
declaration and comment of the variable. See the following image showing the declaration editor
in the upper part of a program object PLC_PRGin online view:

Online view of the declaration editor

1 PLCPRG x

myDev.Application.PLC_PRG

Expression Type Value Prepared value Address Comment
iVar INT 241 %MW
¢ bVar BOOL TRUE |%0X0.3
= # myStruct TestStruct Check address defined in “TestStru
nTest! INT 241 HMWO
nles2 INT 0 HMW2
@ ® aVar ARRAY [0..3] OF INT %MWS
=] # fhinst FB1 instance of function block FB1
*# fbin INT 0
“# fhout INT 0
& fhar INT n
< >

=
1| ¢ ivar[241] := ivar[24T]+1; (* counter *)

2|~ bvar IElIA:= TRUE;

3| © myStruct.nTest1[2411] := ivar[2411];

4| o avar[2][2811]:= ivaz[2411];

S erg:: fbinst. EboutIIE:

380

EI00000000067 06/2017

Chapter 15
Device Type Manager (DTM) Editor

DTM Editor

Overview
The DTM editor view depends on the Device Type Manager.

EI00000000067 06/2017 381

Device Type Manager (DTM) Editor

The graphic provides an example of a DTM editor.

4 i OTB_1CODMILP X -
DTM Iﬂfomlatiun] Configuration I CANopen Configuration] CANopen I/0 Mappingl lnfomlﬂtian] Slalus I
{ Advantys OTB 1C0 DMILP =
s Foeh Schneider
e &Electr‘lc

Start Advantys| [OTB_1CODMSLP] at CANopen network address = 1
- Advantys Configuration Software is nol finked.

[Soosaomeces | | Gowest | | | [[|

For further information on DTMs, refer to the SoMachine Device Type Configuration (DTM) User
Guide (see SoMachine, Device Type Manager (DTM), User Guide).

For a list of the DTM versions currently supported by SoMachine, refer to the Release Notes of
your SoMachine installation.

382 EI00000000067 06/2017

Chapter 16
Data Unit Type (DUT) Editor

Data Unit Type Editor

Overview

You can create user-defined data types (see page 584)in the Data Unit Type editor (DUT editor).
This is a text editor and behaves according to the currently set text editor options.

The DUT editor will be opened automatically in a window when you add a DUT object in the Add
object dialog box. In this case, it provides by default the syntax of an extended structure
declaration. You can use it as desired to enter a simple structure declaration or to enter the
declaration of another data type unit, for example an enumeration.

The editor also opens when you open an existing DUT object currently selected in the POUs view.
DUT editor window

%gour | {1

1 TYPE DUT EXTEHDS structl : -
= z| STRUCT

3 ivar:INT;

4 bvar:BOOL ;

5 END_STRUCT

& END TYPE =

2

EI00000000067 06/2017 383

Data Unit Type (DUT) Editor

384 EI00000000067 06/2017

Chapter 17
Global Variables List (GVL) Editor

GVL Editor

Overview

The GVL editor is a Declaration Editor for editing Global Variables Lists. The GVL editor works as
does the Declaration Editor and corresponds to the options, both offine and online, set for the text
editor. The declaration starts with VAR_GLOBAL and ends with END_VAR. These keywords are
provided automatically. Enter valid declarations of global variables between them.

GVL editor
@ov_r1 |
= 1| VAR GLOBAL o
2 glob_intvar:INT:=12;
3 glob_boolvar:BOOL;
4 glob_stringvar:STRING:
S| END_ VAR
- v
< >

EI00000000067 06/2017 385

Global Variables List (GVL) Editor

386 EI00000000067 06/2017

Chapter 18

Network Variables List (NVL) Editor

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
18.1 Information on the NVL Editor 388
18.2 General Information on Network Variables 389
EI00000000067 06/2017 387

Network Variables List (NVL) Editor

Section 18.1
Information on the NVL Editor

Network Variables List Editor

Overview

The NVL editor is a Declaration Editor for editing Network Variables Lists. The NVL editor works
as does the Declaration Editor and corresponds to the options, both offine and online, set for the
text editor. The declaration starts with VAR_G_OBAL and ends with END_VAR These keywords are
provided automatically. Enter valid variable declarations (see page 503) of global variables

between them.
NVL editor

“ N¥L32 [Device_B: Plc Logic: Application] |

(-

//This gobal variable
/S/Sendexr:
//Protocol:

i
GVL321 [Device

upp

W N

VAR GLOBAL
iglobvar321:INT;
bglobvar321:B00L;
strglobvar32l: STRING;

END VAR

~] O B

O W

s
: Plc Logic:

4 b X
received via the network. A

Application]

388

EI00000000067 06/2017

Network Variables List (NVL) Editor

Section 18.2

General Information on Network Variables

What Is in This Section?
This section contains the following topics:

Topic Page
Introduction to Network Variables List (NVL) 390
Configuring the Network Variables Exchange 393
Network Variables List (NVL) Rules 398
Operating State of the Sender and the Receiver 400
Example 401
Compatibility 407
EIO0000000067 06/2017 389

Network Variables List (NVL) Editor

Introduction to Network Variables List (NVL)

Overview

The Network Variables List (NVL) feature consists of a fixed list of variables that can be sent or
received through a communication network. This enables data exchange within a network via
network variables, if supported by the controller (target system).

The list must be defined in the sender and in the receiver controllers (and can be handled in a
single or in multiple projects). Their values are transmitted via broadcasting through User
Datagram Protocol (UDP) datagrams. UDP is a connectionless Internet communications protocol
defined by IETF RFC 768. This protocol facilitates the direct transmission of datagrams on Internet
Protocol (IP) networks. UDP/IP messages do not expect a response, and are therefore ideal for
applications in which dropped packets do not require retransmission (such as streaming video and
networks that demand real-time performance).

The NVL functionality is a powerful feature of SoMachine. It allows you to share and monitor data
between controllers and their applications. However, there are no restrictions as to the purpose of
the data exchanged between controllers, including, but not limited to, attempting machine or
process interlocking or even controller state changes.

Only you, the application designer and/or programmer, can be aware of all the conditions and
factors present during operation of the machine or process and, therefore, only you can determine
the proper communication strategies, interlocks and related safeties necessary for your purposes
in exchanging data between controllers using this feature. Strict care must be taken to monitor this
type of communication feature, and to be sure that the design of the machine or process will not
present safety risks to people or property.

A WARNING

UNINTENDED MACHINE OPERATION DUE TO INCORRECT MACHINE COMMUNICATION

e You must consider the potential failure modes of control paths and, for certain critical control
functions, provide a means to achieve a safe state during and after a path failure, including
power outages and system restarts.

e Separate or redundant control paths must be provided for critical control functions.

e You must give consideration to the implications of unanticipated transmission delays or
failures of the link.

e Observe all accident prevention regulations and local safety regulations.

e Each implementation of equipment using this feature must be individually and thoroughly
tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

390

EI00000000067 06/2017

Network Variables List (NVL) Editor

You can use Diagnostic (see SoMachine, Network Variable Configuration, SE_NetVarUdp Library
Guide) and Error Management (see SoMachine, Network Variable Configuration, SE_NetVarUdp
Library Guide) function blocks as well as network properties parameters to monitor the health,
status and integrity of communications using this feature. This feature was designed for data
sharing and monitoring and cannot be used for critical control functions.

Network Variables List (NVL)

The network variables to be exchanged are defined in the following 2 types of lists:
e Global Variables Lists (GVL) in a sending controller (sender)
e Global Network Variables List (GNVL) in a receiving controller (receiver)

The corresponding GVL and GNVL contain the same variable declarations. You can view their
contents in the respective editor that opens after double-clicking the GVL or GNVL node in the
Devices pane.

A GVL contains the network variables of a sender. In the Network properties of the sender, protocol
and transmission parameters are defined. According to these settings, the variable values are
broadcasted within the network. They can be received by all controllers that have a corresponding
GNVL.

NOTE: For network variables exchange, the respective network libraries must be installed. This is
done automatically for the standard network type UDP as soon as the network properties fora GVL
are set.

Network variables are broadcasted from the GVL (sender) to one or more GNVL (receivers). For
each controller you can define GVLs as well as GNVLs. Thus each controller can act as sender as
well as receiver.

A sender GVL can be provided by the same or by another project. So, when creating a GNVL, the
sender GVL can either be chosen from a selection list of all available GVLs within the network, or
it can be read from an export file, which previously has been generated (for example, by using the
Link to File dialog box) from the GVL.

NOTE: An export file is needed if the sender GVL to be used is defined within another project.

NVL Considerations

The following table shows the list of controllers that support the network variables list (NVL)
functionality:

Function Name M238 M241 M251 M258 XBTGC ATV IMC
LMCO058 XBT GK
XBT GT
Network Variables List No Yes Yes Yes Yes Yes*

*ATV IMC supports NVL only in freewheeling tasks.

EI00000000067 06/2017 391

Network Variables List (NVL) Editor

The figure shows a network consisting of 1 sender and the recommended maximum of 7 receivers:

Controller Sender A

oflooooooffo

Hub

Controller Sender A: Sender with the global variables list (GVL) and receiver controller with global network
variables lists (GNVLs)
Controller Receiver 1...7: Receivers (with GNVL) from A and sender controller (GVL) only for A

392 EI00000000067 06/2017

Network Variables List (NVL) Editor

Configuring the Network Variables Exchange

Overview

To exchange network variables between a sender and a receiver, one sender and one receiver
controller must be available in the SoMachine Devices tree. These are the controllers that are
assigned the network properties described below.

Proceed as follows to configure the network variables list:

Step Action

1 Create a sender and a receiver controller in the Devices tree.

Create a program (POU) for the sender and receiver controller.

Add a task for the sender and receiver controller.

NOTE: In order to maintain performance transparency, you should set the task
priority of the dedicated NVL task to something greater than 25, and regulate
communications to avoid saturating the network unnecessarily.

4 Define the global variables list (GVL) for the sender.

Define the global network variables list (GNVL) for the receiver.

An example with further information is provided in the Appendix (see page 4017).

EI00000000067 06/2017 393

Network Variables List (NVL) Editor

Global Variables List

To create the GVL for the sender, define the following network properties in the GVL —» Properties
— Network properties dialog box:

Properties — GVL [Device: PLC Logic: Application]

Common || Link To File || Access control | Network properties | Build

Network type: |UDP

v| Settings...)

Task: [mAST

List identifier: |1

Pack variables
[Transmit checksum
[Acknowledgement

Cyclic transmission Interval:
|:| Transmit on change Minimum gap: \ #20ms
[] Transmit on event Variable: ‘

[T#50ms

OK][Cancel] Apply

Description of parameters

Parameter

Default Value

Description

Network type

UDP

Only the standard network type UDP is available.
To change the Broadcast Address and the Port, click the Settings...
button.

Task

MAST

Select the task you configured below the Task Configuration item for
executing NVL code.

To help maintain performance transparency, we recommend to
configure a cycle time Interval 250 ms for this task.

NOTE: In order to maintain performance transparency, you should set
the task priority of the dedicated NVL task to something greater than
25, and regulate communications to avoid saturating the network
unnecessarily.

List identifier

Enter a unique number for each GVL on the network. It is used by the
receivers for identifying the variables list (see page 399).

394

EI00000000067 06/2017

Network Variables List (NVL) Editor

Parameter

Default Value

Description

Pack variables

activated

With this option activated, the variables are bundled in packets
(datagrams) for transmission.
If this option is deactivated, one packet per variable is transmitted.

Transmit checksum

deactivated

Activate this option to add a checksum to each packet of variables
during transmission.

Receivers will then check the checksum of each packet they receive
and will reject those with a non-matching checksum. A notification will
be issued with the Net Var Er r or _ CHECKSUM parameter

(see SoMachine, Network Variable Configuration, SE_NetVarUadp
Library Guide).

Acknowledgement

deactivated

Activate this option to prompt the receiver to send an
acknowledgement message for each data packet it receives.

A notification will be issued with the Net Var Er r or _ ACKNOALEDGE
parameter (see SoMachine, Network Variable Configuration,
SE_NetVarUdp Library Guide) if the sender does not receive this
acknowledgement message from the receiver before it sends the next
data packet.

Cyclic transmission
e |[nterval

activated

Select this option for cyclic data transmission at the defined Interval.
This Interval should be a multiple of the cycle time you defined in the
task for executing NVL code to achieve a precise transmission time of
the network variables.

Transmit on change
® Minimum gap

deactivated
o T#20ms

Select this option to transmit variables whenever their values have
changed.

NOTE: After the first download or using of Reset Cold or Reset Warm
command in Online Mode the receiver controllers are not updated and
keep their last value, whereas the sender controller value becomes 0
(zero).

The Minimum gap parameter defines a minimum time span that has to
elapse between the data transfer.

Transmit on event
e Variable

deactivated
o —

Select this option to transmit variables as long as the specified
Variable equals TRUE. The variable is checked with every cycle of the
task for executing NVL code.

Description of the button Settings...

Parameter Default Value Description
Port 1202 Enter a unique port number (= 1202) for each GVL sender.
Broadcast Address 255.255.255.255 Enter a specific broadcast IP address for your application.

EI00000000067 06/2017

395

Network Variables List (NVL) Editor

Global Network Variables List (GNVL)
A global network variables list can only be added in the Devices tree. It defines variables, which
are specified as network variables in another controller within the network.

Thus, a GNVL object can only be added to an application if a global variables list (GVL) with
network properties (network variables list) has already been created in one of the other network
controllers. These controllers may be in the same or different projects.

To create the GNVL, define the following parameters in the Add Object - Global Network Variable
List dialog box:

Add Global Network Variable List

ﬂ Create a new global network variable list

Name:

GNVL_Receiver|

Task:

Task_R v
Sender:

GVL_Sender [Dev_Sender: PLC Logic: Application] hd

Import from file:

Cancel

Description of parameters

Parameter Default Value Description

Name NVL Enter a name for the GNVL.

Task task defined in the | Select a task from the list of tasks which will receive the frames from
Task Configuration | the sender that are available under the Task Configuration node of the
node of this receiver controller.

Application

Sender 1 of the GVLs Select the sender’'s GVL from the list of all sender GVLs with network
currently available | properties currently available in the project.
in the project Select the entry Import from file from the list to use a GVL from another

project. This activates the Import from file: parameter below.

396 EI00000000067 06/2017

Network Variables List (NVL) Editor

Parameter

Default Value

Description

Import from file:

This parameter is only available after you selected the option Import

from file for the parameter Sender.

The ... opens a standard Windows Explorer window that allows you to
browse to the export file *gv/you created from a GVL in another
project.

For further information refer to the How fo Add a GNVL From a
Different Project paragraph below.

How to Add a GNVL in the Same Project

When you add a GNVL via the Add Object dialog box, all appropriate GVLs that are found within
the current project for the current network are provided for selection in the Sender list box. GVLs
from other projects must be imported (see the How fo Add a GNVL From a Different Project
paragraph below).

Due to this selection, each GNVL in the current controller (sender) is linked to 1 specific GVL in
another controller (receiver).

Additionally, you have to define a name and a task, that is responsible for handling the network
variables, when adding the GNVL.

How to Add a GNVL From a Different Project

Alternatively to directly choosing a sender GVL from another controller, you can also specify a GVL
export file you had generated previously from the GVL by using the Link to file properties. This
allows you to use a GVL that is defined in another project.

To achieve this, select the option Import from file for the Sender: parameter and specify the path
in the Import from file: parameter.

You can modify the settings later on via the Properties - GVL dialog box.

GNVL Properties

If you double-click a GNVL item in the Devices tree, its content will be displayed on the right-hand
side in an editor. But the content of the GNVL cannot be edited, because it is only a reference to
the content of the corresponding GVL. The exact name and the path of the sender that contains
the corresponding GVL is indicated at the top of the editor pane together with the type of network
protocol used. If the corresponding GVL is changed, the content of the GNVL is updated
accordingly.

EI00000000067 06/2017 397

Network Variables List (NVL) Editor

Network Variables List (NVL) Rules

Rules on the Amount of Data
Because of some performance limitations, respect the following rules:

Number Rule

1 Data transmission from one GVL (sender) to one GNVL (receiver) should not exceed 200 bytes.

2 Data exchange between several GVLs (senders) of one controller and their associated GNVLs
(receivers) should not exceed 1000 bytes of variables.

Rules on the Number of Datagrams
To limit the maximum cycle time of NVL tasks, respect the following recommendations:

Number | Rule Description
1 Limit the number of When the limit is exceeded, the remaining datagrams are treated in the next
received datagrams per cycle. A notification Received overflow is raised in the diagnostics data
cycle to 20. (see SoMachine, Network Variable Configuration, SE_NetVarUdp Library
Guide).

One datagram can contain up to 256 bytes. That means that you should not
exceed the limit of 5120 bytes of data received by one receiver.

2 Limit the number of When the limit is exceeded, the remaining datagrams are treated in the next
transmitted datagrams per | cycle. A notification Transmit overflow is raised in the diagnostics data
cycle to 20. (see SoMachine, Network Variable Configuration, SE_NetVarUdp Library

Guide).

One datagram can contain up to 256 bytes. That means that you should not
exceed the limit of 5120 bytes of data transmitted on one sender controller.

If the number of received / transmitted datagrams per cycle exceeds the limit several times, the
following may happen:

e loss of UDP (user datagram protocol) datagrams

e incoherent or inconsistent exchange of variables

Adapt the following parameters according to your needs:
e cycle time of sender controller

e cycle time of receiver controller

e number of senders in the network

NOTICE

LOSS OF DATA

Thoroughly test your application for proper transmission and reception of UDP datagrams prior
to placing your system into service.

Failure to follow these instructions can result in equipment damage.

398 EI00000000067 06/2017

Network Variables List (NVL) Editor

Maximum Number of GVLs (Senders)
Define a maximum of 7 GVLs per controller (sender) to help maintain performance transparency.

Rules on Task Cycle Times of GVLs (Senders) and GNVLs (Receivers)
To help avoid reception overflow, you must define a cycle time for the task that manages the GVL

transmission that is at least two times greater than the cycle time of the task that manages the
GNVL reception.

Rules on the List Identifier Protection
The NVL function includes a list identifier checking:
The list identifier helps to avoid that a GVL (sender) from two separate controllers with the same
list identifier (see dialog box GVL — Properties — List identifier:) sends datagrams to the same

global network variables list (GNVL) of any controller. If the List Identifier is not unique, this can
cause an interruption in the exchange of variables.

NOTICE

LOSS OF COMMUNICATION
Ensure that the list identifier in the network is only used by one IP address.

Failure to follow these instructions can result in equipment damage.

The list identifier checking function is implemented in the receiver controller.
If a GNVL (receiver) detects that two different IP addresses are using the same list identifier, the
receiver immediately stops to receive datagrams.

Furthermore, a notification is issued in the NETVARGETDI AG NFOfunction block. The IP
addresses of the two senders are provided in the output parameters dwDupl i cat eLi st dl pl
and dwDupl i cat eLi st | dl p2 of this function block (see SoMachine, Network Variable
Configuration, SE_NetVarUdp Library Guide).

With the function block NETVARRESETERROR the detected NVL errors are reset and the
communication is restarted.

EI00000000067 06/2017 399

Network Variables List (NVL) Editor

Operating State of the Sender and the Receiver

Operating State

Operating State of the... Network Variables Behavior
Sender Receiver
RUN RUN Network variables are exchanged between the sender

and the receiver.

STOP RUN The sender is no longer sending variables to the
receiver. The network variables are not exchanged
between sender and receivers.

RUN STOP The receiver is not processing network variables from
the sender.

When the receiver returns to RUN state, the network
variables are again processed by the receiver.

STOP STOP No variables are exchanged.

NOTE: Several communication initialization errors (Net Var Er r or _| Nl TCOWM are detected,
when you change the operating state of the sender from STOP to RUN.

Events in the Task that Manages NVL
If the following events occur in the task that manages NVL, the behavior expected for the NVL is
the same as if the controller was in STOP state in the array above:
e an exception occurs in the application which suspends the task
e a breakpoint is hit or a single cycle is processed on the task

400 EI00000000067 06/2017

Network Variables List (NVL) Editor

Example

Overview

In the following example, a simple network variables exchange is established. In the sender
controller a global variables list (GVL) is created. In the receiver controller the corresponding global
network variables list (GNVL) is created.

Perform the following preparations in a standard project, where a sender controller Dev_Sender
and a receiver controller Dev_Receiver are available in the Devices tree:

Create a POU (program) prog_sender below the Application node of Dev_Sender.

Under the Task Configuration node of this application, add the task Task_S that calls

prog_sender.

Create a POU (program) prog_rec below the Application node of Dev_Receiver.
Under the Task Configuration node of this application, add the task Task_R that calls prog_rec.
NOTE: The 2 controllers must be configured in the same subnet of the Ethernet network.

Defining the GVL for the Sender
Step 1: Define a global variable list in the sender controller:

Step Action Comment
1 In the Devices pane, right-click the Application node | The Add Global Variable List dialog box is
of the controller Dev_Sender and select the displayed.
commands Add Object - Global Variable List....
2 Enter the Name GVL_Sender and click Open to The GVL_Sender node appears below the
create a new global variable list. Application node in the Devices pane and the editor
is opened on the right-hand side.

EI00000000067 06/2017

401

Network Variables List (NVL) Editor

Step

Action

Comment

3

In the editor on the right-hand side, enter the
following variable definitions:

VAR _GLOBAL

i gl obvar: | NT;

bgl obvar: BOOL;

strgl obvar : STRI NG

END_VAR

Devices * B X

(3 v5Sorby- 4| Sotterder - g Find

(= @ mavar_proj
=[] Dev_Sender (CoDeSys SP for Win32)
= é Plc Logic
=] 6 Application
P e r—
]" Library Manager
prog_sender (PRG)
(=) (8 Task Configuration
o s s
=] Dev_Reciver (GoDeSys SP for Win32)
= Bﬂ Plc Logic
=&} Appiication
i I Library Manager
|g| prog_rec (PRG)
= E‘i Task Configuration

@Task R

402

EI00000000067 06/2017

Network Variables List (NVL) Editor

Step 2: Define the network properties of the sender GVL:

Step Action Comment
1 In the Devices pane, right-click the GVL_Sender The Properties - GVL_Sender dialog box is
node and select the command Properties.... displayed.
2 Open the Network properties tab and configure the | -

parameters as shown in the graphic:

Properties - GVL [Device: PLC Logic: Application]

Common || Link ToFile || Access control ‘ Network properties | Build

Network type: [UDP v Seffings...
—

Task: tTasLS
List identifier: ‘2

Pack variables
[[] Transmit checksum
[Acknowledgement
Cyclic transmission Interval: [tasoms]
[[] Transmit on change Minimum gap: | T 7\
[] Transmit on event Variable: i |
3 Click OK. The dialog box is closed and the GVL network

properties are set.

EI00000000067 06/2017 403

Network Variables List (NVL) Editor

Defining the GNVL for the Receiver

Step 1: Define a global network variable list in the receiver controller:

Step Action Comment
1 In the Devices pane, right-click the Application node | The Add Global Network Variable List dialog box is
of the controller Dev_Receiver and select the displayed.
commands Add Object - Global Network Variable
List....
2 Configure the parameters as shown in the graphic. | This global network variable list is the counterpart of
the GVL defined for the sender controller.
Add Global Network Variable List
@ Create a new global network variable list
Name:
GNVL_Receiver]|
Task:
Task_R -
Sender:
GVL_Sender [Dev_Sender: PLC Logic: Application] b
Import from file:
Cancel
404 EI00000000067 06/2017

Network Variables List (NVL) Editor

Step

Action

Comment

Click Open.

The dialog box is closed and the GNVL_Receiver
appears below the Application node of the
Dev_Receiver controller:

s i

(5 »$Soby - 4| Sortomer - u&Find

= @ mwar_proj
B[] Dev_Sender (CaDeSys SPfor Winz2) ||
=) E’\] Plc Lagic -
£ £ Application
Fi" GVL_Sender
ﬂ Library Manager
prog_sender (PRG)
- ﬂTask Configuration
& ks
= _l Dev_Receiver (CoDeSys SP for Win32)
= Eﬁ\] Plc Logic
=16} Applcation
r[Library Manager
@ G Receier |
prog_rec (PRG)

= (2 Task Configuration

@ Task R

@ GNVL_Receiver [De

This GNVL automatically contains the same
variable declarations as the GVL_Sender.

Step 2: View and / or modify the network settings of the GNVL:

Step

Action

Comment

In the Devices pane, right-click the GNVL_Receiver
node and select the command Properties....

The Properties - GNVL_Receiver dialog box is
displayed.

Open the Network settings tab.

EI00000000067 06/2017

405

Network Variables List (NVL) Editor

Step 3: Test the network variables exchange in online mode:

Step Action Comment
1 Under the Application node of the controller The editor for prog_sender is opened on the right-
Dev_Sender, double-click the POU prog_sender. | hand side.
2 Enter the following code for the variable i gl obvar: |-
prog_sender [Dev_Sender: Plc Logic: Application]
PROGRAM prog_ sender
VAR
END_VAR
<
iglobvar:=iglobvar+l;
3 Under the Application node of the controller The editor for prog_rec is opened on the right-hand
Dev_Receiver, double-click the POU prog_rec. side.
4 Enter the following code for the variable -
ivar_local:
% prog_rec [Dev_Receiver: Plc Logic: Application]
PROGRAM prog_rec
= z VAR
ivar_local: INT;
END_VAR
<
E ivar local:=iglobvar;
5 Log on with sender and receiver applications within | The variable i var _| ocal in the receiver gets the
the same network and start the applications. values of i gl obvar as currently shown in the
sender.
406 EIO0000000067 06/2017

Network Variables List (NVL) Editor

Compatibility

Introduction
Even if the controllers work with applications of different versions of the programming system (for
example, V2.3 and V3.x), communication via network variables is possible.

However, the file formats of the different export files between versions (*.exp versus *.gvl) makes
it impossible to simply import and export these files between projects.

If a reading global network variables list (GNVL) is set up in the latest version (for example, V3.x),
the required network parameters configuration must be provided by a sender of the latest version
(for example, V3.x). An export file *exp created from a sender by an earlier version (for example,
V2.3) does not contain this information.

A solution for exchanging network variables between applications of different programming system
versions is provided in the following paragraphs.

Updating the Global Network Variables List

To exchange network variables between applications of different programming system versions
(for example, V2.3 and V3.x), update the global network variables list by performing the following

steps:
Step Action Comment
1 Re-create the network variables list (NVL) | To achieve this, add a global variables list (GVL)
that is already available in the earlier with network properties, containing the same
version (V2.3) in the latest version (V3.x). | variables declarations as in the NVL of the earlier
version (V2.3).
2 Export the new GVL to a "expfile by using | NOTE: Activate the option Exclude from build in the
the Link to File tab. Build tab to keep the GVL in the project without
getting precompile events and ambiguous names.
Deactivate the option to re-create the * expfile again
in case any modifications on the GVL are required.
3 Re-import the list. To achieve this, create a new global network
variables list (GNVL) by using the previously
generated *expfile in order to create an
appropriately configured receiver list.

These steps are illustrated by the following example.

Example
In this example, the variable t r ans23, that is defined in a V2.3 application, is made available for
a later version (V3.x).

EI00000000067 06/2017 407

Network Variables List (NVL) Editor

The following conditions are defined:

Condition Description
1 In the earlier programming system version (V2.3) the project 23.pro contains a global variables list
GVL_23 with the following declaration:
VAR_GLOBAL
trans23: | NT;
END_VAR
2 The network properties of GVL_23 are configured as follows:
Properties
T \
‘ Global Variable List | Access rights |
Name of the global variable list: |[e]Y/%] |
Link to file
Filename: | \ [Browse... J
(® Import before compile (O Export before compile Add network
Connection 1 (UDP) |
Network type: | UDP v| [Settings.. | network
Pack variables
List identifier (COB-ID): 1 |
[] Transmit checksum
[] Acknowledgement
[] Read [] Req
White [] Answer bootup requests
Cyclic transmission Interval: T#50ms
[] Transmit on change Minimum gap:
[] Transmit on event Variable:
(oK][cancel]
NOTE: The export of this GVL_23 creates a *exp file, that only contains the following variable
declaration:
VAR _GLOBAL
trans23: | NT;
END_VAR
The *expfile does not contain any configuration settings.
408 EIO0000000067 06/2017

Network Variables List (NVL) Editor

The following table shows the next steps to be executed for re-creating GVL_23 in the latest
version (V3.x):

Step Action Comment
1 Add a GVL object named GVL_23to |-
an application.
2 Set the network properties as defined : o —
within the 23.pro project. Devices = gy, BN
= 33 :] e Ttrans23: INT; o

END_VAR 2
=) _1 Device (CoDeSys SP Win V3) =

= 2] PLC Logic

Properties — GVL_23 [Device: PLC Logic: Application]

= A} Application [Gommon Link To File Access control|Network propertes |Buid|

a GVL_3 Network type: ~[UDP 3 s

D”H Library Manager Task: [MamTask—v\

ﬂ NVL List identifier: |1 |

@ NVL_23 Pack variables

PLC_PRG (PRG) [] Transmit checksum

- [] Acknowledgement
(=) |4 Task Configuratior I
@ MainTask Cyclic transmission Interval: T#50ms.

DTransmil on change Minimum gap:
|:| Transmit on event Variable:

3 In the Link to File tab, configure a
target export file 23.gvi. Properties — GVL._23/[Device: PLC Logic: Application]
Common | Link ToFile | Access control H Network properties]
Filename:
| D:\profi23.gvl
(O Import before compile
(®) Export before compile
4 In the Build tab, set the Exclude from | This setting allows you to keep the file on disk for later
Build option. modifications.

Properties - GVL_23 [Device: PLC Logic: Application]

{ Common H Link To File ” Access control H Network properties l Build

Exclude from build

T Ve e e e e

EI00000000067 06/2017 409

Network Variables List (NVL) Editor

Step

Action

Comment

5

Compile the project.

The 23.gv/file is generated and contains variable and
configuration settings:

kGvL>
<peclarations><! [CDATA[VAR_GLOBALD trans23: INT;0
END_VAR]]></Declarations>
<Netvarsettings Protocol="UDP">
<ListIdentifier>l</Listidentifier>
<Pack>True</Pack>
<Checksum>False</Checksum>
<acknowledge>False</Acknowledge>
<CyclicTransmission>True</CyclicTransmission>
<TransmissiononChange>False</TransmissiononChange>
<Transmissiononevent>False</Transmissiononevent>
<Interval>T#50ms</Interval>
<MinGap>T#20ms</MinGap>
<Eventvariable>
</Eventvariable>
<Protocolsettings>
<Protocolsetting Name="port" value="1202" />
<ProtocolSetting Name="Broadcast Adr." value="192.168.101.167" />
</Protocolsettings>
</Netvarsettings>
</GVL>

Add a GNVL object in the V3.x project
from the 23.gv/export file (with the
Import from file: command).

This serves to read the variable t r ans23 from the controller of
the earlier programming system (V.2.3).

If both, the project from the earlier version (V2.3) as well as the
application from the latest version (V3.x), are running within the
network, the application from the latest version (V3.x) can read
variable t r ans 23 from project 23.pro.

410

EI00000000067 06/2017

Chapter 19
Task Editor

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Information on the Task Configuration 412
Properties Tab 413
Monitor Tab 414
Configuration of a Specific Task 416
Task Processing in Online Mode 419

EI00000000067 06/2017 411

Task Editor

Information on the Task Configuration

Overview

The task configuration defines one or several tasks for controlling the processing of an application
program. Thus, task configuration is an essential object for an application and must be available in
the Applications Tree.

Description of the Task Configuration Tree

Tasks

At the topmost position of a task configuration tree, there is the entry Task Configuration ﬁg
Below there are the defined tasks, each represented by the task name. The POU calls of the
particular tasks are displayed in the task configuration tree.

You can edit the task tree (add, copy, paste, or remove tasks) by the appropriate commands
usable for the Applications tree. For example, for adding a new task, select the Task Configuration
node, click the green plus button, and execute the command Task.... Alternatively, you can right-
click the Task Configuration node, and execute the command Add Object » Task....

Configure the particular tasks in the task editor (see page 4 76) which additionally provides a
monitoring view in online mode. The options available for task configuration depend on the
controller platform.

Task configuration in Applications tree

= E Task Configuration
@ CyclicTask
@ EventTask
@ FreeTask

Atask (see page 416)is used to control the processing of an IEC program. It is defined by a name,
a priority and by a type determining which condition will trigger the start of the task. You can define
this condition by a time (cyclic, freewheeling) or by an internal or external event which will trigger
the task; for example, the rising edge of a global project variable or an interrupt event of the
controller.

For each task, you can specify a series of program POUs that will be started by the task. If the task
is executed in the present cycle, these programs will be processed for the length of 1 cycle.

The combination of priority and condition will determine in which chronological order
(see page 419) the tasks will be executed.

For each task, you can configure a time control (watchdog). The possible settings depend on the
specific controller platform.

412

EI00000000067 06/2017

Task Editor

Properties Tab

Overview

When the Task Configuration (see page 472) node is selected, the Properties tab will be opened
in the task editor view.

Task configuration, Properties tab, example
’ Properties

Max. number of tasks: 100
Max. number of cyclic tasks: 3
Max. number of freewheeling tasks: 3

Information on the current task configuration as provided by the controller will be displayed, for
example, the maximum allowed numbers of tasks per task type.

EI00000000067 06/2017 413

Task Editor

Monitor Tab

Overview
If it is supported by the target system, the monitoring functionality is allowed. This is a dynamic
analysis of the execution time, the number of the calls and the code cover of the POUs, which are
controlled by a task. In online mode, the task processing can be monitored.

Online View of the Task Editor

When you select the top node in the Task Configuration tree, besides the Properties tab

(see page 413), the Monitor tab is available. In online mode, it shows the status and some current
statistics on the cycles and cycle times in a table view. The update interval for the values is the
same as used for the monitoring of controller values.

Description of the Elements
When the top node in the Task Configuration tree is selected, besides the Properties dialog
(see page 413) on a further tab the Monitoring dialog is available. In online mode, it shows the
status and some current statistics on the cycles and cycle times are displayed in a table view. The
update interval for the values is the same as used for the monitoring of controller values.

Task Configuration, Monitoring

&8 Task Configuration [Device: PLC Logic: Application] ibax
Properties | Monitor ‘
Task Status | IEC-Cycle Count' Cycle Count | Last Cycle Time (ps) Average Cycle Max. Cycle... Min... | Jitter (us) Min. Jitter (us) M
& Main Task Valld 6780 7071 124 7 1509 -15011

el |vaid 6780 qortl 05 120 191 6l tdor| 15021

< >

For each task the following information is displayed in a line:

Task Task name as defined in the Task configuration.

State Possible entries:

® Not created: has not been started since last update;
especially used for event tasks

® Created: task is known in the runtime system, but is not
yet set up for operation

e Valid: task is in normal operation

® Exception: task has got an exception

IEC-Cycle Count Number of run cycles since having started the application;
0 if the function is not supported by the target system.

414 EI00000000067 06/2017

Task Editor

Cycle Count Number of already run cycles (depending on the target
system, this can be equal to the IEC Cycle Count, or bigger
if cycles are even counted when the application is not
running.)

Last Cycle Time (us) Last measured runtime in ps

Average Cycle Time (us) Average runtime of all cycles in ps

Max. Cycle Time (ps)

Maximum measured runtime of all cycles in ys

Min. Cycle Time (us)

Minimum measured runtime of all cycles in ps

Jitter (us)

Last measured jitter* in ps

Min. Jitter (us)

Minimum measured jitter* in ps

Max. Jitter (us)

Maximum measured jitter* in pys

that it is running.

* jitter: Time that passes after the task has been started until the operating system indicates

To reset the values to 0 for a task, place the cursor on the task name field and execute the Reset
command available in the context menu.

EI00000000067 06/2017

415

Task Editor

Configuration of a Specific Task

Overview

When you insert a task in the Task Configuration node of the Applications tree, the task editor view
for setting the task configuration opens with the Configuration tab.

It also opens if you double-click an available task (for example, MAST) in order to modify the
configuration of the task.

Configuration tab for a task

Applications tree v 0 X £ MAST X .
‘ QI ' Configuration |
(=} -3} 2013.06.18_Woodworking_M~) o
(=1} Application (MyController || Priority (0.31): |15 ‘
@2 stCANinfo (STRUCT)
@G Type

E] ATV312.CTRL(PRG) || [cCyclic v| Intenval eg. #200ms): |40 | |

8] ATV312_OPER (PRO)

|£] HMIData (PRG)

] IOMappings (PRG) Watchdog
[E] LXM32A_CTRL (PRG) Enable
8] LXM32A_OPER (PRG)

2] MAINPROG (PRO) Time (e.g. #200ms): ~ [100 | [ms o]
=) é’ g!;wi%n;iguration Sensitivity: [1 [
&) MAINPROG
=-£3 Global

%, NachinglayouFieture dh Add Call X Remove Call (#Change Call & y |

a

| POU Comment |
| MAINPROG

NOTE: You can modify the task name by editing the respective entry in the Applications tree.
Insert the desired attributes.

Priority

Priority (0...31) ‘ A number from 0...31; 0 is the highest priority, 31 is the lowest

Type
The selection list offers the following task types:

Cyclic The task will be processed cyclic according to the time definition (task cycle
time) given in the field Interval (see below).

416 EI00000000067 06/2017

Task Editor

Type

Freewheeling The task will be processed as soon as the program is started and at the end of
one run It will automatically be restarted in a continuous loop. There is no cycle
time defined.

Status The task will be started if the variable defined in the Event field is TRUE.
NOTE: This function is not available for all supported controllers. For more
information, refer to the Programming Guide of your controller.

Event The task will be started as soon as the variable defined in the Event field gets
a rising edge.

External event The task will be started as soon as the system event, which is defined in the
Event field, occurs. It depends on the target, which events will be supported
and offered in the selection list. (Not to be mixed up with system events.)

Difference Between Status and Event

The specified event being TRUE fulfills the start condition of a status driven task, whereas an event
driven task requires the change of the event from FALSE to TRUE. If the event changes too fast
from TRUE to FALSE and back to TRUE, then this event may be left undetected and thus the Event
task will not be started.

The following example illustrates the resulting behavior of the task in reaction to an event (green
line):

| I I |
2 3

At sampling points 1...4 tasks of different types show a different reaction:

Behavior at Point: 1 2 3 4

Status No start Start Start Start

Event No start Start No startbecause | No start
the event

changed too fast
from TRUE to
FALSE and back
to TRUE

EI00000000067 06/2017 417

Task Editor

Obligatory Entries Depending on Task Choice

Entry

Description

Interval task
cycle time

Obligatory for type Cyclic.
The time (in milliseconds [ms]]) after which the task should be restarted.

NOTE: Consider the currently used bus system when setting the task cycle time. For
example on a CAN bus, you can set the Bus cycle task in the CANopen 1/0 Mapping tab.
It must correspond to the currently set transmission rate and the number of frames used on
the bus. Further on the times set for heartbeat, nodeguarding, and sync always should be
a multiple of the task cycle time. Otherwise CAN frames can get lost. For further
information, refer to the Device Editor part of the SoMachine online help.

Event

Obligatory for type Event or triggered by an External event.

A global boolean variable which will trigger the start of the task as soon as a rising edge is
detected. Use button ... or the Input Assistant to get a list of all available global event
variables.

NOTE: If the event that is driving a task stems from an entry, there must be at least one
task which is not driven by events. Otherwise, the 1/Os will never get updated and the task
will never get started.

Watchdog Settings

For each task, you can configure a time control (watchdog).

The default watchdog settings depend on your controller.

When the Enable option is activated (check mark is set), the watchdog is enabled. When the task
watchdog is enabled, an Exception error is detected if the execution time of the task exceeds the
defined task time limit (Time) relative to the defined Sensitivity. If option Update 10 while in stop is
enabled in the controller settings dialog box, the outputs will be set to the pre-defined default values
depending upon the particular controller platform.

Time (e.g. t#200ms) Defines the allowable maximum execution time for a task. When a task

takes longer than this, the controller will report a task watchdog exception.

Sensitivity

Defines the number of task watchdog exceptions that must occur before the
controller detects an application error.

NOTE: The watchdog function is not available in simulation mode.

For further information, refer to the System and Task Watchdog chapter of the Programming Guide
of your controller.

418

EI00000000067 06/2017

Task Editor

POUs

The POUs which are controlled by the task are listed here in a table with the POU name and an
optional Comment. Above the table there are commands for editing:

In order to define a new POU, open the Input Assistant dialog box via the command Add Call.
Choose 1 of the programs available in the project. You can also add POUs of type program to
the list by drag and drop from the Applications tree.

In order to replace a program call by another 1, select the entry in the table, open the Input
Assistant via command Change Call.. and choose another program.

In order to delete a call, select it in the table and use the command Remove Call.

The command Open POU opens the currently selected program in the corresponding editor.

The sequence of the listed POU calls from top to bottom determines the sequence of execution in
online mode. You can shift the selected entry within the list via the commands Move up and Move
down.

Task Processing in Online Mode

Which Task Is Being Processed?
For the execution of the tasks defined in the Task Configuration, the following rules apply:

That task is executed, whose condition has been met. This means, if the specified time has
expired, or after its condition (event) variable exhibits a rising edge.

If several tasks have a valid requirement, then the task with the highest Priority will be executed.
If several tasks have valid conditions and equivalent priorities, then the task with the longest
waiting time will be executed first.

The processing of the POU (of type program) calls will be done according to their order (top
down) in the Task Editor. If a POU is called which is available with the same name both in the
Applications tree assigned to the application, as well as in a library or project-globally in the
Global node of the Applications tree, the one will be executed that is directly declared below in
the Applications tree.

EI00000000067 06/2017 419

Task Editor

420 EI00000000067 06/2017

Chapter 20
Watch List Editor

What Is in This Chapter?

This chapter contains the following topics:

Topic Page
Watch View / Watch List Editor 422
Creating a Watch List 423
Watch List in Online Mode 424
EIO0000000067 06/2017 421

Watch List Editor

Watch View / Watch List Editor

Overview

A watch list is a user-defined set of project variables. They are displayed in the watch view for
monitoring (see page 424)the values in a table. Also, writing and forcing of the variables is
possible within the watch view.

Open a watch view via the Watch command submenu (by default in the View menu). It provides
an editor for creating watch lists (see page 42.3).

By default, you can set up 4 individual watch lists in the watch views Watch 1, Watch 2, Watch 3,
Watch 4. View Watch all Forces in online mode gets filled (see page 425) automatically with all
currently forced values of the active application.

422 EI00000000067 06/2017

Watch List Editor

Creating a Watch List

Overview

To set up a watch list Watch<n> in the Watch view, click in a field of the Expression column and
press the SPACE key to edit the column Expression. Enter the complete path for the desired watch
expression. The Input Assistant is available via button

Syntax for Watch Expression
<device name>.<application name>.<object name>.<variable name>

Example
Example:
Devl. Appl. PLC PRG i var

The type of the variable is indicated by an icon before the variable name:

Icon Variable
Y Input
K,, Output
P Normal

After you have entered the variable in the Expression column, the corresponding data type is
added automatically in the column Type. If a comment has been added to the declaration of a
variable, it is added in the column Comment.

The column Value displays the current value of the expression in online mode (see page 424).

To prepare a value for a variable, click in the assigned field of the column Prepared value and
directly enter the desired value.

In case of a boolean variable the handling is even easier: You can toggle boolean preparation
values by use RETURN or SPACE according to the following order:

If the value is TRUE, the preparation steps are FALSE -> TRUE -> no entry; else, if the value is
FALSE, the preparation steps are TRUE -> FALSE -> no entry.

Do the same for the desired further expressions/variables in further lines. See an example in the
next image which shows the watch view in offline mode: It contains expressions of objects
PLC_PRGand Prog_St.

Keep in mind that in case of a structured variable, as with the function block instance, the particular
instance components automatically get added when you enter the instance name (see in the
example: Devl. Appl. PLC_PRG f bi nst). Click the plus-/minus sign to display or hide them in a
fold.

EI00000000067 06/2017 423

Watch List Editor

Example, watch view in offline mode

Watch 1 » O X
Expression Comment Type Value Prepared va #
Device.Appli... |counter INT <Not logged in>
=] # Device.Appli... |instance of FB1 FB1
*¢ foin INT <Not logged in>
"¢ fbout [INT <Not logged in>
¢ fovar INT <Not logged in> M

In online mode (see page 424), you can use the list for monitoring of the variable values.

NOTE: In online mode you can add expressions to the watch list by use of the command Add
Watch.

Watch List in Online Mode

Monitoring

A watch list (see page 422) (Watch<n>) in online mode shows the current value of a variable in the
Value column. This is the value the variable has between 2 task cycles.

Also a possibly assigned direct IEC address and/or comment are displayed. The components of
the view correspond to those of the online view of the declaration editor (see page 380).

See chapter Creating a Wafch List (see page 423)for a description on how to set up such a watch
list and how to handle folds in case of structured variables.

Watch view in online mode

Watch 1 v o X
Expression Type Value Prepared value Address Comment
(=] & myDev.Application.PLC_PRG.myStruct | TestStruct Check address defined in “TestStruct’

® nTestl |INT 11876 %MWO

nTest? INT 0 YHMW2

myDev.Application.PLC_PRG.bVar BOOL %QX0.3

=] # myDev.Application.PLC_PRG.finst FB1 instance of function block FB1

“& fbin INT 0

"¢ fhout INT 0

¢ fovar INT 0
< >

] Messages - Totally 0 error(s), 0 waming(s), 0 message(s) | B Watch 1

NOTE: In online mode you can add expressions to the watch list by use of the command Add
Watch.

424 EI00000000067 06/2017

Watch List Editor

Write and Force Values

In column Prepared value, you can enter a desired value which will be written or forced to the
respective expression on the controller by command Write values or Force values. Refer to the
descriptions of the commands Write and Force, usable also in other monitoring views (for example,

declaration editor).

Watch All Forces

This is a special watch list view, which in online mode is automatically filled with all currently forced
values of the active application. Each Expression, Type, Value, and Prepared value will be shown,

as in the online view of a Watch<n> list.

You can unforce values by 1 of the following commands available via the button Unforce...:

e Unforce all selected Expressions, without modifying the value.

e Unforce all selected Expressions and restore the variable to the value it had before forcing it.

Watch all Forces dialog box

atch all Forces ®

i| Unforce... || N
W

Unforce all selected Expressions, without modifying the value.

Unforce all selected Expressions and restore the variable to the value it had before forcing it.

¥ PLC_3-ApPICatoN.VaNTSIEPPIY.VaTane_Z

PLC_3.Application.MainStepping.result

PLC_3 Application.MainStepping.erg

® PLC_3.Application.MainStepping.instanceCastTest_0.State

TNT 00

BOOL
INT 0 2

INT 0 1

lue

EI00000000067 06/2017

425

Watch List Editor

426 EI00000000067 06/2017

Chapter 21

Tools Within Logic Editors

What Is in This Chapter?

This chapter contains the following topics:

Topic Page
Function and Function Block Finder 428
Input Assistant 431
EIO0000000067 06/2017 427

Tools Within Logic Editors

Function and Function Block Finder

Overview

SoMachine provides the FFB (function and function block) finder that assists you in finding a
specific function or function block even if you do not know its exact name.

You can use the function and function block finder in the following programming languages that
allow to insert function blocks:

e CFC

LD

IL

FBD

ST

How to Find a Function or Function Block with the FFB Finder

When you are about to create programming code in the SoMachine Logic Builder, go to the place
where you want to insert the function block and open the FFB finder as follows:
e select the menu Edit - FFB Finder
or
e right-click at the respective place in the editor and select the command FFB Finder... from the
context menu

428

EI00000000067 06/2017

Tools Within Logic Editors

The FFB Finder dialog box opens:

FEB Finder

Find what | *M278*

(You can use * and ? as wildcards)

Company I Schneider Electric vl

[] Match case [[] Include comments in search [_| Search in project libraries only

Results
Loaded ‘ Name Library I Version | Company | Comment
[:l \ "' SCHNEIDER_M258 ENCODER_REF LMCO058 Motion 1.0.1.2 Schneider Electric
"1 HSCMain_M258 M258 Expert 10 1.0.1.14 Schneider Electric
0
[C] [ENCODER M258 M258 Expert IO 1.0.1.14 Schneider Electric
[:| L PWM_M258 M258 Expert IO 1.0.1.14 Schneider Electric
I | FrequencyGenerator_M258 M258 Expert 10 1.0.1.14 Schneider Electric
[:l E HSCSimple_M258 M258 Expert IO 1.0.1.14 Schneider Electric

6 occurences in 2 libraries found

FUNCTION_BLOCK FrequencyGenerator_M258 _A_‘
FrequencyGenerator_M258

Description

This function block commands a square wave signal output at the specified frequency.

Notes:

The function block instance name must match the name defined by configuration.

All hardware-related information managed by this FB is synchronized with the MAST task cycle. Therefore:

- use the FB instance in the MAST task. vJ
[OK] [Cancel]

EI00000000067 06/2017 429

Tools Within Logic Editors

The FFB Finder dialog box contains the following elements for finding a function or function block:

Element

Description

Find what

In the Find what textbox, enter the name of the function or function block you
want to insert into your programming code.

As wildcards you can use a question mark (?), which replaces exactly one
character, or an asterisk (*), which can replace several characters or no
character at all.

Company

If you know the company that created the library which includes the function
block you are searching for, you can select the following companies from the
Company list:

® 38 - Smart Software Solutions GmbH

® CAA Technical Workgroup

e Schneider Electric

o System

This parameter is by default set to All companies.

Match case

Check the Match case check box to perform a case-sensitive search.
By default, this check box is not selected.

Include comments in search

Check the Include comments in search check box to search for the entered
string not only in the names of functions and function blocks but also in the
comments that are saved with them.

By default, this check box is not selected.

Search in project Libraries only

Check the Search in project libraries only check box to limit the search to
those libraries that are used in the current application.

By default, this check box is not selected and the find operation includes all
libraries that are installed on the SoMachine PC.

Find

Click the Find button or press the ENTER key to start searching for the
function or function block.

Results Returned by the FFB Finder
Any function or function block that matches the entered search criteria will be listed in the Results
list with the following information:
e Name of the function or function block

the Library the function or function block is saved in

the Version of the library

the Company that created the library

A comment, if available, will be displayed in the column on the right side.

The column Loaded on the left side indicates whether the library, the function or function block

is saved in, is already used in the current project.

To display further information on one of the functions or function blocks, select it from the list. In
the field below, a graphic of the function / function block with its inputs and outputs will be
displayed, as well as a description or any further information, if available.

430

EI00000000067 06/2017

Tools Within Logic Editors

Integrating a Function / Function Block into the Programming Code

To integrate a function / function block that was found by the FFB Finder in your programming
code, select it in the Results list, and
e ceither double-click the selected entry in the Results list,
e or click the OK button.

The selected function / function block will be inserted at the place where your cursor is positioned

in your programming code and the respective library will be loaded automatically.

Repeat this operation whenever you need assistance in finding a specific function / function block.

Input Assistant

Overview

The Input Assistant dialog box and the corresponding command Input Assistant (by default in the
Edit - Smart Coding menu) are only available if the cursor is placed in a text editor window. The

dialog box offers the available project items for being inserted at the current cursor position.

Input Assistant dialog box

Input Assistant [Z]

B

(=} @ ploConfigTaskMap
© istationsNr

® sBMPName

{3} SysCallback23

) Componentlds

INT
STRING
Library

(¢! Items:
Variables a Name Address | Origin Le)
Module Calls =] 7;3 Application
Instance Calls) Data types
Function Blocks = @ o VAR GLOBAL
Keywords © counter_heat7 BOOL
Conversion Operators € download BOOL
© lightcabinetim... BOOL
[=)- @ loConfig_Globals VAR_GLOBAL
® nloConfigTaskMa... ~ DINT Application
POINTER TO loConfig. Application

syscallback23,.

Documentation:

(VAR)

Structured view
Show documentation

sBMPName: STRING := ‘BMP_ID_CMD_LANGUAGE_DE’;

Filter:

v/

] [Cancel

)

EI00000000067 06/2017

431

Tools Within Logic Editors

Description of the Elements

The Input Assistant dialog box provides the following elements:

Element Description

Categories In this area, the project items are sorted by Categories.

Filter You can set a Filter for the category Variables. To display a certain type of variable,
select an entry from the list, such as Local variables, Global variables, Constants.

ltems area

Name, Type, Address, Origin

The Items area shows the available items and - depending on the category - also
their data Type, Address, and Origin for the category selected in the Categories
area.

The Origin is shown for I/O variables (path within the Devices Tree) and library-
defined variables (library name and category).

You can sort the items by Name, Type, Address, Origin in ascending or descending
alphabetic order. To achieve this, click in the respective column header (arrow-up
or arrow-down symbol).

To hide or display the columns Type, Address or Origin, right-click the headline of
the respective column.

Structured view

If the option Structured view is selected, the project items are displayed in a
structure tree supplemented with icons.

If the option is not selected, the project items are arranged flat. Each project item is
displayed with the POU it belongs to (example: GVL1.gvar1).

NOTE: If there are objects with the same name available in the Global node of the Applications
Tree as well as below an application (Applications Tree), only 1 entry is offered in the Input
Assistant because the usage of the object is determined by the usual call priorities (first the
application-assigned object, then the global one).

Element

Description

Show documentation

If the option Show documentation is selected, the Input Assistant dialog box is
extended by the Documentation field.

If the selected element is a variable and an address is assigned to this variable or a
comment has been added at its declaration, these are displayed here.

Insert with arguments

If this option is selected, items which include arguments, for example functions, are
inserted with those arguments.

Example:

If function block FB1, which contains an input variable f b1_i n and an output variable
fbl_out, is inserted with arguments, the following will be written to the editor:
fbl(fbl_in:=, fbl_ out=>)

Insert with namespace prefix

If this option is selected, the item is inserted with the prefixed namespace. Currently
this option is only available for global variables.

432

EI00000000067 06/2017

Part VI

Tools

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

22 Data Logging 435

23 Recipe Manager 437

24 Trace Editor 453

25 Symbol Configuration Editor 477

26 SoMachine Controller - HMI Data Exchange 485
EIO0000000067 06/2017 433

Tools

434 EI00000000067 06/2017

Chapter 22
Data Logging

Introduction to Data Logging

Overview
You can monitor and analyze application data by examining the data log file (.log).

L]

—\

File upload from SoMachine,
- Controller’s Web Server

| Controller’s 1 or FTP client request
I . . 1 e e e e e e —m——
application r)
] PP : 1 Controller's :
1 1
1 LogFile 1 I memory 1
I I I . !
I Dr\:evlv FB : fI?_ufftla:r_l o> " LogFile.log :
1 ata log c
I LOg Record 1 ot Logrile 3 o : Data log 1 1
I 1 Data log x 'g g | ga:a :og 2 1
1 —_ ata log 3 1
1 Data log y Q = 1
. 1 Data log z () Data log 4 1
1 LogFile " 9 1 Data log 5 I
1 1 Data log 6 I
I Dumping | FB 1 | .
: command Dump : Force buffer dumping 1 V I
1
1 1 1
e m— 2 L ;

The figure shows an application that includes the 2 function blocks, LogRecor d and Dunp. The
LogRecor d function block writes data to the buffer, which empties into the data log file (.log)
located into the controller memory. The buffer dumping is automatic when 80% full or it can be
forced by the Dunp function. As a standard FTP client, a PC can access this data log file when the
controller acts as an FTP server. It is also possible to upload the file with SoMachine or by the
controller web server.

NOTE: Only controllers with file management functionality can support data logging. Refer to your
controller programming manual to see if it supports file management. The software itself does not
evaluate your controller for compatibility with data logging activities.

EI00000000067 06/2017 435

Data Logging

Sample Data Log File (.log)
Entries in File:

Implementation Procedure

18/ 06/ 2009; 14:
18/ 06/ 2009; 14:
18/ 06/ 2009; 14:
18/ 06/ 2009; 14:
18/ 06/ 2009; 14:
18/ 06/ 2009; 14:
18/ 06/ 2009; 14:
18/ 06/ 2009; 14:

12:
12:
12:
12:
12:
12:
14:
14:

8; Last Entry: 8;

33; cycl e:
35; cycl e:
38; cycl e:
40; cycl e:
41; cycl e:
43; cycl e:
20; cycl e:
26; cycl e:

1182;
1292;
1450;
1514;
1585;
1656;
6346;
6636;

First declare and configure the data log files in your application before starting to write your

program.

436

EI00000000067 06/2017

Chapter 23

Recipe Manager

What Is in This Chapter?

This chapter contains the following topics:

Topic Page
Recipe Manager 438
Recipe Definition 441
Reci peian Commands 445
EI00000000067 06/2017 437

Recipe Manager

Recipe Manager

Overview

The Recipe Manager functionality is only available if selected in the currently used feature set
(Options — Features — Predefined feature sets).

The recipe manager provides the functionality for handling user-defined lists of project variables,
named recipe definitions, and definite value sets for these variables within a recipe definition,
named recipes.

You can use recipes for setting and watching control parameters on the controller. They can also
be loaded from and saved to files. These interactions are possible by using visualization elements
which you have to configure appropriately (input configuration execute command). You can also
use certain recipe commands in the application (see page 445).

When you have selected a recipe, validate that the recipe is appropriate for the process that will
be controlled.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Conduct a safety analysis for the application and equipment installed.

Verify that recipe is appropriate for the process and equipment or function in the installation.
Supply appropriate parameters, particularly for limits and other safety-related elements.
Verify that all sensors and actuators are compatible with the recipe selected.

Thoroughly test all functions during verification and commissioning.

Provide independent paths for critical control functions (emergency stop, over-limit conditions
etc.) according to the safety analysis and applicable codes and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

By default, the recipe manager is loaded to the controller during download. It handles the writing
and reading of recipes when the application is running on the controller. However, it is not
necessary to load the recipe manager to the controller to use recipes only for exchanging
parameters during startup of the system (that is when SoMachine is still connected to the
controller). You can deactivate its download for this purpose using the option Recipe management
in the plc. The writing and reading of recipe values will then be handled by the standard online
commands and services. If the recipe management has to run on the controller, because it is
needed by the application program during run time, then the Reci peComrands function block is
responsible for handling the recipe commands.

For a description of the behavior of recipes in the various online modes, refer to the chapter Recipe
Definition (see page 441).

438

EI00000000067 06/2017

Recipe Manager

If the recipe manager is located on another controller other than the application being affected by
the recipes, the data server will be used to read/write the variables contained in the recipes.
Reading and writing of the variables is done synchronously. By calling g_Reci peM

anager . Last Er r or after reading/writing, you may verify if the transmission has been carried out
successfully (g_Reci peManager . Last Er r or =0 in this case).

Recipe Management Objects in the Tools Tree

To add a Recipe Manager object to the Tools tree, select the Application node, click the green plus
button and execute the command Add other objects... - Recipe Manager.... Confirm the Add
Recipe Manager dialog box by clicking Add and the Recipe Manager node is inserted below the
Application node.

You can add one or several Recipe Definition objects to a Recipe Manager node. To achieve this,
click the green plus button of the Recipe Manager node and execute the command Recipe
Definition.... Enter a Name in the Add Recipe Definition dialog box, and click Add. Double-click the
node to view and edit recipe definitions including the particular recipes in a separate editor window.
For a description of the behavior of recipes in the various online modes, refer to the chapter Recjpe
Definition (see page 441).

Recipe Manager Editor, Storage Tab

By default, the recipes will be stored automatically to files according to the settings in the Storage
tab of the Recipe Manager editor:

ﬂ Recipe Manager X v
Storage \ General
Storage Type: Textual J ‘
File Path: C:\project1\recipe D
File Extension: ttrecipe ‘
Separator

O Tab O Semicolon O Comma

QO space ®:= Ol

Available Columns [Selected Columns

W 7ype ‘ AP Varizble

"’ Name "’Currem Value

".’Minimal Value = "’Comment

“’Maximal Value

Save changes to recipes automatically

EI00000000067 06/2017 439

Recipe Manager

Parameter Description

Storage Type Select Textual or Binary storage type.

File Path Specify the location where the recipe will be stored.
File Extension Specify the file extension of the recipe file.

NOTE: A storage file can also be defined by the input on a visualization element (input
configuration - execute command - save/load a recipe from a file). However, when defining the
name of such a file in the visualization configuration, do not overwrite the *.&xtrecipe file defined

here in the recipe manager.

Parameter

Description

Separator

In case of textual storage, the columns selected for storage will be separated
by a separator. Select 1 of the 6 options proposed.

Available Columns

All columns of the recipe definition, represented by the respective header.

Selected Columns

Selected columns of the recipe definition, that is, the columns to be stored.
At least the column containing the Current Value is included in this part. It
cannot be deselected.

arrow buttons

The other columns can be shifted to the right or to the left by selecting the
respective entry and clicking the arrow buttons. You can also shift all entries
from one side to the other at once by using the double arrow buttons.

Up and Down buttons

Click these buttons to adjust the order of the selected columns, which
represents the order of the columns in the storage file.

For each recipe, a file <recipe name>.<recipe definition>.<file extension> will
be created in the specified folder. This file will be reloaded to the recipe
manager at each restart of the application. For the update configuration of the
recipe storage files, refer to the description of the General tab (see page 440).

Save as default

Click the Save as default button to use the settings made within this dialog
box as default settings for each further recipe manager inserted.

Save changes to recipes

automatically

Select this option to update immediately the storage files after any
modification of a recipe during run time.

Recipe Manager Editor, General Tab

Parameter

Description

Recipe management in the plc

If the recipe manager is not needed on the controller, because no recipes
are to be handled during run time of the application, you can deactivate
this option. This avoids downloading the manager.

An automatic update of the recipe file is only possible after the download
has been performed. To download the recipe management to the
controller, select this option.

440

EI00000000067 06/2017

Recipe Manager

Recipe Definition

Overview

The recipe manager (see page 438) handles 1 or several recipe definitions. A recipe definition
contains a list of variables and 1 or several recipes (value sets) for these variables. By using
different recipes, you can assign another set of values to a set of variables on the controller in one
stroke. There is no limitation of the number of recipe definitions, recipes, and variables per recipe.

Recipe Definition

You can add 1 or several Recipe Definition objects to a Recipe Manager node in the Tools tree.
To achieve this, click the green plus button of the Recipe Manager node and execute the command
Recipe Definition....

Double-click the node to view and edit recipe definitions including the particular recipes in a
separate editor view.

Recipe definition editor view

Devices *a3x 3, RecDefl x
Bl recipeman Variable Type Name Comment Minima... Maxima...Current value R1
= Myl () PLC_PRGltvar | BOOL | bv FALY
=20 PloLogic PLCPRGlvar |INT |iv | Degree.. 0 30 3
& €3 Application PLC_PRGlvisutext| STRING | sv ‘ele_1’

Library Manager
[£] PLC_PRG (PRG)
=] {4, Recipe Manager
@, RecDeft b

3, RecDef2

1 recipe definition name
2 recipe names

The editor window will be titled with the name of the recipe definition.

Parameter Description

Variable In a table, you can enter several project variables for which you want to define
1 or several recipes. For this purpose, you can use the command Insert Variable
when the cursor is in any field of any line. Alternatively, you can double-click a
Variable field, or you can select it and press the spacebar to get into editor mode.
Enter the valid name of a project variable, for example pl ¢c_pr g. i var . Click the
... button to open the input assistant.

Type The Type field is filled automatically. Optionally, you can define a symbolic Name.

Name You can define a symbolic Name.

Comment Enter additional information, such as the unit of the value recorded in the
variable.

Minimal Value and You can optionally specify these values which should be permissible for being

Maximal Value written on this variable.

EI00000000067 06/2017 441

Recipe Manager

Recipe

Parameter Description

Current Value This value is monitored in online mode.

Save changes to recipes | It is a best practice to activate this option because it affects the usual behavior of
automatically a recipe management: the storage files will be updated immediately at any
modification of a recipe during run time. Consider that the option can only be
effective as long as the recipe manager is available on the controller.

You can remove a variable (line) from the table by pressing the DEL key when one of its cells is
selected. You can select multiple lines by keeping the CTRL key pressed while selecting cells. You
can copy the selected lines by copy and paste. The paste command inserts the copied lines above
the currently selected line. In doing so, recipe values will be inserted in the matching recipe column,
if available.

To add a recipe to the recipe definition, execute the Add a new recipe command (see SoMachine,
Menu Commands, Online Help) when the focus is in the editor view. For each recipe, an own
column will be created, titled with the recipe name (example: R1 and R2 in the figure above).

In online mode, a recipe can be changed either by an appropriately configured visualization
element (input configuration execute command) or by using the appropriate methods of the
function block Reci peManComrands of the Recipe_Management.library.

The following methods are supported:

ReadReci pe: The current variable values are taken into the recipe.
W it eReci pe: The recipe is written into the variables.

SaveReci pe: The recipe is stored into a standard recipe file.
LoadReci pe: The recipe is loaded from a standard recipe file.

Cr eat eReci pe: A new recipe in the recipe definition is created.

Del et eReci pe: An existing recipe from a recipe definition is deleted.

See in the following paragraphs, how the recipes behave in the particular online states. It is a best
practice to set the option Save changes to recipes automatically (in order to get the usual behavior
of a recipe management).

You can add or remove a recipe offline or online. In offline mode, use the commands Add a new
recipe (see SoMachine, Menu Commands, Online Help) and Remove recipes (see SoMachine,
Menu Commands, Online Help)within the recipe manager editor. In online mode, either configure
an input on an appropriately configured visualization element, or use the appropriate methods of
function block Reci peManConmmands of the Recipe_Management.library.

When adding a recipe, a further column will be added behind the right-most column, titled with the
name of the recipe (see the figure of the recipe definition editor view). The fields of a recipe column
can be filled with appropriate values. Thus, for the same set of variables, different sets of values
can be prepared in the particular recipes.

442

EI00000000067 06/2017

Recipe Manager

Using Recipes in Online Mode

The recipes can be handled (created, read, written, saved, loaded, deleted) by using the methods
of the function block Reci peManConmands, provided by the library Recipe_Management.libray,
in the application code, or via inputs on visualization elements.

Recipe handling in online mode if Save changes to recipes automatically is activated:

Actions

Recipes Defined Within the Project

Recipes Created During Run Time

Online Reset Warm
Online Reset Cold
Download

The recipes of all recipe definitions
get set with the values out of the
current project.

Dynamically created recipes
remain unchanged.

Online Reset Origin

The application will be removed from the controller. If a new download is
done afterwards, the recipes will be restored like on an Online Reset

Warm.

Shut down and restart the
controller

After the restart the recipes are reloaded from the automatically created
files. So the status before shutdown will be restored.

Online Change

The recipe values remain unchanged. During run time, a recipe can only
be modified by the commands of the Reci peManCommands function

block.

Stop

At a stop/start of the controller, the recipes remain unchanged.

Recipe handling in online mode if Save changes to recipes automatically is NOT activated:

Actions

Recipes Defined Within the Project

Recipes Created During Run Time

Online Reset Warm
Online Reset Cold
Download

The recipes of all recipe definitions
get set with the values out of the
current project. However, these
are only setin the memory. In order
to store the recipe in a file, the save
command must be used explicitly.

Dynamically created recipes get
lost.

Online Reset Origin

The application will be removed
from the controller. If a new
download is done afterwards, the
recipes will be restored.

Dynamically created recipes get
lost.

Shut down and restart the
controller

After the restart the recipes are reloaded from the initial values which
had been created at download from the values out of the project. So the
status as it was before shutdown will not be restored.

Online Change

The recipe values remain unchanged. During run time, a recipe can only
be modified by the commands of the Reci peManCommands function

block.

Stop

At a stop/start of the controller, the recipes remain unchanged.

EI00000000067 06/2017

443

Recipe Manager

Further information:

e Concerning the storage of recipes in files, which are reloaded at a restart of the application, refer
to the description of the Recijpe Manager Edifor, Storage Tab (see page 439).

e For a description of the particular Reci peManConmands methods (see page 445), refer to the
documentation within the library.

e Forthe appropriate input configuration of a visualization element, refer to its help page (category
Input -~ execute command).

The following actions on recipes are possible:

Actions

Description

Create recipe (= Add a new
recipe)

A new recipe will be created in the specified recipe definition.

Read recipe

The current values of the variables of the specified recipe definition will be
read from the controller and be written to the specified recipe. This means that
the values will be stored implicitly (in a file on the controller). They will also will
be monitored immediately in the recipe definition table in the Recipe Manager.
In other words, the recipe managed in the Recipe Manager gets updated with
the actual values from the controller.

Write recipe

The values of the given recipe, as visible in the recipe manager, will be written
to the variables on the controller.

Save Recipe

The values of the specified recipe will be written to a file with extension
* txtrecipe, the name of which you have to define. For this purpose, the
standard dialog box for saving a file in the local file system will open.

NOTE: The implicitly used recipe files, necessary as a buffer for reading and
writing of the recipe values, may not get overwritten. This means that the
name for the new recipe file must be different from <recipe name>.<recipe
definition name>.txtrecipe.

Load Recipe

The recipe which has been stored in a file (see the Save Recipe description)
can be reloaded from this file. The standard dialog box for browsing for a file
will open for this purpose. The filter is automatically set to extension

* Ixtrecipe. After reloading the file, the recipe values will be updated
accordingly in the recipe manager.

Delete recipe (= Remove
recipe)

The specified recipe will be removed from the recipe definition.

Change recipe

The value of the project variables can be changed. With a following write
recipe action, the appropriate project variables are written with the new
values.

Creating Specific Tasks for Recipe Management

Using recipe files (create, read, write, delete) may have impact on the performance of the logic
controllers. If you wish to use recipe files, consider creating specific tasks (see page 4176) with a
low priority and with the Watchdog function disabled.

444

EI00000000067 06/2017

Recipe Manager

Reci pevan Commands

Overview

When calling a recipe command, internal data access will be performed. Depending on the device
type, this will take a few milliseconds. Verify that these calls are not performed by the MAST task
or by a task with a configured watchdog or a real-time task. This may lead to an application error

and the controller will enter the HALT state.

Consider that the option Save changes to recipes automatically will also perform a file access with
each change of the recipe. Deactivate this option if the storage of the recipe is triggered by the

application.

Return Values

The following return values are possible for recipe commands:

Return Value

Description

ERR_NO_RECIPE_MANAGER_SET

No recipe manager is available on the controller.

ERR_RECIPE_DEFINITION_NOT_FOUND

The recipe definition does not exist.

ERR_RECIPE_ALREADY_EXIST

The recipe already exists in the recipe definition.

ERR_RECIPE_NOT_FOUND

The recipe does not exist in the recipe definition.

ERR_RECIPE_FILE_NOT_FOUND

The recipe file does not exist.

ERR_RECIPE_MISMATCH

The content of the recipe file does not match the
current recipe.

NOTE: This return value is only generated when the
storage type is textual and when a variable name in
the file does not match the variable name in the
recipe definition. The recipe file is not loaded.

ERR_RECIPE_SAVE_ERR

The recipe file could not be opened with write access.

ERR_FAILED The operation was unsuccessful.
ERR_OK The operation was successful.
CreateRecipe

This method creates a new recipe in the specified recipe definition and afterwards reads the
current controller values into the new recipe. At the end, the new recipe is stored in the default file.

Parameter

Description

Reci peDefi ni ti onNane:

name of the recipe definition

Reci peNane:

name of the recipe

EI00000000067 06/2017

445

Recipe Manager

Return values (see page 445).

ERR NO RECI PE_MANAGER SET, ERR RECI PE_DEFI NI TI ON_NOT_FOUND, ERR REC! PE_

ALREADY_EXI ST, ERR _FAI LED, ERR K

CreateRecipeNoSave

This method creates a new recipe in the specified recipe definition and afterwards reads the

current controller values into the new recipe.

Parameter

Description

Reci peDef i ni ti onNane:

name of the recipe definition

Reci peNane:

name of the recipe

Return values (see page 445).

DeleteRecipe

DeleteRecipeFile

ERR_NO RECI PE_MANAGER_SET, ERR RECI PE_DEFI NI TI ON_NOT_FOUND, ERR RECI PE_
NOT_FOUND, ERR FAI LED, ERR K
This method deletes a recipe from a recipe definition.

Parameter Description

Reci peDef i ni ti onNane: name of the recipe definition

Reci peNane: name of the recipe

Return values (see page 445).

ERR_NO RECI PE_MANAGER_SET, ERR RECI PE_DEFI NI TI ON_NOT_FOUND, ERR RECI PE_
NOT_FOUND, ERR _FAI LED, ERR K
This method deletes the standard recipe file from a recipe.

Parameter Description

Reci peDef i ni ti onNane: name of the recipe definition

Reci peNane: name of the recipe

Return values (see page 445).

ERR_NO RECI PE_MANAGER_SET, ERR RECI PE_DEFI NI TI ON_NOT_FOUND, ERR RECI PE_

NOT_FOUND, ERR RECI PE_FI LE_NOT_FOUND, ERR OK

446

EI00000000067 06/2017

Recipe Manager

LoadAndWriteRecipe

This method loads a recipe from the standard recipe file and afterwards writes the recipe into the

controller variables.

Parameter

Description

Reci peDef i ni ti onNane:

name of the recipe definition

Reci peNane:

name of the recipe

Return values (see page 445).

ERR_NO_RECI PE_MANAGER SET, ERR_RECI PE_DEFI NI TI ON_NOT_FOUND, ERR _RECI PE_
NOT_FOUND, ERR RECI PE_FI LE_NOT_FOUND, ERR RECI PE_M SMATCH, ERR FAI LED,

ERR_OK

LoadFromAndWriteRecipe

This method loads a recipe from the specified recipe file and afterwards writes the recipe into the

controller variables.

Parameter Description

Reci peDefi ni ti onNane: name of the recipe definition
Reci peNane: name of the recipe

Fi | eNane: name of the file

Return values (see page 445).

ERR_NO_RECI PE_MANAGER_SET, ERR_RECI PE_DEFI NI TI ON_NOT_FCQUND, ERR_RECI PE_
NOT_FCQUND, ERR _RECI PE_FI LE_NOT_FOUND, ERR RECI PE_M SMATCH, ERR _FAI LED,

ERR_OK

LoadRecipe

This method loads a recipe from the standard recipe file. The standard recipe file name is

<recipe>.<recipe definition>.<recipeextension>.

Parameter

Description

Reci peDef i ni ti onNane:

name of the recipe definition

Reci peNane:

name of the recipe

Return values (see page 445).

ERR_NO_RECI PE_MANAGER SET, ERR_RECI PE_DEFI NI TI ON_NOT_FOUND, ERR _RECI PE_
NOT_FOUND, ERR RECI PE_FI LE_NOT_FOUND, ERR RECI PE_M SMATCH, ERR FAI LED,

ERR_OK

EI00000000067 06/2017

447

Recipe Manager

ReadAndSaveRecipe

This method reads the current controller values into the recipe and afterwards stores the recipe
into the standard recipe file.

Parameter Description
Reci peDef i ni ti onNane: name of the recipe definition
Reci peNane: name of the recipe

Return values (see page 445).
ERR_NO_RECI PE_MANAGER SET, ERR_RECI PE_DEFI NI TI ON_NOT_FOUND, ERR RECI PE_
NOT_FOUND, ERR RECI PE_SAVE ERR, ERR FAI LED, ERR OK

ReadAndSaveRecipeAs

This method reads the current controller values into the recipe and afterwards stores the recipe
into the specified recipe file. The content of an existing file would be overridden.

Parameter Description

Reci peDef i ni ti onNane: name of the recipe definition
Reci peNane: name of the recipe

Fi | eNane: name of the file

Return values (see page 445):
ERR_NO_RECI PE_MANAGER SET, ERR_RECI PE_DEFI NI TI ON_NOT_FOUND, ERR RECI PE_
NOT_FOUND, ERR RECI PE_SAVE ERR, ERR FAI LED, ERR OK

SaveRecipe

This method stores the recipe into the standard recipe file. The content of an existing file would be
overridden. The standard recipe file name is <recipe>.<recipedefinition>.<recipeextension>.

Parameter Description
Reci peDefi ni ti onNane: name of the recipe definition
Reci peNane: name of the recipe

Return values (see page 445):
ERR_NO_RECI PE_MANAGER_SET, ERR_RECI PE_DEFI NI TI ON_NOT_FOUND, ERR_RECI PE_
NOT_FQOUND, ERR _RECI PE_SAVE_ERR, ERR FAI LED, ERR K

448 EI00000000067 06/2017

Recipe Manager

ReadRecipe

This method reads the current controller values into the recipe.

Parameter

Description

Reci peDefi ni ti onName:

name of the recipe definition

Reci peNane:

name of the recipe

Return values (see page 445).

WriteRecipe

ReloadRecipes

ERR_NO_RECI PE_MANAGER_SET, ERR RECI PE_DEFI NI TI ON_NOT_FCOUND, ERR_RECI PE_
NOT_FOUND, ERR_FAI LED, ERR K

This method writes the recipe into the controller variables.

Parameter Description

Reci peDefi ni ti onName: name of the recipe definition

Reci peNane: name of the recipe

Return values (see page 445).

ERR_NO_RECI PE_MANAGER_SET, ERR RECI PE_DEFI NI TI ON_NOT_FQUND, ERR _RECI PE_
NOT_FOUND, ERR_FAI LED, ERR K

This method reloads the list of recipes from the file system.

Parameter Description

Reci peDefi ni ti onName: name of the recipe definition

Return values (see page 445).

ERR_NO _RECI PE_MANAGER_SET, ERR _RECI PE_DEFI NI TI ON_NOT_FOUND, ERR_FAI LED,

ERR_OK

GetRecipeCount

This method returns the number of recipes from the corresponding recipe definition.

Parameter

Description

Reci peDefi ni ti onName:

name of the recipe definition

Return values: - 1 : if the recipe definition is not found.

EI00000000067 06/2017

449

Recipe Manager

GetRecipeNames
This method returns the recipe names from the corresponding recipe definition.

Parameter Description
Reci peDefi ni ti onNane: name of the recipe definition
pStrings : the strings where the recipe values should be stored
i Size : the size of an array of string
i Startlndex : the start index
can be used for a scrolling function

Return values (see page 445):
ERR_NO RECI PE_ MANAGER SET, ERR _RECI PE_DEFI NI TI ON_NOT_FOUND, ERR FAI LED,

ERR K
Example:
There are 50 recipes. To create a table which shows 10 recipe names at a time, define an array of
string:
strArr: ARRAY[O0..9] OF STRI NG
Corresponding to the i St art | ndex, the recipe names can be read from a specific area.
i Startlndex := 0;
The names 0...9 are returned.
i Startlndex := 20;
The names 20...29 are returned. In this example:
i Size := 10;

GetRecipeValues
This method returns the recipe variable values from the corresponding recipe.

Parameter Description
Reci peDefi ni ti onNane: name of the recipe definition
Reci peNane name of the recipe
pStrings : the strings where the recipe values should be stored
i Size : the size of an array of string
i Startlndex : the start index
can be used for a scrolling function
i StringLength : the length of the string in the array

450 EI00000000067 06/2017

Recipe Manager

Return values (see page 445).

ERR_NO_RECI PE_MANAGER SET, ERR_RECI PE_DEFI NI TI ON_NOT_FOUND, ERR_RECI PE_
NOT_FOUND, ERR FAI LED, ERR X

Example:

There are 50 recipes. To create a table which shows 10 recipe names at a time, define an array of
string:

strArr: ARRAY[O0..9] OF STRING

Corresponding to the i St ar t | ndex, the recipe names can be read from a specific area.

i Startlndex := 0;

The values 0...9 are returned.
i Startlndex := 20;
The values 20...29 are returned. In this example:

i StringLength := 80;
i Size := 10;

GetRecipeVariableNames
This method returns the variable name of the corresponding recipe.

Parameter Description
Reci peDefi ni ti onName: name of the recipe definition
Reci peNane name of the recipe
pStrings : the strings where the recipe values should be stored
i Size : the size of an array of string
i Startlndex : the start index
can be used for a scrolling function

Return values (see page 445).
ERR_NO_RECI PE_MANAGER SET, ERR_RECI PE_DEFI NI TI ON_NOT_FOUND, ERR_RECI PE_
NOT_FOUND, ERR _FAI LED, ERR K

Example:

There are 50 recipes. To create a table which shows 10 recipe names at a time, define an array of
string:

strArr: ARRAY[O0..9] OF STRING

Corresponding to the i St ar t | ndex, the recipe names can be read from a specific area.

i Startlndex := 0;

The names 0...9 are returned.

i Startlndex := 20;

EI00000000067 06/2017 451

Recipe Manager

The names 20...29 are returned. In this example:
i Size := 10;

SetRecipeValues
This method sets the recipe values into the corresponding recipe.

Parameter Description
Reci peDef i ni ti onNane: name of the recipe definition
Reci peNane name of the recipe
pStrings : the strings where the recipe values should be stored
i Size : the size of an array of string
i Startlndex : the start index
can be used for a scrolling function

Return values (see page 445).
ERR_NO RECI PE_MANAGER SET, ERR_RECI PE_DEFI NI TI ON_NOT_FOUND, ERR RECI PE_

NOT_FOUND, ERR_FAI LED, ERR K

Example:

There are 50 recipes. To create a table which shows 10 recipe names at a time, define an array of
string:

strArr: ARRAY[O0..9] OF STRI NG

Corresponding to the i St art | ndex, the recipe names can be read from a specific area.

i Startlndex := 0;

The values 0...9 are set.

i Startlndex := 20;

The values 20...29 are set. In this example:

i StringLength := 80;
i Size := 10;

GetlLastError
This method returns the last detected error of the previous operations.
Return values (see page 445). ERR_NO_RECI PE_MANAGER_SET, ERR K

ResetlLastError
This method resets the last detected error.
Return values (see page 445). ERR_NO_RECI PE_MANAGER_SET, ERR K

452 EI00000000067 06/2017

Chapter 24

Trace Editor

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
241 Trace Object 454
24.2 Trace Configuration 460
24.3 Trace Editor in Online Mode 474
24.4 Keyboard Operations for Trace Diagrams 475

EIO0000000067 06/2017

453

Trace Editor

Section 24.1
Trace Object

What Is in This Section?
This section contains the following topics:

Topic Page
Trace Basics 455
Creating a Trace Object 457

454

EI00000000067 06/2017

Trace Editor

Trace Basics

Trace Functionality

The trace functionality allows you to capture the progression of the values of variables on the
controller over a certain time, similar to a digital sampling oscilloscope. Additionally, you can set a
trigger to control the data capturing with input (trigger) signals. The values of trace variables are
steadily written to a SoMachine buffer of a specified size. They can be observed in the form of a
two-dimensional graph plotted as a function of time.

Way of Tracing Data

The tracing of data on the control is performed in 2 different ways:

e Either from IEC code generated by the trace object and downloaded to the controller by a trace
child application.

e Or within the CmpTr aceMgr component (also named Trace Manager).

What data is captured is determined by an entry in the target settings (frace — trace manager).

The trace manager has advanced functionality. It allows you to:

e configure and trace parameters of the control system, such as the temperature curve of the
processor or the battery. For more information, refer to the variable settings (see page 467)and
to the record (trigger) settings (see page 464).

e read out device traces, such as the trace of the electric current of a drive. For more information,
refer to the description of the Upload Trace command (see SoMachine, Menu Commands,
Online Help).

e trace system variables of other system components.

Furthermore, the additional command (see SoMachine, Menu Commands, Online Help) Online
List is available.

NOTE:

e Ifatrace is used in the visualization, device parameters cannot be traced or used for the trigger.

e The trigger level cannot be set to an IEC expression, only literals and constants are supported.

e The record condition cannot be set to an IEC expression of type BOOL, only variables are
supported.

e If a property is traced or used for the trigger, it must be annotated with the attribute monitoring
(see page 562)in IEC declaration.

EI00000000067 06/2017 455

Trace Editor

Configuration

Configure the trace data as well as the display settings of the trace data in the Configuration. It
provides commands for accessing the configuration dialog boxes. Several variables can be traced
and displayed at the same time, in different views such as multi-channel mode. Record traces of
variables with different trigger settings in their own trace object. You can create any number of
trace objects.

Tools tree with several trace objects

(=) WoodworkingM258
[=}- &} Application (MyController)
) PM3250_MdbSL
) TeSysU_1
) TeSysU_2
m Library Manager
(=14, Recipe Manager
Q& MyRecipes1
- H Symbol configuration
&g [Trace
&Z Trace_AutoScroll
93 Trace_Enumeration
Qg Trace_InputVariable
[=H2D Global
B Project Information
X MachineLayoutPicture
D Project Settings

Commands for modifying the settings of the display are described in the Feafures paragraph
(see page 458). Zooming functionalities and a cursor are available as well as commands for
running the trace so that the graph can be compressed or stretched.

To integrate the readout of a trace within a visualization, use the visualization element Trace.

456 EI00000000067 06/2017

Trace Editor

Creating a Trace Object

Overview

To insert a trace object in the Tools tree, select the Application node, click the green plus button
and execute the command Add other objects — Trace.... Double-click the Trace node in the Tools
tree to open the trace editor.

Configuration
New created trace with context menu

@8 Trace X v
3 EPH e e i @enTiguralion®
W Addyanaben

&

Add Variable

Configuration

L N I S S N S S S S S e e |

0 1s 2s 3s 4s 5s 6s 7s 8s 9s 10

A trace contains at least one variable which is sampled.

In the trace tree area in the right part of the window, the configured trace variables are displayed.
By default, the trace variables are displayed with their complete instance path.

Select the Hide instance paths check box to hide the instance path. To display this check box, click
the arrow button in the upper right corner of the trace tree area.

To configure or change the trace settings, use the commands of the context menu in the trace tree

area:

e Add Variable...: Opens the Trace Configuration dialog box with Variable Settings
(see page 461).

e Delete Variable: Deletes the selected variable. Only available if at least one trace variable
exists.

e Visible: This command makes the selected variable visible. Only available if at least one trace
variable exists.

EI00000000067 06/2017 457

Trace Editor

e Appearance: The Edit Appearance dialog box opens (see page 469). It allows you to
configure the appearance of the graph and the coordinate system. This command is grayed out
until a configuration is loaded.

e Configuration...: Opens the Trace Configuration dialog box with Record Settings
(see page 464).

Features

For running the trace, use the following commands:

e Add variable (see SoMachine, Menu Commands, Online Help)

e Download Trace (see SoMachine, Menu Commands, Online Help)
Start/Stop Trace (see SoMachine, Menu Commands, Online Help)
o Reset Trigger (see SoMachine, Menu Commands, Online Help)

For customizing the view of the graphs, use the following commands:

Cursor (see SoMachine, Menu Commands, Online Help)

Mouse Zooming (see SoMachine, Menu Commands, Online Help)

Reset View (see SoMachine, Menu Commands, Online Help)

Auto Fit (see SoMachine, Menu Commands, Online Help)

Compress (see SoMachine, Menu Commands, Online Help)

Stretch (see SoMachine, Menu Commands, Online Help)

Multi Channel (see SoMachine, Menu Commands, Online Help)

For further information, refer to the chapter (see page 475) Keyboard Operations for Trace
Diagrams.

For access to traces stored on the runtime system, use the following commands:
e Online List (see SoMachine, Menu Commands, Online Help)
e Upload Trace (see SoMachine, Menu Commands, Online Help)

For access to traces stored on the disc, use the following commands:

e Save Trace... (see SoMachine, Menu Commands, Online Help)

e Load Trace... (see SoMachine, Menu Commands, Online Help)

e Export symbolic trace config (see SoMachine, Menu Commands, Online Help)

458 EI00000000067 06/2017

Trace Editor

Getting Started

In order to start the trace in online mode, download the trace configuration to the controller by
executing the Download Trace command. The graphs of the trace variables will be displayed in the
trace editor window where you can store them to an external file. This file can be reloaded to the
editor. Also refer to the chapter 7race Edijtor in Online Mode (see page 474).

Step Action

1 Login and run the associated application.
Result: The application runs on the controller.

2 Download trace
Result: The trace graphs are immediately displayed according to the trace configuration.

3 Arrange the trace graphs, store the trace data, stop/start tracing.

Example

The trace editor shows an example of tracing in online mode. Four variables have been selected
for display in the variables tree in the right part of the dialog.

Trace in online mode

@§ Trace_Multichannel X B

10004 Configuration
Add Variable
== PLC_PRG.S7.0UT E]
== PLC_PRG.S8.0UT
mm PLC_PRG.S9.0UT
mm PLC_PRG.S10.0UT

Add Variable
Delete Variable

Visible
Appearance.
Configuration

LI S S E—— =T

s e
18m57s18m58518mb59s 19 m

N ———— -
19m1s 19m2s19m3s 19mbs 19m4s

EI00000000067 06/2017 459

Trace Editor

Section 24.2

Trace Configuration

What Is in This Section?
This section contains the following topics:

Topic Page
Variable Settings 461
Record Settings 464
Advanced Trace Settings 468
Edit Appearance 469
Appearance of the Y-axis 473

460 EI00000000067 06/2017

Trace Editor

Variable Settings

Overview

The Trace Configuration dialog box with Variable Settings opens when you select a trace variable
in the trace tree. It allows you to configure which variables should be traced and how they are

displayed.

Trace Configuration dialog box with Variable Settings

@’ Trace Configuration

[=]- Trace_MinMaxColor Variable Settings
wm PLC_PRG.S1.0UT
p— e |Variable: [+] | PLC_PRG.S1.0UT | [
Graph color: I Black v
Point type: Dot v
Activate minimum warning D
Critcal lower imit: 100 \
Warning minimum color: I Red -
Activate maximum warning
Critical upper limit: 500 ‘
Warning maximum color: [Green v
Add variable
Delete variable [Ok J [Sancel]

The trace variables are displayed in the left part of the window in a tree structure. The top node is

titled with the trace name.

Adding and Deleting a Trace Variable

For adding a variable to the trace tree or deleting one, use the commands below the trace tree:

Command

Description

Add Variable

creates an anonymous entry in the trace tree.
In the right part of the dialog box, the settings of the new variable are
ready for configuration.

Delete Variable

deletes the selected variable with the associated configuration.

EI00000000067 06/2017

461

Trace Editor

Setting and Modifying the Variable Settings

To choose the variable settings, select the desired variable in the trace tree. The current settings
will be displayed in the right part of the trace configuration window. To modify the variable settings
later, select the variable entry in the trace tree and use the Variable Settings dialog box again.

Parameter

Description

Variable

Enter the name (path) of the signal to specify the signal that will be traced.

A valid signal is an IEC variable, a property, a reference, the contents of a pointer, or an
array element of the application. Allowed types are all IEC basic types, except STRING,
WSTRING or ARRAY. Enumerations are also allowed, whose basic type is not a
STRING, a WSTRING or an ARRAY. Click the ... button to open the input assistant that
allows you to obtain a valid entry.

Controllers that support parameter tracing provide a list if you click the Variable:
parameter. If you want to trace a device parameter, select the item Parameter from this
list. Then you can find one with the help of the input assistant. Edit or verify the current
variable settings. Device parameters are only supported if the CnpTr aceMr
component is used. If device parameters are used for trace (or for trigger) variables, it is
not possible to activate the option Generate Trace POU for visualization.

NOTE: If CnpTr aceMyr is used for tracing, a Property (see page 766)that is used as
a trace (or trigger) variable must get the compiler attribute Attribute Monitoring
(see page 562).

Graph color

Select a color from the color selection list in which the trace curve for the variable will be
displayed.

Line type

Specify the way samples will be connected in the graph. Use Line for large volumes of
data. It is also the default value.

Line

The samples are connected to a line (default).

Step

The samples are connected in the shape of a staircase. Thus, a horizontal line to the time
stamp of the next sample followed by a vertical line to the value of the next sample.

None

The samples are not connected.

Point type

Specify how the values themselves will be drawn in the graph.

Dot

The samples are drawn as dots (default).

Cross

The samples are drawn as crosses.

None

The samples are not displayed.

Activate Minimum Warning

If this option is activated, the trace graph will be displayed in the color defined in Warning
minimum color as soon as the variable exceeds the value defined in Critical lower limit.

Critical lower limit

If the value of the variable entered here has fallen below and Activate minimum warning
is active, the values of the curve changes in the following specified color.

Warning minimum color

Color value for the activated lower limit.

Activate Maximum Warning

If this option is activated, the trace graph will be displayed in the color defined in Warning
maximum color as soon as the variable exceeds the value defined in Critical upper limit.

Critical upper limit

If the value of the variable entered here is exceeded and Activate maximum warning is
active, the values of the curve changes in the following specified color.

462

EI00000000067 06/2017

Trace Editor

Parameter

Description

Warning maximum color

Color value for the activated upper limit.

Appearance...

Opens the Appearance of the Y-axis dialog box. It allows you to set up the display of the
trace window for the currently configured Y-axis (colors and scroll behavior) for every
variable in its own style. These settings are used when the trace diagram is displayed in
multi-channel view.

Multi-Selection of Variables

By using the keyboard shortcuts SHIFT + mouse-click or CTRL + mouse-click, you can select
several variables for editing. Then the changes in the dialog box Variable Settings apply for all
selected variables. The same can be done with SHIFT + ARROW UP/DOWN or CTRL + ARROW

UP/DOWN.

Multi-selection in dialog box Trace Configuration

®° Trace Configuration @

[=]- Trace_MinMaxColor
mm PLC_PRG.S1.0UT
== PLC_PRG.S2.0UT

Variable Settings

|Variable: [+ | PLC_PRG.S1.0UT | (=)
oo I -

Activate minimum warning D

Critcal lower limit: 100 |
Warning minimum color: [Red v

Activate maximum warning

Critical upper limit: 500 \

Warning maximum color: [Green v

Add variable
Delete variable

[OK][Cancel]

EI00000000067 06/2017

463

Trace Editor

Record Settings

Overview

The Trace Configuration dialog box with Record Settings opens if you execute the command
Configuration... or if you double-click the trace name on the top of the trace tree. The configuration
command is also available in the context menu of the trace tree on the right part of the main trace
editor window.

NOTE: The settings completed in the dialog box Trace Configuration dialog box with Record
Settings are valid for all variables of the trace graph.

Trigger Basics

In most situations, it is not desired that tracing and displaying the input signals starts at random
moments, such as immediately after the previous measurement, or when the user presses the start
button. Most of the time it is preferred that the tracing is done when a trigger is fired for the
configured number of records (post trigger). This is called triggering and has to be defined here.

The following ways are used for triggering input signals:
e by configuring a trigger variable,

e by configuring a record condition,

e or both.

464

EI00000000067 06/2017

Trace Editor

Setting and Modifying the Record (Trigger) Settings
Trace Configuration dialog box with Record Settings

@' Trace Configuration @

E P

= PLC_PRGiHugo Enable Trigger

Trigger Variable: | » | [PLC_PRGbTrigger i)
Post Trigger (samples) : 51 1s

Trigger Level : | ‘

Task: [MainTask v]
Record condition: | | [
Comment:

Resolution: [E]

|:| Creale persistent record

[Appearance...][Advanced...]

Add variable
Delete variable l OK J l Cancel]

EIO0000000067 06/2017 465

Trace Editor

Parameter

Description

Enable Trigger

Select the checkbox to enable the trigger system. It can be turned on or off
independently of the lower settings. If the trigger system is disabled, the trace is free-
running.

Trigger Variable

Assign a variable. Specify which signal will be used as trigger by entering the name (and
path) of the signal.

A valid trigger signal is an IEC variable, a property, a reference, a pointer, an array
element of the application or an expression. Allowed types are all IEC basic types,
except STRING, WSTRING or ARRAY. Enumerations are also allowed, whose basic
type is not a STRING, a WSTRING or an ARRAY. The content of a pointer is not a valid
signal. Click the ... button to open the input assistant that allows you to obtain a valid
entry.

Controllers that support using device parameters as triggers provide a list if you click the
Trigger Variable: parameter. If you want to use a device parameter as trigger, select the
item Trigger Parameter from this list. Open the Input Assistant with the ... button and
select traceable parameters. Under Elements, the parameters available in the system
are listed. You can also type the parameter names directly or by copy and paste (from
another configuration) into the text field. Device parameters are only supported if the
trace manager is used.

NOTE: If CnpTr aceMyr is used for tracing, a Property (see page 766)that is used as
a trace (or trigger) variable must get the compiler attribute Attribute Monitoring
(see page 562).

Trigger edge

positive

Trigger event on rising edge of the boolean trigger variable. Or as soon as the value
defined by Trigger Level for an analog trigger variable is reached by an ascending run.

negative

Trigger event on falling edge of the boolean trigger variable. Or as soon as the value
defined by Trigger Level for an analog trigger variable is reached by a descending run.

both

Trigger event on the conditions described for positive and negative.

Post Trigger

Enter a number of records per trace signal, which are recorded after the trigger is fired.
Default value: 50

Range: 0...(2%2-1)

Trigger Level

Enter a value at which point the trigger fires.

With Trigger edge, you can specify whether it fires on a rising or a falling edge of the
trigger variable. It must be set if and only if an analog variable (variable with numeric
type, such as LREAL or INT) is used as trigger variable.

Directly enter a value. A GVL constant or an ENUM value is allowed if their type is
convertible to the trigger variable.

If IEC code is used, then you can also enter an arbitrary IEC expression of a type that is
convertible to that of the trigger variable.

Default value: — (empty)

Task

From the list of available tasks, select the one where capturing of the input signals takes
place.

466

EI00000000067 06/2017

Trace Editor

Parameter

Description

Record condition

If you want to start the record by a condition, enter here a variable. If the trace is started
before, for example by pressing the start button, and the variable assigned here
becomes TRUE, the data capturing is started and the traced graph will be displayed.
If CpTr aceMyr is used, the record condition has to be a variable of type BOOL or of a
bit-access. A content of a pointer is not a valid entry. Properties are also supported.

If IEC code is used, an arbitrary IEC expression of type BOOL can also be entered.

Comment

Enter a comment text concerning the current record.

Resolution

Enter a resolution of the trace time stamp in ms or ps.

For each captured signal, pairs of value and time stamp are stored and transmitted to
the programming system. The transmitted time stamps are relative and refer to the start
of the tracing.

If the trace task has a cycle time of 1 ms or less, a time stamp with resolution in ys is
recommended. This option is only possible when a trace manager is available in the
controller.

Create persistent record

Set this option if the trace configuration and the last content of the RTS trace buffers is
to be stored persistently on the target device.
This option is only possible when a trace manager is tracing in the controller.

Appearance... Opens the Appearance of the Y-axis dialog box (see page 473). It allows you to set up
the display of the trace window for the currently configured record, such as axes, colors,
and scroll behavior.

Advanced... Click this button to open the Advanced Trace Settings dialog box (see page 468). It

allows you to set some additional settings for the trace trigger.

NOTE: If you want to capture and display a trace signal with a different time base, you have to do
a record configuration in a separate trace object.

EI00000000067 06/2017

467

Trace Editor

Advanced Trace Settings

Overview

The Advanced Trace Settings dialog box opens if you click the Advanced... button in the Trace
Configuration dialog box with Record Settings.

Advanced Trace Settings dialog box

Advanced Trace Settings

Refresh rate (ms):
Trace editor buffer size (samples):

Measure in every n-th cycle:

Recommended runtime buffer size (samples):

Override runtime buffer size:

10000, 1m 395990 ms

v| 10ms

il

201

‘ 100

25

990 ms

OK Cancel

—

]

For all values given in records or cycles, the associated time span is shown right next to it (for
example, 1m39s990ms). The time span for buffers encloses the entire buffer. If the task is not set,
not cyclical or a system task, then the task cycle time is unknown. In this case, the period cannot
be calculated and will not be displayed on the right-hand side.

Description of the Parameters

Parameter

Description

Refresh rate (ms)

At this time distance, the captured data pairs (value with time stamp) of the
tracing are stored in the buffer of the trace editor.

Range: 150 ms...10000 ms

Default value: 500 ms

If the trace manager is used, then the data pairs are transferred at this time frame
from the runtime system to the programming system.

If the trace manager is not used, then the data are transmitted every 200 ms to
the programming system.

Trace editor buffer size (samples)

Enter the buffer size of the trace in samples (records). This buffer has to be
greater than or equal to twice the size of what the runtime buffer may be.

Range: 1...107

Measure in every n-th cycle

Select a time distance (in task cycles) between the capturing of the input signal
from the list.
Default and minimum value: 1 (this means a measure in every cycle)

468

EI00000000067 06/2017

Trace Editor

Parameter

Description

Recommended runtime buffer size
(samples)

The recommended number of samples of the runtime buffer for each trace signal
is displayed. This value is computed-based on the task cycle time, the refresh
time, and the value Measure in every n-th cycle. This means that one buffer is
allocated for each trace variable.

NOTE: The buffer size is given in samples and one buffer is created for each
trace variable.

Override runtime buffer size

When this option is selected, the value entered here is used, instead of the
default value of the runtime buffer size.
Example: Range: 10...the trace editor buffer size

Edit Appearance

Overview

The Edit Appearance dialog box opens if you click the Appearance... button in the Trace
Configuration dialog box with Record Settings.

The following settings define the appearance of the coordinate system and its X/Y-axis. The
settings for the Y-axis are used when the trace diagram is displayed in single channel view. In
multi-channel view, the settings done in the Appearance of the Y-axis dialog box are used.

The settings for the X/Y-axis (done in the left part) and the coordinate system are immediately
undertaken in the coordinate system displayed right.

You can manage the settings with the following buttons:

Button

Description

Reset

With this command, the appearance is reset to its default value.

Use as default

With this command, the current appearance is set as default. It will
be used when a new trace or variable is configured.

EI00000000067 06/2017

469

Trace Editor

X-axis Tab

X-axis tab of the Edit Appearance dialog box

Edit Appearance [Z]

Xaxis | Y axis

Distance/m |

Display mode

O Auto @ Fixed Length O Fixed (| O JiEioiiiiiiirii il

T S S S

0 10s 20s 30s 40

Minimum: | 0
Maximum: [20 S
Length: |40 S
Grid: I-Gray
Tick Marks
Fixed Spacing
Distance: |10 s

| Backcolor: [White v

Subdivisions: [10

| Backcolor on Selection:

(Reset] (Useasdefaul)

[OK][Cancel]

Parameter

Description

Display mode

Select the display mode.

Auto

If this option is activated, the time axis is automatically scaled according to
the contents of the trace editor buffer (see page 468). The current contents
of the trace buffer is displayed in the diagram. No further entries have to be
set.

Fixed length

If this option is activated, the displayed interval of the time axis has a fixed
length.

Define this length with the parameter Length. The scale is also adjusted to
the length. The graph is automatically scrolled into a visible range. Therefore,
a time interval with the configured length and the associated latest data is
shown in the diagram. But only as many values as were recorded. As soon
as new data are recorded, the display scrolls.

Fixed

If this option is activated, the displayed interval of the X-axis is defined by the
minimum and maximum value.

Minimum

This value defines the minimum displayed value of the time axis."

470

EI00000000067 06/2017

Trace Editor

Parameter Description
Maximum This value defines the maximum displayed value of the time axis."
Length This value defines the length of the displayed interval of the time axis."
Grid If this option is activated, a grid will be displayed. Select the color of the grid
lines from the list.
Tick marks -
Fixed spacing Select this check box to scale the axis in certain distances.
Distance Enter a positive distance. The X-axis is a time axis with default 1s.
Subdivision Enter a reasonable number of subdivisions for each distance.
Font Opens the standard dialog box for defining the font for the trace display.

1 The time entries do not need the prefix # as required in IEC code. Possible time entries are, for example, 2s, 1ms
or 1m20s14ms. Use us for microseconds, for example 122ms500us. Useful values are also dependent on the
resolution of the time axis.

Y-axis Tab

Y-axis tab of the Edit Appearance dialog box

Edit Appearance @

Xaxis | Yaxis | I DEReeIM T T T
Display mode o 5 FUBSEEE T RS R
O Auto @ Fixed S T
3 ERRRRARRE prE HH
Minimum: |-12 | b : : : ?
0_""""""""'T""""""""".‘"""““"‘“’1'"“""“"'“'l
Maximum: |12 I]
adrr Raen ERERREE ~z a
Grid: I-Gray v|] ;
S h i R R I BE SRR R R D | EREREREERE]
Description: IDistance/m |] i i i i
) 2
Tick marks 0 10 N 40 40
Fixed spacing s s s
Distance: |3 | Backcolor: [—JIWhite v
Subdivisions: |3 | Backcolor on Selection:
(Reset] (Useasdefault)

[OK][Cancel]

EI00000000067 06/2017

471

Trace Editor

Parameter Description
Display mode Select the display mode.
Auto If this option is activated, the Y-axis is automatically scaled
according to the captured values. No further entries have to be set.
Fixed If this option is activated, the displayed section of the Y-axis is
defined by the minimum and maximum value.
Minimum This value defines the minimum displayed value of the Y-axis.
Maximum This value defines the maximum displayed value of the Y-axis.
Grid If this option is activated, a grid will be displayed. Select the color of
the grid lines from the list.
Description If this option is activated, the Y-axis is labeled with the text entered
in the field next to it.
Tick marks -
Fixed spacing Select this check box to scale the axis in certain distances.
Distance Enter a positive distance.
Default: 1
Subdivision Enter a number, from 1 to 10, of subdivisions for each distance.
Font Click this button to open the standard dialog box for defining the font
for the trace display.

Parameters of the Coordinate System

Parameter

Description

Backcolor

Choose the background color for the coordinate system from the
list. It is used as long as the diagram is not selected in the trace
window.

Backcolor on Selection

Choose the background color for the coordinate system from the
list. It is used as long as the diagram is selected in the trace window.

472

EI00000000067 06/2017

Trace Editor

Appearance of the Y-axis

Overview

The Appearance of the Y-axis dialog box opens if you click the Appearance... button in the Trace
Configuration dialog box with Variable Settings.

The following settings define the appearance of the Y-axis. They are used when the trace diagram
is displayed in multi-channel view.

Appearance of the Y-axis dialog box

Appearance of the Y - axis
Display mode
® Ao O Fixed
Minimum: [-12 \
Maximum: 12 \
Grid: |=36rey v
Description: | |
Parameter Description
Display mode Select the display mode.
Auto If this option is activated, the Y-axis is automatically scaled according to the captured
values. No further entries have to be set.
Fixed If this option is activated, the displayed section of the Y-axis has to be defined by the
minimum and maximum value.
Minimum This value defines the minimum displayed value of the Y-axis.
Maximum This value defines the maximum displayed value of the Y-axis.
Grid If this option is activated, a grid will be displayed. Select the color of the grid lines from
the list.
Description If this option is activated, the Y-axis is labeled with the text entered in the field next to it.
Tick marks -
Fixed spacing | Select this check box to scale the axis in certain distances.
Distance Enter a positive distance.
Default: 1
Subdivision Enter a number of subdivisions for each distance.
Font Opens the standard dialog box for defining the font for the trace display.

EI00000000067 06/2017

473

Trace Editor

Section 24.3

Trace Editor in Online Mode

Trace Editor in Online Mode

Overview

If a trace is running on the device, it is indicated in the trace dialog box Online List (see SoMachine,
Menu Commands, Online Help).

Download Trace

In order to start the trace in online mode, download explicitly the trace to the controller with the
Trace - Download Trace menu command (see SoMachine, Menu Commands, Online Help) while

the application is logged in. The graphs of the trace signals will be displayed in the trace editor
window.

While doing logins and logouts on the application without changing it, the traces are running
without a new download.

If the application code is changed, then it depends on the login mode, in what happens with the

traces:

e Login with online change or Login without any change: The traces are still running.

e Login with download: The traces in the controller are deleted and a new download of them is
necessary.

Online Change of the Trace Graph Configuration

The Trace Configuration dialog box with Record Settings and the Trace Configuration dialog box
with Variable Settings are available in online mode and quite a few changes on the trace
configuration can be performed while the trace is running. If this is not possible, when the name of
the trace signal is changed; for example, the trace is stopped and a new download is required.

Online Navigation of the Trace Graph

The displayed range of the captured trace variable values depends not only on the trace
configuration. It can also be rearranged by scroll and zoom functionalities available in the Trace
menu, the toolbar or by using shortcuts. For information on how to navigate in the trace diagram,
refer to the Keyboard Shortcuts chapter (see page 475).

474 EI00000000067 06/2017

Trace Editor

Section 24.4

Keyboard Operations for Trace Diagrams

Keyboard Shortcuts

Overview

The following table desicribes keyboard and mouse actions:

Actions

By Keyboard Operation

By Mouse Operation

Scroll the trace graph horizontally
along the time axis.

No trace cursor:
o ARROW LEFT/RIGHT
o With greater distances:
CTRL + ARROW LEFT/RIGHT

1 or 2 trace cursors:
e ALT + ARROW LEFT/RIGHT
o With greater distances:

Scroll the graph by drag and drop.
This is indicated by a different view
of the mouse cursor.

CTRL + ALT + ARROW

LEFT/RIGHT
Scroll the trace graph vertically ARROW UP/DOWN Use CTRL + drag and drop.
along the Y-axis. With greater distances:

CTRL + ARROW UP/DOWN
Zoom to a rectangle (window) that |- Use the command Mouse Zooming
is selected with the mouse. (see SoMachine, Menu
Commands, Online Help).

Shift the black trace cursor. ARROW LEFT/RIGHT Click the black triangle of the trace

With greater distances:
CTRL + LEFT/RIGHT ARROW

cursor, drag it along the X-axis until
you drop it.

Shift the gray trace cursor.

SHIFT + ARROW LEFT/RIGHT
With greater distances:

CTRL + SHIFT + ARROW
LEFT/RIGHT

Click the gray triangle of the trace
cursor, drag it along the X-axis until
you drop it.

Compress the time axis.

In multi-channel mode, the time
axes for all diagrams are
compressed.

Use the mouse wheel.

Or use the command Compress
(see SoMachine, Menu
Commands, Online Help).

Stretch the time axis.
In multi-channel mode, the time
axes for all diagrams are stretched.

Use the mouse wheel.

Or use the command Stretch
(see SoMachine, Menu
Commands, Online Help).

EI00000000067 06/2017

475

Trace Editor

Actions

By Keyboard Operation

By Mouse Operation

Compress the Y-axis.

In multi-channel mode, the Y-axis
for the selected diagrams is
compressed.

CTRL + -

CTRL + mouse wheel

Stretch the Y-axis.

In multi-channel mode, the Y-axis
for the selected diagrams is
stretched.

CTRL + +

CTRL + mouse wheel

Selection of the next diagram
below in multi-channel mode.

TAB

Click an unselected diagram to
select this one.

476

EI00000000067 06/2017

Chapter 25

Symbol Configuration Editor

What Is in This Chapter?

This chapter contains the following topics:

Topic Page
Symbol Configuration Editor 478
Symbol Configuration 481
Adding a Symbol Configuration 482
EI00000000067 06/2017 477

Symbol Configuration Editor

Symbol Configuration Editor

Overview
The symbol configuration functionality allows you to create symbol descriptions. The symbols and
the variables they represent can then be accessed by external applications, such as Vijeo-

Designer or OPC server.

To configure symbols for an application, double-click the Symbol Configuration node in the Tools

tree. The symbol configuration editor view opens.

Symbol configuration editor

3 Symbol configuration x

N View » #¥ Build Settings «
Changed symbol configuration will be transferred with the next download or online change

Symbols
[#) [[E] loConfig_Globals
Em

dutvar
dwvar
f
fbinst
]
ivar
ivar2
[0 # showme
[» stringvar
(=)} [{} Test_library
=0 EFE6vL
Oea
Oeb

Oe
Oe
e
Oe
M e
Oe
M e
Oe
e
Oe
Oe

O
*

Access Rights | Maximal

%
e
5’
%
e
%
“» "
%
“» “»
®
%
%
%
%
®
“®

Type

INT

DINT
BOOL
TON
ARRAY [0..5] OF SINT
Struct1
DWORD
WSTRING
FB1

REAL

INT

INT

INT
STRING

INT
DINT

Comment

First symbol

Timer

Multiline comment

From library
From library

The editor contains a table. Depending on the set filter, it shows the available variables, or just
those already selected for the symbol configuration. For this purpose, the concerned POUs or
libraries are listed in the Symbols column. You can expand them in order to show the particular

variables.

478

EI00000000067 06/2017

Symbol Configuration Editor

Description of the Elements

The View button that is available in the toolbar above the table allows you to set the following filters
to reduce the number of displayed variables:

Filter Description

Unconfigured from Project Even variables not yet added to the symbol configuration, but
available for this purpose in the project, are displayed.

Unconfigured from Libraries Also variables from libraries, not yet added to the symbol
configuration, but available for this purpose in the project, are
displayed.

Symbols exported via attribute This setting is effective when only the already configured variables

are displayed (see the 2 filters described above).

It has the effect that also those variables will be listed, which are
already selected for getting symbols by

{attribute 'synbol' := 'read'}withintheir declaration.
Such symbols are displayed grayed. The Attribute column shows
which access right is currently set for the variable by the pragma.
Refer to the following description of access right.

To modify the access rights for a selected item, click the symbol in the Access Rights column. Each
mouse-click will switch the symbol within the following definitions: read+write "’, write-only “» ,
read-only K"'.

The Maximal column shows which right maximally can be set.

The Comment column shows any comments which have been added in the declaration of the
variable.

With the POU property Link Always, an uncompiled object can be reinterpreted and downloaded
to the controller. If this property is set in the Build tab of the Properties dialog box of the selected
object, then all variables declared in this object will be available, even if the object itself is not
referenced by other code. In addition, you can use the pragma {attribute linkalways}

(see page 561)to make not compiled variables available in the symbol configuration.

Variables which are configured to be exported but currently are not valid in the application - for
example because their declaration has been removed - will be shown in red. This also applies to
the concerned POU or library name.

The column Type also shows alias data types, as for example, MY_I NT : | NT. For a variable
declared with data type MY_I NT, whereby MY_| NT is declared as follows:

TYPE MY_INT : | NT; END TYPE.

EI00000000067 06/2017 479

Symbol Configuration Editor

To get symbols for a variable of a structured data type, like for other variables first of all activate
the item in the Symbols column. This basically will have the effect that for all members of the
structure, symbols will be exported to the symbol file. This can result in a large number of entries
in the symbol file, which not at all are needed. You may also select only particular member
variables. You can do this in the dialog box Symbol Configuration for Data Type. Click the ... button
in the Members column to open this dialog box. In case of nested types, this dialog box will again
provide a button to open another data type symbol configuration dialog box.

The editor view is automatically refreshed at a build run. The toolbar provides a Build button for
quick access.

The toolbar button Settings allows you to activate the option Include comments in XML. This has
the effect that comments assigned to variables will also be exported to the symbol file.

NOTE: Do not activate the option Include comments in XML for projects with Vijeo-Designer.
Otherwise, Vijeo-Designer will not operate properly and may cease to function entirely.

By default, a symbol file is created with a code generation run. This file is transferred to the device
with the next download. If you want to create the file without performing a download, use the
command Generate code, by default available in the Build menu.

NOTE: Variables of a global variable list (GVL) will only be available in the symbol configuration if
at least one of them is used in the programming code.

In case of using a device which supports a separate application file for the symbol configuration
(also refer to the Symbol Configuration chapter (see page 487)), a Download button will be
available in the toolbar. You can use it to initiate an immediate new download of the <application
name=>._Symbols file in case the symbol configuration has been modified in online mode.

480

EI00000000067 06/2017

Symbol Configuration Editor

Symbol Configuration

Overview

The symbol configuration is used to create symbols, provided with specific access rights. They
allow project variables to be accessed externally, for example by Vijeo-Designer. The description
of the symbols will be available in an XML file (symbol file) in the project directory. It will be
downloaded to the controller together with the application.

Symbol Information

The symbols defined for an application are exported to an XML file in the project directory (symbol
file) when the application is downloaded to the controller. This file is named according to the
following syntax:

<project name>.<device nhame>.<application name>.xml
Example: proj xy.PLC1.application.xm/

NOTE: In case a download to the controller is not possible, you can create the symbol configuration
file by executing the command Generate code.

Further on the symbol information is downloaded to the controller with the application. Depending
on the device description, it will be included in the application or a separate child application will be
generated. This will also be listed with the name <application name>._Symbols in the Applications
view of the device editor (see page 778).

If the symbol configuration has been modified in online mode, you can reload it to the controller by
clicking the button Download in the editor window (see page 479).

For example, concerning the maximum number of applications on a controller, the symbol
application has to be handled as a normal application.

EI00000000067 06/2017 481

Symbol Configuration Editor

Adding a Symbol Configuration

Prerequisites

Variables that will be exchanged between the controller and (multiple) HMI devices using the
transparent SoMachine protocol (see SoMachine, Introduction) must be published in the controller
using the Symbol configuration. They will then be available as SoMachine variables in Vijeo-
Designer.

Defining a Symbol Configuration

In order to get the symbol configuration functionality available, add the symbol configuration object
to the application in the Tools tree as described in the Opening the Symbol Configuration
paragraph. This will automatically include the IECVarAccess.library in the Library Manager.

You can define the variables to be exported as symbols in the symbol configuration editor
(see page 478) or via pragmas (attribute symbol (see page 577)), which are to be added at the
declaration of the variables.

NOTE: Variables of a global variable list (GVL) will only be available in the symbol configuration if
at least one of them is used in the programming code.

Another possibility is provided by the SFC editor: You can define the implicitly created element
flags in the element properties (see page 337)for export to the symbol configuration.

The name of a symbol created by the symbol configuration is composed according to the following
syntax:

<application name>.<POU name>.<variable name>

Examples:

MyApplication.PLC PRG.a

MyApplication.GVL.a

For accessing the variable, define the symbol name completely.

482 EI00000000067 06/2017

Symbol Configuration Editor

Opening the Symbol Configuration
To open the Symbol configuration, proceed as follows:

Step Action

1 Select the Application node in the Tools tree, click the green plus button and
select the command Add other objects — Symbol configuration....
Result: The Add Symbol configuration dialog box will be displayed.

2 In the Add Symbol configuration dialog box, enter a Name for the symbol
configuration in the text box.
3 Click the Add button.

Result: A Symbol configuration node is created under the Application node in the
Tools tree. The Symbol configuration is displayed on the right-hand side.

NOTE: Only 1 symbol configuration node can be created per device.

For details on the variables interchange between the controller and HMI part, refer to the chapter
SoMachine Controller-HMI Data Exchange (see page 485).

EI00000000067 06/2017 483

Symbol Configuration Editor

484 EI00000000067 06/2017

Chapter 26
SoMachine Controller - HMI Data Exchange

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
SoMachine Single Variable Definition 486
Publishing Variables in the Controller Part 490
Selecting Variables in the HMI Part 492
Publishing Variables in the HMI Part 493
Parametrization of the Physical Media 495
Communication Performance on Controller - HMI Data Exchange 496

EI00000000067 06/2017 485

Controller - HMI Data Exchange

SoMachine Single Variable Definition

Overview

By publishing the variable(s) in SoMachine, they will automatically be available for use in the Vijeo-
Designer HMI application.

For variable exchange with the SoMachine protocol, perform the following steps:

e Create variables in the controller part.

e Publish the variables by defining them as Symbols in the controller part. They are now available
in the HMI part as SoMachine variables.

e Configure the physical connection (automatically setup by SoMachine).

NOTE: The last step is not necessary for XBTGC controllers because they may communicate with
their own control variables.

Disabling Automatic Symbol Export to Vijeo-Designer

By default, SoMachine automatically exports those variables defined as Symbols to the Vijeo-
Designer HMI application.

Once symbols have been transferred to Vijeo-Designer, it is usually not necessary to make the
transfer every time you call Vijeo-Designer. If you later add or modify symbols in your SoMachine
application after having initially transferred the symbols, you can transfer symbols to Vijeo-
Designer manually at will. To save time when you open Vijeo-Designer, you can disable the
automatic transfer of symbols as follows:

Step Action

1 Select the Options... command from the Tools menu.
Result: The Options dialog box will be displayed.

2 Select the entry Vijeo-Designer from the list on the left-hand side.

486

EI00000000067 06/2017

Controller - HMI Data Exchange

Step Action
3 On the right-hand side, enable the check box Disable automatic symbol export.
options X
@] CFC Editor
@, CoDeSys 2.3 converter
7 Declaration editor Disable automatic symbol export
Device editor
J_) Disabling the automatic symbol export saves time
f] FBD, LD and IL editor hen swilching to Vijeo-Designer, but the symbol
Bp FDT Options information in Vijeo-Designer is not updated! The list
Feat lof SoMachine variables in Vijeo-Designer may be
@ Fea ure-s) incorrect. Use the “Export Symboals to Vijeo-Designer”
@ Intemational Seftings command from the: context menu of the symbol
m Libraries iconfiguration before working with the SoMachine
@ Load and Save variables in Vijeo-Designer!
%] SFC
'T) SFC editor
Ty SmartCoding
@&l Source Control
= Syntax Highlighting
Text editor
@ Visualization
Cance
4 Click OK to close the dialog box.

NOTE: Activating the Disable automatic symbol export function inhibits the automatic export of
SoMachine variables defined as Symbols to Vijeo-Designer. In order to perform this transfer
manually, right-click the Symbol configuration node in the Devices window and execute the Export
Symboals to Vijeo-Designer command. If you do not perform this manual transfer, Vijeo-Designer
may not show the correct symbols which, in turn, may lead to errors being detected in the project.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Execute the Export Symbols to Vijeo-Designer command if you have activated the Disable
automatic symbol export before you start working in Vijeo-Designer.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 487

Controller - HMI Data Exchange

Variable Types for SoMachine - HMI Data Exchange

The following table lists the variable types for SoMachine - HMI data exchange:

Variable Type in SoMachine | Variable Type in Vijeo- Comment
Designer

BOOL BOOL -

BYTE Integer --

WORD UINT -

DWORD UDINT -

SINT Integer --

INT INT --

DINT DINT -

USINT Integer --

UINT UINT -

UDINT UDINT -

REAL REAL -

STRING STRING -

WSTRING STRING WSTRING is supported in Vijeo-Designer as a
general STRING type. This means that you can either
exchange only STRINGS or only WSTRINGS with the
HMI. A mixture of these 2 variable types is not
allowed. If you use WSTRINGsS, all your strings must
be WSTRINGs.

Indicate to the Vijeo-Designer driver that all strings
should be managed as UNICODE WSTRINGs as
follows:

select the node SoMachineNetwork or
SoMachineCombo in the Navigator tree of Vijeo-
Designer and set the parameter String Encoding to
the value Unicode.

Array - In Vijeo-Designer, you can only reference the
elements of an array, not the whole array.

Example: Your array consists of SINTs called

myVal ues. In Vijeo-Designer, you can reference
myVal ues[0] ornyVal ues[5] and put this into a
variable on the HMI controller.

Arrays must not contain more than 2,048 elements. If
you try to use arrays with more than 2,048 elements
in Vijeo-Designer, a message will be issued.

DUT - In Vijeo-Designer you can only reference the
elements of a DUT, not the whole DUT. This behavior
is similar to the behavior of arrays.

488 EIO0000000067 06/2017

Controller - HMI Data Exchange

Unsupported Variable Types
The following variable types are not supported for SoMachine - HMI data exchange:

all 64-bit integer formats

LREAL

all time and date formats

non-zero based arrays: you cannot import an array that is defined, example:
myArray[1..100].

arrays of arrays: you cannot import an array that has an array as its element type, such as
ARRAY [0..9] OF ARRAY [0..9] OF I NT. Nevertheless, you can use multi-dimensional
arrays, such as ARRAY [0..9, 0..9] OF INT.

NOTE: The variables from the PLC_R structures of the PLCSystem library cannot be shared via

the Symbol Configuration with the Vijeo-Designer application of HMI targets (including HMI
controllers).

NOTE: Do not share references to a structured variable in the symbol configuration editor, as their
values will not be displayed correctly on the HMI.

For further information on variable types for SoMachine - HMI data exchange, see the Vijeo-
Designer online help.

Identifier Length
In Vijeo-Designer, the maximum length of the Symbol name is limited to 32 characters.

EI00000000067 06/2017 489

Controller - HMI Data Exchange

Publishing Variables in the Controller Part

Overview

Publish variables in the controller part of the SoMachine application within the Symbol
configuration editor or in the Variables view of the software catalog (see page 34) of a POU.

Publishing Variables in the Symbol Configuration Editor
To publish variables within the Symbol configuration editor, proceed as follows:

Step Action

1 Create a Symbol Configuration node under the Application node in the Tools tree as described in the
Adding a Symbol Configuration chapter (see page 452).

2 Double-click the Symbol Configuration node to open the Symbol configuration editor.

In the Symbol configuration editor, select those elementary variables that you wish to publish for
communication with 1 or several HMI terminals by selecting or deselecting the check box in the Symbols
column:

#3 Symbol configuration x Y
N View | [#¥ Build Settings »
Changed symbol configuration will be transferred with the next download or online change

Symbols Access Rights | Maximal Attribute Type Members Comment
[#) [loConfig_Globals
[=)-mE] PLC_PRG
Oe®a “» INT First symbol
Oe®b " " DINT
O ¢ bvar " BOOL
Oec » TON Timer
®d " ARRAY [0..5] OF SINT
OO0 # dutvar “» Struct1
¢ dwvar % DWORD
Oe f “» WSTRING Multiline comment
® fbinst “» FB1
Oeg “® “e REAL
O e ivar " INT
O # ivar2 % INT
[0 & showme % INT
[& stringvar) STRING
=1 0 {} Test_library
=0 Bew
Oea ") INT From library
Oeb “» DINT From library

You can also assign read/write access rights to each variable individually in the Access Rights column.
For further information, refer to the description of the Symbol configuration editor (see page 478).
Note: Only variables on elementary data types are available for interchange with HMI terminals.

4 For your settings to become valid, click the Download link in the Symbol configuration editor.

490 EI00000000067 06/2017

Controller - HMI Data Exchange

NOTE: The publishing mechanism consumes an overhead of about 50 Kbyte in the controller.
Each published variable consumes 11 bytes within the controller application.

Publishing Variables in the Variables View of the Software Catalog

To publish variables in the Variables view of the software catalog (see page 34), proceed as
follows:

Step Action

Open the Variables view of the software catalog (see page 34).

2 To publish a variable, select the respective check box in the Publish column.

et s X
» Local Variables
» POU Variables

¥ Global Variables

Scope Name Data type Ad.. | Init.. | Comment | Atr.. | Publish |
= 28 MyController - -

£ @ GVL ATV32 Node0t
g VAR_GLOBAL XMCB_rdy BOOL Motor Circuit B... v
“ VAR_GLOBAL IActiVelo INT Indicates the a...
ﬂ VAR_GLOBAL XCmdEnPwr BOOL Command to p...
@ VAR_GLOBAL xCmdRst BOOL Command ackn...
“ VAR_GLOBAL xCmdStop BOOL Command to st...
& VAR GLOBAL xCmdJogFwd ~ BOOL Comm... to ..
“ VAR_GLOBAL xCmdJogRev BOOL Comm... to tu...
@ VAR GLOBAL iSetogVelo INT Setpoint og v...
“ VAR_GLOBAL xCmdMovVelo BOOL Command to st...
@ VAR GLOBAL iSetMovVelo INT Setpoint ‘move... vl
“ VAR_GLOBAL xStatEnbl BOOL Indicates the A... E
& VAR GLOBAL =) WORD Provides the er... vl
“ VAR_GLOBAL XErr BOOL Indicates an er... Iz
“ VAR_GLOBAL xVeloActy BOOL If the drive is o... ’z
“ VAR_GLOBAL xJogActv BOOL If the drive is o... Iz
& VAR GLOBAL xComOk BOOL Indicates the C... V]
“ VAR_GLOBAL eComSta CIA405.DE... Node state pro... z

@ GVL_ATV32_Node04 V]
@ VAR GLOBAL ¥MCB_rdy BOOL Motor Circuit B... V]
0 VAR_GLOBAL IActiVelo INT Indicates the a... z
@ VAR_GLOBAL XCmdEnPwr BOOL Command to p... V]
@ VAR_GLOBAL xCmdRst BOOL Command ackn... V]
@ VAR_GLOBAL xCmdStop BOOL Command to st... V]
“ VAR_GLOBAL xCmdJogFwd BOOL Comm... to tu... Z
& VAR GLOBAL xCmdJogRev BOOL Comm... to tu.. V]
“ VAR_GLOBAL iSetJogVelo INT Setpoint “jog v... z
u VAR_GLOBAL xCmdMovVelo BOOL Command to st... z
@ VAR GLOBAL iSetMovVelo INT Setpoint “move... [V]

29 Macros =] Controller Variables

NOTE: Verify that the POU of the selected variables is called in a task. Otherwise the selected
variables will not be published.

EI00000000067 06/2017 491

Controller - HMI Data Exchange

Selecting Variables in the HMI Part

Selecting Variables

Those variables that have been published in the controller part are directly available in the HMI
part.

In the Expression Editor Pad of Vijeo-Designer, select the SoMachine tab to have direct access to
the variables published in SoMachine.

Expression Editor Pad

Expression

Variable List

Bm R ([Ewnw .~ A k-
k@)

= "] SoMachine

= PLC_SOM_XBTGC1100
=1 {3 Application
Bl 3 POU

~ MyVarl [Application.POU.myVarl]
" MyVar2 [Application.POU.myVar2]

[Vijen. SoMachine |

l OK I I Cancel I I Help I

For further information, refer to the Vijeo-Designer online help.

492 EI00000000067 06/2017

Controller - HMI Data Exchange

Publishing Variables in the HMI Part

Supported Variable Types

The following variable types can be published in Vijeo-Designer to make them available for the
entire SoMachine project:

BOOL

DINT

INT

UINT

UDINT

Integer

REAL

STRING

Procedure

To publish the above mentioned variable types, proceed as follows:

Step Action
1 In the Vijeo-Designer Variable Editor, select those variables you want to publish.
2 Right-click the selected variable(s) and execute the command Move to SoMachine from the context
menu.
[XBTGT2120-Panel1-Language1 I XBTGT2120-Variable Editor X]
oo =i o]
domx BB EnwsA BB E
Name Data Type Data Source
1 =" _NINTN1 DINT Internal
New...
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete... Delete
Move to SoMachine...
Result: The Move to SoMachine dialog box will be displayed.
3 In the Move to SoMachine dialog box open the subfolders of the devices defined in SoMachine to see the
levels where variables are defined (POU or GVL).

EI00000000067 06/2017 493

Controller - HMI Data Exchange

Step Action
4 Select the POU or GVL to which you want to add the selected Vijeo-Designer variable(s) and click OK.
Move to SeMachine g]
-
[=}-- Application
GVL
Status_LED
TeSysU1l
TeSysuU2
TeSysuU3
TeSysU4
OK] [Cancel
Result: The selected variable(s) has / have been moved to the selected SoMachine POU or GVL and is
/ are available throughout the SoMachine project.
r v
XBTGT2120 - Panel1 - Language XBTGT2120 - Variable Editor X 1
1 oo) e B
ko> Bm B [EwvnsA B B
Name Data Type Data Source
1 =) [~—7_SoM
= =>MmyPLC
(=] L~ Application
(S E—c)'/
+ DINTO1 DINT External
494 EI00000000067 06/2017

Controller - HMI Data Exchange

Parametrization of the Physical Media

Overview

The runtime data exchange between the controller and the HMI is executed on different media,
depending on the selected hardware.

Configuration Example

The default settings below are valid for communications between M238 and an HMI panel via serial
line RS485 using an XBTZ9008 cable (serial line SubD-RJ45).

Configuration of M238 with HMI panel:
M238 controller serial line configuration

Parameter Value
Physical Medium RS485
Baud rate 115200
Parity none
Data bits 8

Stop bits 1

HMI panel I0-Manager configuration using a driver: SoMachine - network with at least 1 Scan-
Group (for further information, refer to the Vijeo-Designer online help).

Parameter Value
Physical Medium RS485
Baud rate 115200
Parity none
Data bits 8

Stop bits 1

Equipment Name

controller device name (available in the
communication settings dialog)

Configuration of XBTGC:

Device Configuration

XBTGC controller no configuration required

HMI panel 10-Manager

Driver SoMachine - Combo with at least 1 Scan-

Group

EI00000000067 06/2017

495

Controller - HMI Data Exchange

Communication Performance on Controller - HMI Data Exchange

Overview

The communication speed between controller and HMI depends largely on the number of variables
that are exchanged. Therefore, the time that is required to display the values on the HMI panels
when a controller-HMI-connection is established, as well as to the refresh time of the variables, are
affected accordingly.

This chapter provides reference values that have been achieved under optimum conditions. Actual
values depend on the total performance of your controller application (for example, the
communication task responsible for data exchange is executed with a low priority).

For data exchange using the SoMachine protocol via Ethernet, this chapter indicates the number
of variables allowed to achieve a good data transmission performance. If you are using serial line,
consider to change to Ethernet for increasing the performance.

General Measures for Improving Communication Performance

To improve the communication performance, you can take the following measures:

e In the equipment or scan group properties of your HMI, set the Vijeo-Designer parameter
ScanRate to Fast.

e Reduce the number of variables per HMI panel because only the variables on the active panel
are refreshed. It is a good practice to create several HMI panels with reduced number of
variables in Vijeo-Designer instead of creating one HMI panel that shows many variables.

e Add only those variables to the Symbol configuration that are used in the HMI.

Variable-to-Time Ratio for Displaying Values After Establishing the Controller-HMI-Connection

The graph indicates reference values that have been measured for the time that is required to
display the values on the HMI panels when establishing a connection over the SoMachine protocol
via Ethernet (for example, after downloading applications). The reference values are typically
representative of the performance of the XBTGT HMI Controllers or M258 Logic Controllers. The
reference values were obtained by using different numbers of variables under non-industrial
conditions.

496 EI00000000067 06/2017

Controller - HMI Data Exchange

Typical delay to establish a connection and display values on the HMI panel:

25 T

20 —

15 7 =

m ‘_//
&

50 100 200 500 1000

Time in seconds

Number of variables
XBTGT2330 + M258
XBTGT4330 + M258

A ON -

Variable-to-Time Ratio for Refreshing Variables on the HMI Panel

The graph indicates reference values that have been measured for the time that is required to
refresh variables over the SoMachine protocol via Ethernet between XBTGT HMI and M258
controllers with different numbers of variables under non-industrial conditions.

EI00000000067 06/2017 497

Controller - HMI Data Exchange

Typical delay to refresh variables on the HMI:

25

N /
50 100 200 500 1000

Time in seconds

Number of variables
XBTGT2330 + M258
XBTGT4330 + M258

A WN-=

Vijeo-Designer Suggestions on Variables

Vijeo-Designer provides the following suggested guidance for using variables in the Vijeo-Designer
online help:

Chapter Creating Variables -~ About Variables and Device Addresses - Source: Internal Versus
Externat

e One target can have a maximum of 8000 or 12000 variables depending on the target type. Array

and structure holders (the group node) also count as variables. A block variable counts as
one variable.
e You can use a maximum of 800 variables on a single panel.

Chapter Appendix — Run-Time Specifications:
Number of variables per panel (limit):

Controller Maximum number of variables per panel
iPC series 2500
Other target types, except iPC 800

498 EI00000000067 06/2017

Controller - HMI Data Exchange

Number of variables per target (limit):

Controller Maximum number of variables

e PC* 12000

o XBTGTW series

e XBTGC 8000

e XBTGT

e XBTGH

e HMIGTO

e HMISTO

e HMISTU

o HMISCU series

XBTGK series 8000

* ForiPC: If persistent variables, such as alarm variables and data logging variables, are used, a maximum
of 8000 variables can be supported for each iPC target.

Chapter Errors — Message List - Editor Error Messages— 1300 - 1999- Error 1307.
Error 1301: [Target] [target name] too many variables. Variable limit is [8000 or 12000].

NOTE: The Vijeo-Designer online help indicates that the total number of elements in an array must
not exceed 2048 (refer to the chapter Creating Variables — Array Variables). This limits the size
of (single or multidimensional) array variables that are shared via the SoMachine Symbol
Configuration. To overcome this limit, consider sharing an array of DUT (for example,
ARRAY[0..99] OF DUT_30, where DUT_30 is a user-defined type containing 30 distinct

INT variables, resulting in 3000 variables). In any case, the Error 1301 will be issued if the
maximum number of variables per target (8000 or 12000) is exceeded.

EI00000000067 06/2017 499

Controller - HMI Data Exchange

500 EI00000000067 06/2017

Part VI

Programming Reference

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page
27 Variables Declaration 503
28 Data Types 583
29 Programming Guidelines 609
30 Operators 621
31 Operands 713

EIO0000000067 06/2017

501

Programming Reference

502 EI00000000067 06/2017

Chapter 27

Variables Declaration

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
271 Declaration 504
27.2 Variable Types 520
27.3 Method Types 530
27.4 Pragma Instructions 535
27.5 Attribute Pragmas 548
27.6 The Smart Coding Functionality 580

EIO0000000067 06/2017

503

Variables Declaration

Section 27.1

Declaration

What Is in This Section?
This section contains the following topics:

Topic Page
General Information 505
Recommendations on the Naming of Identifiers 508
Variables Initialization 512
Declaration 513
Shortcut Mode 514
AT Declaration 515
Keywords 516

504

EI00000000067 06/2017

Variables Declaration

General Information

Overview

Syntax

You can declare variables:

in the Variables view of the Software Catalog (see page 33)
in the Declaration Editor of a POU (see page 376)

via the Auto Declare dialog box (see page 5173)

in a DUT editor

in a GVL editor

The kind (in the tabular declaration editor it is named Scope) of the variables to be declared is
specified by the keywords embracing the declaration of one or several variables. In the textual
declaration editor (see page 376), the common variable declaration is embraced by VAR and
END_VAR.

For further variable declaration scopes, refer to:
VAR _| NPUT

VAR_QUTPUT

VAR_|I N_QUT

VAR_GLOBAL

VAR _TEMP

VAR _STAT

VAR _EXTERNAL

VAR_CONFI G

The variable type keywords may be supplemented by attribute keywords (see page 524).
Example: RETAI N (VAR | NPUT RETAI N)

Syntax for variable declaration:
<ldentifier> {AT <address>}:<data type> {:=<initialization>};

The parts in braces {} are optional.

Identifier

The identifier is the name of a variable.

Consider the following facts when defining an identifier.

® no spaces or special characters allowed

e no case-sensitivity: VARL, Var 1 and var 1 are all the same variable

e recognizing the underscore character: A_BCD and AB_CD are considered 2 different identifiers.
Do not use more than 1 underscore character in a row.

e unlimited length

e recommendations concerning multiple use (see next paragraph)

EI00000000067 06/2017 505

Variables Declaration

Also, consider the recommendations given in chapter Recommendations on the Naming of
Identifiers (see page 508).

Multiple Use of Identifiers (Namespaces)
The following outlines the regulations concerning the multiple use of identifiers:

Do not create an identifier that is identical to a keyword.

Duplicate use of identifiers is not allowed locally.

Multiple use of an identifier is allowed globally: a local variable can have the same name as a

global one. In this case, the local variable within the POU will have priority.

A variable defined in a global variable list (GVL) can have the same name as a variable defined

in another global variable list (GVL). In this context, consider the following IEC 61131-3

extending features:

O Global scope operator: an instance path starting with a dot (.) opens a global scope. So, if
there is a local variable, for example i var , with the same name as a global variable, . i var
refers to the global variable.

O You can use the name of a global variable list (GVL) as a namespace for the included
variables. You can declare variables with the same name in different global variable lists
(GVL). They can be accessed specifically by preceding the variable name with the list name.
Example
globlistl.ivar := globlist2.ivar;

(*ivar fromgl oblist2inlibrary|liblis copiedtoivar in GVL gl oblist1¥)

O Variables defined in a global variable list of an included library can be accessed according to

syntax <library namespace>.<name of GVL>.<variable>.

Example:

globlistl.ivar := libl.globlistl.ivar

(*ivar fromgl oblistlinlibrarylibliscopiedtoivar in GVLgl oblist1l¥)

For a library also, a namespace is defined when it gets included via the Library Manager. So
you can access a library module or variable by <library
namespace>.<modulename|variablename>. Consider that, in case of nested libraries, the
namespaces of all libraries concerned have to be stated successively.

Example: If Li b1 is referenced by Li b0, the module f un being part of Li b1 is accessed by
Li bO. Li b1. fun:

ivar := LibO0.Libl. fun(4, 5); (*returnvalue offun is copied to variablei var in the
project *)

NOTE: Once the checkbox Publish all IEC symbols to that project as if this reference would
have been included there directly. has been activated within the Properties dialog box of the
referenced library Li b, the module f un may also be accessed directly via Li bO. f un.

AT <address>
You can link the variable directly to a definite address (see page 575) using the keyword AT.

506

EI00000000067 06/2017

Variables Declaration

In function blocks, you can also specify variables with incomplete address statements. In order that
such a variable can be used in a local instance, an entry has to exist for it in the variable
configuration.

Type
Valid data type (see page 554), optionally extended by an :=< initialization> (see page 572).

Pragma Instructions

Optionally, you can add pragma instructions (see page 535)in the declaration part of an object in
order to affect the code generation for various purposes.

Hints
Automatic declaration (see page 513) of variables is also possible.
For faster input of the declarations, use the shortcut mode (see page 574).

EI00000000067 06/2017 507

Variables Declaration

Recommendations on the Naming of Identifiers

Overview

Identifiers are defined:
e at the declaration of variables (variable name)
e at the declaration of user-defined data types

e at the creation of POUs (functions, function blocks, programs)

In addition to the general items to be considered when defining an identifier (refer to chapter

General Information on variables declaration (see page 505)), consider the following recommen-
dations in order to make the naming as unique as possible:

e Variable names (see page 508)

Variable Names

For naming variables in applications and libraries, follow the Hungarian notation as far as possible.
Find for each variable a meaningful, short description. This is used as the base name. Use a capital

Variable names in Libraries (see page 570)

User-defined data types (DUTSs) in Libraries (see page 577)
Functions, Function blocks, Programs (POU), Actions (see page 577)
POUs in Libraries (see page 512)
Visualization names (see page 572)

letter for each word of the base name. Use small letters for the rest (example: Fi | eSi ze).

Data Type Lower Limit Upper Limit Information Prefix Comment
Content
BOOL FALSE TRUE 1 bit x* -
b reserved
BYTE - - 8 bit by bit string, not for
arithmetic operations
WORD - - 16 bit w bit string, not for
arithmetic operations
DWORD - - 32 bit dw bit string, not for
arithmetic operations
LWORD - - 64 bit I'w not for arithmetic
operations
SINT -128 127 8 bit si -
USINT 0 255 8 bit usi -
INT -32,768 32,767 16 bit i -

* intentionally for boolean variables x is chosen as a prefix in order to differentiate from BYTE and also in order to
accommodate the perception of an IEC programmer (see addressing % X0. 0).

508

EI00000000067 06/2017

Variables Declaration

Data Type Lower Limit Upper Limit Information Prefix Comment
Content
UINT 0 65,535 16 bit ui -
DINT -2,147,483,648 2,147,483,647 |32 bit di -
UDINT 0 4,294,967,295 | 32 bit udi -
LINT _o63 263_4 64 bit i -
ULINT 0 264_4 64 bit uli -
REAL - - 32 bit r -
LREAL - - 64 bit Ir -
STRING - - - s -
TIME - - - tim —
TIME_OF_DAY - - - tod —
DATE_AND_TIME |- - - dt _
DATE - - - date —
ENUM - - 16 bit e -
POINTER - - - p -
ARRAY - - - a -

* intentionally for boolean variables x is chosen as a prefix in order to differentiate from BYTE and also in order to
accommodate the perception of an IEC programmer (see addressing % X0. 0).

Simple declaration

Examples for simple declarations:

bySubl ndex:

BYTE;

sFi l eNanme: STRI NG

udi Count er:

UDI NT;

Nested declaration

Example for a nested declaration where the prefixes are attached to each other in the order of the
declarations:

pabyTel egranDat a: PO NTER TO ARRAY [0..7] OF BYTE;

Function block instances and variables of user-defined data types

Function block instances and variables of user-defined data types get a shortcut for the function

block or the data type name as a prefix (for example: sdo).

Example

cansdoRecei vedTel egram CAN_SDOTel egr am

EI00000000067 06/2017

509

Variables Declaration

TYPE CAN_SDOTel egram : (* prefix: sdo *)
STRUCT
w ndex: WORD;
bySubl ndex: BYTE;
byLen: BYTE;
aby: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Local constants

Local constants (c) start with prefix ¢ and an attached underscore, followed by the type prefix and
the variable name.

Example

VAR CONSTANT
Cc_ui Syncl D: U NT : = 16#80;
END VAR

Global variables and global constants
Global variables are prefixed by g_ and global constants are prefixed by gc_.

Example

VAR _GLOBAL
g_i Test: |NT;
END_VAR
VAR _GLOBAL CONSTANT
gc_dwExanpl e: DWORD;
END_VAR

Variable Names in Libraries
Structure

Basically, refer to the above description for variable names. Use the library namespace as prefix,
when accessing a variable in your application code.

Example
g_i Test: INT; (declaration)
CAN. g_i Test (inplementation, call in an application program

510 EI00000000067 06/2017

Variables Declaration

User-Defined Data Types (DUT) in Libraries
Structure

The name of each structure data type consists of a short expressive description (for example,
SDOTel egr am of the structure.

Example (in library with namespace CAL):

TYPE Day : (
MONDAY,
TUESDAY,
VEDNESDAY,
THURSDAY,
FRI DAY,
SATURDAY,
SUNDAY) ;

Declaration:

eToday: CAL. Day;

Use in application:

| F eToday = CAL. Day. MONDAY THEN

NOTE: Consider the usage of the namespace when using DUTs or enumerations declared in
libraries.

Functions, Function Blocks, Programs (POU), Actions
The names of functions, function blocks, and programs are prefixed by an expressive short name
of the POU (for example, SendTel egr am). As with variables, the first letter of a word of the POU
name should always be a capital letter whereas the others should be small letters. It is
recommended to compose the name of the POU of a verb and a substantive.
Example
FUNCTI ON_BLOCK SendTel egram (* prefix: canst *)
In the declaration part, provide a short description of the POU as a comment. Further on, the inputs

and outputs should be provided with comments. In case of function blocks, insert the associated
prefix for set-up instances directly after the name.

Actions

Actions do not get a prefix. Only those actions that are to be called only internally that is by the
POU itself, start with prv_.

Each function - for the reason of compatibility with previous software versions - is supposed to have
at least one parameter. Do not use structures as return values in external functions.

EI00000000067 06/2017 511

Variables Declaration

POUs in Libraries

Structure

For creating method names, the same rules apply as for actions. Enter English comments for
possible inputs of a method. Add a short description of a method to its declaration. Start interface
names with letter | ; for example, | CANDevi ce.

NOTE: Consider the usage of the namespace when using POUs declared in libraries.

Visualization Names

Avoid naming a visualization similar to another object in the project because this would cause
anomalies in case of visualization changes.

Variables Initialization

Default Initialization Value

The default initialization value is 0 for all declarations, but you can add user-defined initialization
values in the declaration of each variable and data type.

User-Defined Initialization Values

The user-defined initialization is brought about by the assignment operator : = and can be any valid
ST expression. Thus, constant values as well as other variables or functions can be used to define
the initialization value. Verify that a variable used for the initialization of another variable is already
initialized itself.

Example of valid variable initializations:

VAR

varl: INT := 12; * |Integer variable with initial val ue of
12. *

X : INT := 13 + 8§; * | nteger val ue defined an expression wit
h literal values.*

y : INT :=x + fun(4); * I nteger val ue defined by an expression
containing a function call. NOTE: Be sure that any variables used in

the variable initialization have al ready been defined. *

z : PONTER TO INT := ADR(y); * PO NTER is not described by the | EC6113
1-3:

I nt eger val ue defined by an address function; NOTE: The pointer will
not be initialized if the declaration is nodified online. *

END_VAR

512

EI00000000067 06/2017

Variables Declaration

Further Information

For further information, refer to the following descriptions:

e initializing arrays (see page 598)

e initialization of structures (see page 6017)

e initialization of a variable with a subrange type (see page 605)

NOTE: Variables of global variables lists (GVL) are initialized before local variables of a POU.
Declaration

Declaration Types

You can declare variables manually by using the textual or tabular declaration editor
(see page 376) or automatically like explained in this chapter.

Automatic Autodeclaration

You can define in the Options dialog box, category Text editor - Editing, that the Auto Declare
dialog box should open as soon as a not yet declared string is entered in the implementation part
of an editor and the ENTER key is pressed. This dialog box supports the declaration of the variable
(see page 505).

Manual Autodeclaration

To open the Auto Declare dialog box manually:
e execute the command Auto Declare, which by default is available in the Edit menu or
e press the keys SHIFT+F2

If you select an already declared variable before opening the Auto Declare dialog box, you can edit
the declaration of this variable.

EI00000000067 06/2017 513

Variables Declaration

Shortcut Mode

Overview

The declaration editor (see page 376)and the other text editors where declarations are performed
support the shortcut mode.

Activate this mode by pressing CTRL+ENTER when you end a line of declaration.
It allows you to use shortcuts instead of completely typing the declaration.

Supported Shortcuts

The following shortcuts are supported:
e All identifiers up to the last identifier of a line will become declaration variable identifiers.
e The type of declaration is determined by the last identifier of the line.

In this context, the following replacements are performed:

B or BOOL is replaced by BOOL

I or| NT INT

R or REAL REAL
Sorstring STRING

e If no type has been established through these rules, automatically BOOL is the type and the last
identifier will not be used as a type (see example 1).

e Every constant, depending on the type of declaration, will turn into an initialization or a string
(see examples 2 and 3).

e An address (as in %vD12) is extended by the AT keyword (see example 4).

e A text after a semicolon (;) becomes a comment (see example 4).

e All other characters in the line are ignored (see, for example, the exclamation point in

example 5).
Examples

Example No. | Shortcut Resulting Declaration

1 A A: BOQL;

2 ABI 2 A B INT := 2;

3 ST S 2; Astring ST: STRINE 2); (* A string *
)

4 X %D12 R 5 Real Nunber X AT %D12: REAL := 5.0; (*
Real Nunber *)

5 B! B: BOCL;

514 EI00000000067 06/2017

Variables Declaration

AT Declaration

Overview

In order to link a project variable with a definite address, you can assign variables to an address in
the I/O Mapping view of a device in the controller configuration (device editor). Alternatively you
can enter this address directly in the declaration of the variable.

Syntax
<identifier> AT <address> : <data type>;

A valid address has to follow the keyword AT. For further information, refer to the Address
description (see page 728). Consider possible overlaps in case of byte addressing mode.

This declaration allows assigning a meaningful name to an address. Any changes concerning an
incoming or outgoing signal may only be done in a single place (for example, in the declaration).

Consider the following when choosing a variable to be assigned to an address:

e Variables requiring an input cannot be accessed by writing. The compiler intercepts this
detecting an error.

e AT declarations only can be used with local or global variables. They cannot be used with input
and output variables of POUs.

e AT declarations are not allowed in persistent variable lists.

e If AT declarations are used with structure or function block members, all instances will access
the same memory location of this structure / function block. This corresponds to static variables
in classic programming languages such as C.

e The memory layout of structures is determined by the target as well.

Examples

xCount er Heat 7 AT %X0. 0: BOOL;
xLi ght Cabi net | npul se AT % X7.2: BOOL;
xDownl oad AT %vX2. 2: BOO.;

Note

If boolean variables are assigned to a BYTE, WORD or DWORD address, they occupy 1 byte with
TRUE or FALSE, not just the first bit after the offset.

Explanation: booleans themselves are actually 8 bits when declared, and so when they are written
to other variable types, all 8 bits go along.

EI00000000067 06/2017 515

Variables Declaration

Keywords

Overview

Write keywords in uppercase letters in the editors.

The following strings are reserved as keywords. They cannot be used as identifiers for variables
or POUs:

ABS

ACCS
ACTI ON (only used in the export format)
ADD

ADR

AND
ANDN
ARRAY
ASI N

AT

ATAN

Bl TADR
BOCL

BY

BYTE

CAL

CALC
CALCN
CASE
CONSTANT

DATE

DI NT

D v

DO

DT

DWORD

ELSE

ELSI F

END_ACTI ON (only used in the export format)
END_CASE

END_FOR

END_FUNCTI ON (only used in the export format)
END_FUNCTI ON_BLOCK (only used in the export format)
END | F

END_PROGRAM (only used in the export format)
END_REPEAT

END_STRUCT

516

EI00000000067 06/2017

Variables Declaration

END_TYPE
END_VAR
END VI LE
EQ

EXIT

EXP

EXPT
FALSE

FOR

FUNCTI ON
FUNCTI ON_BLOCK
GE

GT

IF

| NDEXOF

I NT

IMP

JMPC
JMPCN

LD

LDN

LE

LI NT

LN

LOG

LREAL

LT

LTI MVE
LVORD

METHCD

PARANVS
PERSI STENT
PO NTER
PROGRAM

EI00000000067 06/2017 517

Variables Declaration

R

READ ONLY
READ WRI TE
REAL
REFERENCE
REPEAT
RET

RETAI N
RETC
RETCN
RETURN
ROL

ROR

S

SEL

SHL

SHR

SI'N

SI NT

SI ZECF
SUPER
SQRT

ST

STN

STRI NG
STRUCT
SUPER

SUB

TAN

THEN

TH S

TI ME

TO

TOD

TRUE
TRUNC
TYPE

UDI NT

Ul NT

ULI NT

UNTI L

USI NT

VAR
VAR_ACCESS (only used specifically, depending on the hardware)
VAR_CONFI G

518 EI00000000067 06/2017

Variables Declaration

VAR_EXTERNAL
VAR _GLOBAL
VAR | N_OUT
VAR | NPUT
VAR _OUTPUT
VAR _STAT
VAR_TEMP
W LE
WORD

WSTRI NG
XOR

XORN

Additionally, the conversion operators as listed in the Input Assistant are handled as keywords.

EI00000000067 06/2017

519

Variables Declaration

Section 27.2
Variable Types

What Is in This Section?
This section contains the following topics:

Topic Page
Variable Types 521
Attribute Keywords for Variable Types 524
Variables Configuration - VAR_CONFI G 528

520

EI00000000067 06/2017

Variables Declaration

Variable Types

Overview
This chapter provides further information on the following variable types:
VAR local variables (see page 527)
VAR _| NPUT input variables (see page 527)
VAR_QUTPUT output variables (see page 521)
VAR _| N_QUT input and output variables (see page 522)
VAR_GLOBAL global variables (see page 522)
VAR_TEMP temporary variables (see page 523)
VAR _STAT static variables (see page 523)
VAR _EXTERNAL external variables (see page 523)

Local Variables - VAR

Between the keywords VAR and END_VAR, all local variables of a POU are declared
(see page 505). These have no external connection; in other words, they cannot be written from
the outside.

Consider the possibility of adding an attribute (see page 524)to VAR.

Example

VAR
i Locl: INT; (* 1. Local Vari abl e*)
END_VAR

Input Variables - VAR _| NPUT

Between the keywords VAR_| NPUT and END_VAR, all variables are declared (see page 505) that
serve as input variables for a POU. This means that at the call position, the value of the variables
can be provided along with a call.

Consider the possibility of adding an attribute (see page 524).
Example

VAR | NPUT
ilnl:INT (* 1. Inputvariabl e*)
END_VAR

Output Variables - VAR _OQUTPUT

Between the keywords VAR_OUTPUT and END_VAR, all variables are declared that serve as output
variables of a POU. This means that these values are carried back to the POU that makes the call.

Consider the possibility of adding an attribute (see page 524)to VAR_OUTPUT.

Example

EI00000000067 06/2017 521

Variables Declaration

VAR_QUTPUT

iQutl:INT; (* 1. Cutputvariabl e*)
END_VAR
Output variables in functions and methods:

According to IEC 61131-3 draft 2, functions (and methods) can have additional outputs.You can
assign them in the call of the function as shown in the following example.

Example
fun(ilnl :=1, iln2 := 2, iQutl => ilocl, iQut2 => iloc2);

Input and Output Variables - VAR | N_OUT

Between the keywords VAR _| N_OUT and END_VAR, all variables are declared (see page 505)that
serve as input and output variables for a POU.

NOTE: With variables of | N_OUT type, the value of the transferred variable is changed (transferred

as a pointer, Call-by-Reference). This means that the input value for such variables cannot be a
constant. For this reason, even the VAR _| N_OUT variables of a function block cannot be read or

written directly from outside via <FBi nst ance>. <l nCut Vari abl e>.

NOTE: Do not assign bit-type symbols (such as %vXaa. b or BOOL variables that are located on
such a bit-type address) to BOOL-type VAR _| N_QUT parameters of function blocks. If any such
assignments are detected, they are reported as a detected Build error in the Messages view
(see SoMachine, Menu Commands, Online Help).

Example
VAR | N_QUT

ilnQut1l:INT; (* 1. |nputoutputvariable *)
END_VAR

Global Variables - VAR_GLOBAL

You can declare normal variables, constants, external, or remanent variables that are known
throughout the project as global variables. To declare global variables, use the global variable lists
(GVL). You can add a GVL by executing the Add Object command (by default in the Project menu).

Declare the variables locally between the keywords VAR_GLOBAL and END_VAR.
Consider the possibility of adding an attribute (see page 524)to VAR_GLOBAL.
A variable is recognized as a global variable by a preceding dot, for example, . i G obVar 1.

For detailed information on multiple use of variable names, the global scope operator dot (.)
and name spaces refer to the chapter Global Scope Operator (see page 709).
Global variables can only be declared in global variable lists (GVLs). They serve to manage global

variables within a project. You can add a GVL by executing the Add Object command (by default
in the Project menu).

522

EI00000000067 06/2017

Variables Declaration

NOTE: A variable defined locally in a POU with the same name as a global variable will have
priority within the POU.

NOTE: Global variables are initialized before local variables of POUs.

Temporary Variables - VAR_TEMP
This feature is an extension to the IEC 61131-3 standard.

Temporary variables get (re)initialized at each call of the POU. VAR_TEMP declarations are only
possible within programs and function blocks. These variables are also only accessible within the
body of the program POU or function block.

Declare the variables locally between the keywords VAR_TEMP and END_VAR.

NOTE: You can use VAR_TEMP instead of VAR to reduce the memory space needed by a POU (for
example inside a function block if the variable is only used temporarily).

Static Variables - VAR_STAT
This feature is an extension to the IEC 61131-3 standard.

Static variables can be used in function blocks, methods, and functions. Declare them locally
between the keywords VAR _STAT and END_VAR. They are initialized at the first call of the
respective POU.

Such as global variables, static variables do not lose their value after the POU in which they are
declared is left. They are shared between the POUs they are declared in (for example, several
function block instances, functions or methods share the same static variable). They can be used,
for example, in a function as a counter for the number of function calls.

Consider the possibility of adding an attribute (see page 524)to VAR _STAT.

External Variables - VAR_EXTERNAL
These are global variables which are imported into the POU.

Declare them locally between the keywords VAR_EXTERNAL and END_VAR and in the global
variable list (GVL). The declaration and the global declaration have to be identical. If the global
variable does not exist, a message will display.

NOTE: It is not necessary to define variables as external. These keywords are provided in order to
maintain compatibility to IEC 61131-3.
Example

VAR _EXTERNAL
i Var Ext 1: | NT; (* 1st external variable *)
END_VAR

EI00000000067 06/2017 523

Variables Declaration

Attribute Keywords for Variable Types

Overview

You can add the following attribute keywords to the declaration (see page 505) of the variable type
in order to specify the scope:

e RETAI N: refer to Retain Variables (see page 524)

e PERSI STENT: refer to Persistent Variables (see page 525)

e CONSTANT: refer to Constants - CONSTANT (see page 526), Typed Literals (see page 526)

Remanent Variables - RETAI N, PERSI STENT

Remanent variables can retain their value throughout the usual program run period. Declare them
as retain variables or even more stringent as persistent variables.

The declaration determines the degree of resistance of a remanent variable in the case of resets,
downloads, or a reboot of the controller. In applications mainly the combination of both remanent
flags is used (refer to Persistent Variables (see page 525)).

NOTE: A VAR PERSI STENT declaration is interpreted in the same way as a
VAR PERSI STENT RETAI Nor VAR RETAI N PERSI STENT.

NOTE: Use the command (see SoMachine, Menu Commands, Online Help) Add all instance paths
to take variables declared as persistent into the Persistent list object.

Retain Variables

Variables declared as retain variables are stored in a nonvolatile memory area. To declare this kind
of variable, use the keyword RETAI Nin the declaration part of a POU or in a global variable list.

Example
VAR RETAI N

iRemlL : INT; (* 1. Retain variabl e*)
END VAR

Using interfaces or function blocks out of System Configuration libraries will cause system
exceptions, which may make the controller inoperable, requiring a re-start.

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Do not use interfaces out of the SystemConfigurationltf library in the retain program section
(VAR_RETAI N).

e Do not use function blocks out of the SystemConfiguration library in the retain program section
(VAR_RETAI N).

Failure to follow these instructions can result in death, serious injury, or equipment damage.

524

EI00000000067 06/2017

Variables Declaration

Retain variables maintain their value even after an unanticipated shutdown of the controller as well
as after a normal power cycle of the controller (or when executing the Online command Reset
Warm). At restart of the program, the retained values will be processed further on. The other (non-
retain) variables are newly initialized, either with their initialization values or with their default
initialization values (in case no initialization value was declared).

For example, you may want to use a retained value when an operation, such as piece counting in
a production machine, should continue after a power outage.

Retain variables, however, are reinitialized when executing the Online command Reset origin and,
in contrast to persistent variables, when executing the Online command Reset cold or in the course
of an application download.

NOTE: Only the specific variables defined as VAR RETAI N are stored in nonvolatile memory.
However, local variables defined as VAR RETAI Nin functions are NOT stored in nonvolatile
memory. Defining VAR RETAI Nlocally in functions is of no effect.

Persistent Variables
Persistent variables are identified by keyword PERSI STENT (VAR_GLOBAL PERSI STENT). They
are only reinitialized when executing the Online command Reset origin. In contrast to retain
variables, they maintain their values after a download.

NOTE: Do not use the AT declaration in combination with VAR PERSI STENT.
Application example:

A counter for operating hours, which should continue counting even after a power outage or a
download. Refer to the synoptic table on the behavior of remanent variables (see page 526).

You can only declare persistent variables in a special global variable list of object type persistent
variables, which is assigned to an application. You can add only one such list to an application.

NOTE: A declaration with VAR_GLOBAL PERSI STENT has the same effect as a declaration with
VAR _GLOBAL PERSI STENT RETAI Nor VAR_GLOBAL RETAI N PERSI STENT.

Like retain variables, the persistent variables are stored in a separate memory area.

Example

VAR _GLOBAL PERSI STENT RETAI N
i VarPersl : DINT; (* 1. Persistent+Retain Variable Appl *)
bVarPers : BOOL; (* 2. Persistent+Retain Variable Appl *)
END_VAR

NOTE: Persistent variables can only be declared inside the Persistent list object. If they are
declared elsewhere, they will behave like retain variables and they will be reported as a detected
Build error in the Messages view. (Retain variables can be declared in the global variable lists or
in POUs.)

EI00000000067 06/2017 525

Variables Declaration

At each reload of the application, the persistent variable list on the controller will be checked
against that of the project. The list on the controller is identified by the application name. In case
of inconsistencies, you will be prompted to reinitialize all persistent variables (see SoMachine,
Menu Commands, Online Help) of the application. Inconsistency can result from renaming or
removing or other modifications of the existing declarations in the list.

NOTE: Carefully consider any modifications in the declaration part of the persistent variable list and
the effect of the results regarding reinitialization.

You can add new declarations only at the end of the list. During a download, these are detected
as new and will not demand a reinitialization of the complete list. If you modify the name or data
type of a variable, this is handled as a new declaration and provokes a reinitialization of the variable
at the next online change or download.

Behavior of Remanent Variables

Consult the Programming Guide specific to your controller for further information on the behavior
of remanent variables.

Constants - CONSTANT
Constants are identified by the keyword CONSTANT. You can declare them locally or globally.

Syntax
VAR CONSTANT<identifier>:<type> := <initialization>;END_VAR
Example
VAR CONSTANT
Cc_i Conl: INT:=12; (* 1. Constant¥*)
END_VAR

Refer to the Operands chapter (see page 713)for a list of possible constants.

Typed Literals

Basically, in using IEC constants, the smallest possible data type will be used. If another data type
has to be used, this can be achieved with the help of typed literals without the necessity of explicitly
declaring the constants. For this, the constant will be provided with a prefix which determines the

type.
Syntax
<type>#<literal>;

<type> specifies the desired data type

possible entries: BOOL, SINT, USINT, BYTE, INT, UINT, WORD,
DINT, UDINT, DWORD, REAL, LREAL

Write the type in uppercase letters.

<literal> specifies the constant
Enter data that fits within the data type specified under <type>.

526 EI00000000067 06/2017

Variables Declaration

Example

i Var 1: =Dl NT#34;

If the constant cannot be converted to the target type without data loss, a message is issued.
You can use typed literals wherever normal constants can be used.

Constants in Online Mode
As long as the default setting Replace constants (File - Project Settings -~ Compile options) is
activated, constants in online mode have a symbol preceding the value in the Value columnin

the declaration or watch view. In this case, they cannot be accessed by, for example, forcing or
writing.

EI00000000067 06/2017 527

Variables Declaration

Variables Configuration - VAR_CONFI G

Overview

You can use the variable configuration to map function block variables on the process image that
is on the device I/Os. This avoids the need of specifying the definite address already in the
declaration of the function block variable. The assignment of the definite address (see page 728)
in this case is done centrally for all function block instances in a global VAR_CONFI Glist.

For this purpose, you can assign incomplete addresses to the function block variables declared
between the keywords VAR and END_VAR. Use an asterisk to identify these addresses.

Identifier Syntax
<identifier> AT %<I|Q>* : <data type>

Example of the use of incompletely defined addresses:
FUNCTI ON_BLOCK | oci o
VAR
xLocln AT % *. BOOL := TRUE;
xLocQut AT %): BOO.;
END_ VAR

In this example, 2 local I/O variables are defined: a local input (% *) and a local output variable
(%)

Define the addresses in the variable configuration in a global variable list (GVL) as follows:

Step Action

1 Execute the Add Object command.

2 Add a Global Variable List (GVL) object to the Devices Tree.

3 Enter the declarations of the instance variables with the definite addresses
between the keywords VAR_CONFI Gand END_VAR.

When defining the addresses, note the following:

e Specify the instance variables by the complete instance path and separate the individual POUs
and instance names from one another by periods.

e In the declaration, enter an address whose class (input/output) corresponds to that of the
incomplete specified address (%4 *, %") in the function block.

e Verify that the data type agrees with the declaration in the function block.

Instance Variable Path Syntax
<instance variable path> AT %<I|Q><location> : <data type>;

528 EI00000000067 06/2017

Variables Declaration

Configuration variables whose instance path is invalid because the instance does not exist are
denoted as detected errors. An error is also detected if no definite address configuration exists for
an instance variable assigned to an incomplete address.

Example for a variable configuration

Assume that the following definition for function block | oci o - see the previous example - is given
in a program:

PROGRAM PLC_PRG

VAR

| oci oVar1: | oci o;

| oci oVar2: | oci o;

END_VAR

Then a corrected variable configuration will be:

VAR_CONFI G

PLC PRG | oci oVar 1. xLocln AT 9% X1.0 : BOCL;
PLC PRG | oci oVar 1. xLocQut AT %X0.0 : BOCL;
PLC PRG | oci oVar 2. xLocln AT 9% X1.0 : BOCL;
PLC PRG | oci oVar 2. xLocQut AT %X0.3 : BOO;
END_VAR

NOTE: Changes on directly mapped I/Os are immediately shown in the process image, whereas
changes on variables mapped via VAR_CONFI Gare not shown before the end of the responsible
task.

EI00000000067 06/2017 529

Variables Declaration

Section 27.3
Method Types

What Is in This Section?
This section contains the following topics:

Topic Page
FB_init,FB_reinit Methods 531
FB_exit Method 534

530

EI00000000067 06/2017

Variables Declaration

FB i nit, FB_ reinit Methods

FB_ I nit

The FB_i ni t method serves to reinitialize a function block or a structure. FB_i ni t can be
declared explicitly for function blocks, but in any case is always available implicitly.

The FB_i ni t method contains initialization code for the function block or structure as declared in
the declaration part of the respective object. If the i ni t method is declared explicitly, the implicit
initialization code will be inserted into this method. The programmer can add further initialization
code.

NOTE: When execution reaches the user-defined initialization code, the function block,
respectively the structure, is already fully initialized via the implicit initialization code.

The i ni t method is called after download for each declared function block instance and each
variable of a structure type.

NOTE: Executing the Online Change command will overwrite the initialization values by previous
values.

For information on the call sequence in case of inheritance, refer to the respective paragraph in the
FB_exit Method chapter (see page 534).
For information on the possibility of defining a function block instance method to be called
automatically after initialization via FB_i ni t , refer to chapter Aftribute call_after_init
(see page 552).
Interface of the i ni t method
METHOD fb_init : BOOL
VAR_I NPUT
blnitRetains : BOOL; // if TRUE, the retain variables are initialized
(warm start / cold start)
bl nCopyCode : BOOL; // if TRUE, the instance afterwards

gets noved into the copy code (online change)
END_VAR

The return value is inconsequential.

NOTE: Consider also the possible use of an exit method and the resulting execution order (refer
to chapter FB_exit Method (see page 534)).

User-defined input

Inani ni t method, you can declare additional function block inputs. Assign them at the
declaration of a function block instance.

Example for an i ni t method for a function block seri al devi ce:

EI00000000067 06/2017 531

Variables Declaration

METHCD PUBLIC FB_init : bool
VAR _| NPUT

blnitRetains : BOOL; // Initialization of the retain variables

bl nCopyCode : BOCL; // Instance noved into copy code

NCOVhum : INT; // Input: nunber of the COMinterface to |listen at
END_VAR

Declaration of function block seri al devi ce:

conl: serial device (nCOwvhum =1);
conD: serial devi ce (nCOvhum =0);

Example for using FB_i ni t for a structure DUTxy:

Structure DUTXy

TYPE DUTxy :
STRUCT
a: INT := 10;
b: INT := 11;
c: INT := 12;
END_STRUCT
END TYPE

Calling f b_i ni t for reinitialization:
PROGRAM PLC_PRG
VAR

dut Test: DUTxy;
xlnit: BOOL: =FALSE;

END_VAR
IF xinit THEN // if xinit is set TRUE, then the
reinitialization via fb_init to the values as defined in DUTxy will be
done
dut Test. FB_| ni t (TRUE, TRUE) ;
ELSE

dut Test.a := 1;

dut Test.b := 2;

dut Test.c := 3;
END | F

532

EI00000000067 06/2017

Variables Declaration

FB reinit
If a method named FB_r ei ni t is declared for a function block instance, this method will be called
when the instance is copied. This is the case at an online change after a modification of the function
block declaration. The method will cause a reinitialization of the new instance module that has
been created by the copy code. A reinitialization can be desired because the data of the original
instance will be written to the new instance after the copying, even though you want to obtain the
original initialization values. The FB_r ei nit method has no inputs. Consider that in contrast to
FB_i nit the method has to be declared explicitly. If a reinitialization of the basic function block
implementation is desired, FB_r ei ni t has to be called explicitly for that POU.

The FB_rei ni t method has no inputs.

For information on the call sequence in case of inheritance, refer to the respective paragraph in the
FB_exit Method chapter (see page 534).

EI00000000067 06/2017 533

Variables Declaration

FB_exi t Method

Overview

The FB_exi t method is a special method for a function block. It has to be declared explicitly as
there is no implicit declaration. The exi t method, if present, is called for all declared instances of
the function block before a new download, at a reset or during online change for all moved or
deleted instances.

Interface of the FB_exi t method

There is only one mandatory parameter:
METHOD fb_exit : BOOL
VAR_I NPUT
bl nCopyCode : BOCL; // if TRUE, the exit method is called
for exiting an instance that is copied afterwards (online change).
END_VAR

Consider also the FB_init method (see page 537)and the following execution order:

exi t method: exitold | ol d_i nst. fb_exit (bl nCopyCode : = TRUE);
instance

i ni t method: new_inst.fb_init(blnitRetains := FALSE, blnCopyCode := TRUE);
initialize new instance

copy function block copy_fub(&ol d_inst, &iew.inst);
values (copy code)

Inheritance

Besides this, in case of inheritance, the following call sequence is TRUE (assuming or the POUs
used for this listing: SUbFB EXTENDS Mai nFB and SubSubFB EXTENDS SubFB):

f bSubSubFb. FB_Exit(...);
f bSubFb. FB_EXi t (...);
f bMai nFb. FB_Exit (...);
fbMai nFb. FB_Init(...)
fbSubFb. FB_Init(...);
f bSubSubFb. FB_ I nit(...);

For FB_r ei ni t, the following applies:

fbMai nFb. FB_reinit(...);
f bSubFb. FB reinit(...);
f bSubSubFb. FB I nit(...);

534

EI00000000067 06/2017

Variables Declaration

Section 27.4

Pragma Instructions

What Is in This Section?

This section contains the following topics:

Topic Page
Pragma Instructions 536
Message Pragmas 538
Conditional Pragmas 539
EIO0000000067 06/2017 535

Variables Declaration

Pragma Instructions

Overview

Syntax

A pragma instruction is used to affect the properties of 1 or several variables concerning the
compilation or precompilation (preprocessor) process. This means that a pragma influences the
code generation.

NOTE: Consider that the available pragmas are not 1:1 implementations of C preprocessor
directives. They are handled as normal statements and therefore can only be used at statement
positions.

A pragma can determine whether a variable will be initialized, monitored, added to a parameter list,
added to the symbol list (see page 577), or made invisible in the Library Manager. It can force
message outputs during the build process. You can use conditional pragmas to define how the
variable should be treated depending on certain conditions. You can also enter these pragmas as
definitions in the compile properties of a particular object.

You can use a pragma in a separate line, or with supplementary text in an implementation or
declaration editor line. Within the FBD/LD/IL editor, execute the command Insert Label and replace
the default text Label : in the arising text field by the pragma. In case you want to set a label as
well as a pragma, insert the pragma first and the label afterwards.

The pragma instruction is enclosed in curly brackets.

{ <instruction text> }

The opening bracket can immediately come after a variable name. Opening and closing brackets
have to be in the same line.

536

EI00000000067 06/2017

Variables Declaration

Further Information

Depending on the type and contents of a pragma, the pragma operates on the subsequent
statement, respectively all subsequent statements, until 1 of the following conditions is met:
e |tis ended by an appropriate pragma.

e The same pragma is executed with different parameters.

e The end of the code is reached.

The term code in this context refers to a declaration part, implementation part, global variable list,
or type declaration.

NOTE: Pragma instructions are case-sensitive.

If the compiler cannot meaningfully interpret the instruction text, the entire pragma is handled as a
comment and is skipped.

Refer to the following pragma types:
Message Pragmas (see page 538)
Attribute Obsolefe (see page 573)
Attribute Pragmas (see page 549)
Conditional Pragmas (see page 539)
Attribute Symbol (see page 577)

EI00000000067 06/2017 537

Variables Declaration

Message Pragmas

Overview

You can use message pragmas to force the output of messages in the Messages view (by default
in the Edit menu) during the compilation (build) of the project.

You can insert the pragma instruction in an existing line or in a separate line in the text editor of a
POU. Message pragmas positioned within currently not defined sections of the implementation
code will not be considered when the project is compiled. For further information, refer to the
example provided with the description of the defined (identifier) in the chapter Conditional Pragmas
(see page 539).

Types of Message Pragmas

There are 4 types of message pragmas:

Pragma Icon Message Type

{text 'text string’} - text type
The specified text string will be displayed.

{info ’text string’} o information
The specified text string will be displayed.

{warning digit 'text string’} ® alert type

The specified text string will be displayed.
In contrast to the global obsolete pragma
(see page 573), this alert is explicitly defined
for the local position.

{error ’text string’} [x] error type
The specified text string will be displayed.

NOTE: For messages of types information, alert, and detected error, you can reach the source
position of the message - that is where the pragma is placed in a POU - by executing the command
Next Message. This is not possible for the text type.

Example of Declaration and Implementation in ST Editor

VAR

ivar : INT; {info ' TODG should get another nane'}
bvar : BOOL;

arrTest : ARRAY [0..10] OF I NT;

i 1| NT;

END_VAR

arrTest[i] := arrTest[i]+1;

i var: =i var +1;
{warning 'This is an alert'}
{text 'Part xy has been conpiled conpletely'}

538

EI00000000067 06/2017

Variables Declaration

Output in Messages view:

Messages a X
(- |
Description Project Object Position

- Build started: Application: Res.App2 ---—

typify code...

@ Compile time before typification: 0 ms
€ Compile time after typification: 15 ms

@ TODO: should get another name! TS pragma |NewPOU |Line 3 (Decl)
@ This is an alert TS pragma |NewPOU | Line 7 (Impl)
Part xy has been compiled completely TSpragma |NewPOU Line 10 (Impl)

Compile complete - 1 errors, 2 wamnings
Conditional Pragmas

Overview

The ExST (Extended ST) language supports several conditional Pragma Instructions

(see page 536), which affect the code generation in the precompile or compile process.

The implementation code which will be regarded for compilation can depend on the following
conditions:

e |s a certain data type or variable declared?

Does a type or variable have a certain attribute?

e Does a variable have a certain data type?

e |s a certain POU or task available or is it part of the call tree, etc...

NOTE: It is not possible for a POU or GVL declared in the POUs Tree to use a {defi ne. ..}

declared in an application. Definitions in applications will only affect interfaces inserted below the
respective application.

{define identifier string} |During preprocessing, all subsequent instances of the identifier will
be replaced with the given sequence of tokens if the token string is
not empty (which is allowed and well-defined). The identifier remains
defined and in scope until the end of the object or until it is undefined
in an {undefi ne} directive. Used for conditional compilation
(see page 540).

{undefine identifier} The preprocessor definition of the i dent i fi er (by{defi ne}, see
first row of this table) will be removed and the identifier hence is
undefined. If the specified identifier is not currently defined, this
pragma will be ignored.

EI00000000067 06/2017 539

Variables Declaration

{I'F expr} These are pragmas for conditional compilation. The specified
expressions expr s are required to be constant at compile time; they
{ELSIF expr} are evaluated in the order in which they appear until one of the
expressions evaluates to a non-zero value. The text associated with
{ ELSE} the successful directive is preprocessed and compiled normally; the
others are ignored. The order of the sections is determinate;
{END_I F} however, the el si f and el se sections are optional, and el si f
sections may appear arbitrarily more often.

Within the constant expr, you can use several conditional
compilation operators (see page 540).

Conditional Compilation Operators

Within the constant expression expr of a conditional compilation pragma ({i f } or{el sif}) (see
previous table), you can use several operators. These operators may not be undefined or redefined
via {undefi ne} or{defi ne}, respectively. Consider that you can also use these expressions
as well as the definition completed by { def i ne} in the Compiler defines: text field in the
Properties dialog box of an object (View — Properties — Build).

The following operators are supported:

defined (identifier) (see page 540)

defined (variable:variable) (see page 541)

defined (type:identifier) (see page 541)

defined (pou:pou-name) (see page 542)

hasattribute (pou: pou-name, attribute) (see page 542)
hasattribute (variable: variable, attribute) (see page 54.3)
hastype (variable:variable, type-spec) (see page 544)
hasvalue (define-ident, char-string) (see page 546)
NOT operator (see page 546)

operator AND operator (see page 546)

operator OR operator (see page 547)

operator (see page 547)

defined (identifier)

This operator affects that the expression gets value TRUE, as soon as the i denti fi er has been
defined with a { def i ne} instruction and has not been undefined later by an { undef i ne}
instruction. Otherwise its value is FALSE.

Example on defined (identifier):

Precondition: There are 2 applications Appl and App2. Variable pdef 1 is declared in App2, but
not in App1.

540

EI00000000067 06/2017

Variables Declaration

{I'F defined pdef1)}

(* this code is processed in Appl *)

{info 'pdefl defined'}

hugo : = hugo + S| NT#1;

{ ELSE}

(* the following code is only processed in application App2 *)
{info 'pdefl not defined }

hugo : = hugo - S| NT#1;

Additionally, an example for a message pragma (see page 538)is included:
Only information pdef 1 def i ned will be displayed in the Messages view when the application is

compiled because pdef 1 is defined. The message pdef1 not defined will be displayed when
pdef 1 is not defined.

defined (variable:variable)

When applied to a variable, its value is TRUE if this particular variable is declared within the current
scope. Otherwise it is FALSE.

Example on defi ned (vari abl e: vari abl e):

Precondition: There are 2 applications Appl and App2. Variable g_bTest is declared in App2,
but not in App1.

{IF defined (variable:g_bTest)}

(* the following code is only processed in application App2 *)

g bTest := x > 300;

{END_I F}

defined (type:identifier)
When applied to a type identifier, its value is TRUE if a type with that particular name is declared.
Otherwise it is FALSE.
Example on defined (type:identifier)

Precondition: There are 2 applications App1 and App2. Data type DUT is defined in App2, but not
in Appl.

{1 F defined (type: DUT)}

(* the following code is only processed in application Appl *)

bDut Def i ned : = TRUE;
{END_| F}

EI00000000067 06/2017 541

Variables Declaration

defined (pou: pou- nane)

When applied to a POU name, its value is TRUE if a POU or an action with that particular POU
name is defined. Otherwise it is FALSE.

Example on def i ned (pou: pou-nane):

Precondition: There are 2 applications Appl and App2. POU CheckBounds is available in App2,
but not in App1.
{1 F defined (pou: CheckBounds)}

(* the following code is only processed in application Appl *)
arr Test [CheckBounds(0, i, 10)] := arrTest[CheckBounds(0,i,10)] + 1;

{ ELSE}

(* the following code is only processed in application App2 *)
arrTest[i] := arrTest[i]+1;

{END_I F}

hasattribute (pou: pou-nane, attribute)

When applied to a POU, its value is TRUE if this particular at t r i but e is specified in the first line
of the POUs declaration part.

Example on hasattri bute (pou: pou-name, attribute):

Precondition: There are 2 applications App1 and App2. Function f unl is defined in App1 and
App2, butin Appl has an attribute vi si on:

Definition of f unl in App1l:

{attribute 'vision'}
FUNCTI ON funl : INT
VAR _| NPUT

i @ INT;

END_VAR

VAR

END_VAR

Definition of f unl in App2:

FUNCTI ON funl : |INT
VAR _| NPUT

i . |NT,;

END VAR

VAR

END_VAR

542 EI00000000067 06/2017

Variables Declaration

Pragma instruction

{IF hasattribute (pou: funl, 'vision')}

(* the following code is only processed in application Appl *)
ergvar := funl ivar);

{END_I F}

hasattribute (variable: variable, attribute)

When applied to a var i abl e, its value is TRUE if this particular attribute is specified via the
{attribute} instruction in a line before the declaration of the variable.

Example on hasattri bute (variable: variable, attribute):

Precondition: There are 2 applications Appl and App2. Variable g_gl obal | nt is used in Appl
and App2, but in App1 has an attribute DoCount :

Declaration of g_gl obal I nt in App1l

VAR _GLOBAL
{attribute ' DoCount"'}
g_gl obal I nt : | NT;
g_mul ti Type : STRI NG
END_VAR

Declaration of g_gl obal | nt in App2

VAR_GLOBAL

g_gl obal I nt : | NT;
g_mul ti Type : STRI NG
END_VAR

Pragma instruction

{IF hasattribute (variable: g_globallnt, 'DoCount')}

(* the following code Iine will only be processed in Appl, because ther
e variable g_globalInt has got the attribute ' DoCount' *)

g_globalInt := g_globallnt + 1;

{END_I F}

EI00000000067 06/2017 543

Variables Declaration

hastype (vari abl e:variable, type-spec)

When applied to a vari abl e, its value is TRUE if this particular variable has the specified t ype-
spec. Otherwise it is FALSE.

Available data types of t ype- spec
ANY
ANY_DERIVED
ANY_ELEMENTARY
ANY_MAGNITUDE
ANY_BIT
ANY_STRING
ANY_DATE
ANY_NUM
ANY_REAL
ANY_INT

LREAL

REAL

LINT

DINT

INT

SINT

ULINT

UDINT

UINT

USINT

TIME

LWORD

DWORD

WORD

BYTE

BOOL

STRING
WSTRING
DATE_AND_TIME
DATE
TIME_OF_DAY

Example on operator hast ype (vari abl e: variable, type-spec):

Precondition: There are 2 applications Appl and App2. Variable g_nul ti t ype is declared in
App1l with type LREAL and in application App2 with type STRING:

544 EI00000000067 06/2017

Variables Declaration

{IF (hastype (variable: g multitype, LREAL))}

(* the following code line will be processed only in Appl *)
g_multitype := (0.9 + g_nmultitype) * 1.1;

{ELSI F (hastype (variable: g multitype, STRING)}

(* the following code line will be processed only in App2 *)
g nmultitype := '"this is a multitalent';

{END_I F}

EI00000000067 06/2017 545

Variables Declaration

hasval ue (define-ident, char-string)

If the define (def i ne-i dent) is defined and it has the specified value (char - st ri ng), then its
value is TRUE. Otherwise it is FALSE.

Example on hasval ue (define-ident, char-string):

Precondition: Variable t est is used in applications App1 and App2. It gets value 1 in App1 and
value 2 in App2:
{I F hasval ue(test,"1')}

(* the following code Iine will be processed in Appl, because there var
iable test has value 1 *)

X =X + 1;

{ELSI F hasval ue(test,"'2")}

(* the following code Iine will be processed in Appl, because there var
i abl e test has value 2 *)

X =X + 2

{END_I F}

NOT oper at or

The expression gets value TRUE when the inverted value of oper at or is TRUE. oper at or can
be one of the operators described in this chapter.

Example on NOT oper at or:
Precondition: There are 2 applications App1 and App2. POU PLC_PRGL is used in Appl and
App2. POU CheckBounds is only available in App1:

{IF defined (pou: PLC PRGlL) AND NOT (defined (pou: CheckBounds))}
(* the following code line is only executed in App2 *)

bANDNot Test : = TRUE;

{END_I F}

AND oper at or

The expression gets value TRUE if both operators are TRUE. oper at or can be one of the
operators listed in this table.

Example on AND oper at or:

Precondition: There are 2 applications App1 and App2. POU PLC_PRGL is used in applications
Appl and App2. POU CheckBounds is only available in App1:

{IF defined (pou: PLC PRGL) AND (defined (pou: CheckBounds))}

(* the following code line will be processed only in applications Appl,
because only there "PLC PRGL" and "CheckBounds" are defined *)

bORTest : = TRUE;

{END_I F}

546

EI00000000067 06/2017

Variables Declaration

OR oper at or

The expression is TRUE if one of the operators is TRUE. oper at or can be one of the operators
described in this chapter.

Example on OR oper at or:

Precondition: POU PLC_PRGL is used in applications App1l and App2. POU CheckBounds is only
available in App1:

{1 F defined (pou: PLC PRGl) OR (defined (pou: CheckBounds))}

(* the following code Iine will be processed in applications Appl and A
pp2, because both contain at |east one of the POUs "PLC PRGL" and "Chec
kBounds" *)

bORTest : = TRUE;

{END_I F}

(operator)

(oper at or) braces the operator.

EI00000000067 06/2017 547

Variables Declaration

Section 27.5
Attribute Pragmas

What Is in This Section?
This section contains the following topics:

Topic Page
Attribute Pragmas 549
User-Defined Attributes 550
Attribute call _after_init 552
Attribute displaynode 553
Attribute ExpandFully 554
Attribute gl obal _init_slot 555
Attribute hide 556
Attribute hide_all_locals 557
Attribute initialize_on_call 558
Attribute init_nanmespace 559
Attribute init_On_Onl change 559
Attribute instance-path 560
Attribute |inkal ways 561
Attribute nonitoring 562
Attribute namespace 566
Attribute no_check 567
Attribute no_copy 567
Attribute no-exit 568
Attribute no_init 569
Attribute no_virtual _actions 570
Attribute obsolete 573
Attribute pack_node 574
Attribute qualified_only 575
Attribute reflection 576
Attribute subsequent 576
Attribute symbol 577
Attribute warning disable 579

548

EI00000000067 06/2017

Variables Declaration

Attribute Pragmas

Overview

You can assign attribute pragmas (see page 536) to a signature in order to influence the
compilation or pre-compilation that is the code generation.

There are user-defined attributes (see page 550), which you can use in combination with
conditional pragmas (see page 539).

There are also the following predefined standard attribute pragmas:
attribute displaymode (see page 553)
attribute ExpandFully (see page 554)
attribute global_init_slot (see page 555)
attribute hide (see page 556)

attribute hide_all_locals (see page 557)
attribute initialize_on_call (see page 558)
attribute init_namespace (see page 559)
attribute init_On_Onlchange (see page 559)
attribute instance-path (see page 560)
attribute linkalways (see page 567)
attribute monitoring (see page 562)
attribute namespace (see page 566)
attribute no_check (see page 567)
attribute no_copy (see page 567)

attribute no-exit (see page 568)

attribute noinit (see page 569)

attribute no_virtual_actions (see page 570)
attribute obsolete (see page 573)

attribute pack_mode (see page 574)
attribute qualified_only (see page 575)
attribute reflection (see page 576)
attribute subsequent (see page 576)
attribute symbol (see page 577)

attribute warning disable (see page 579)

EI00000000067 06/2017 549

Variables Declaration

User-Defined Attributes

Overview

You can assign arbitrary user-defined or application-defined attribute pragmas to POUs, type
declarations, or variables. This attribute can be queried before compilation by conditional pragmas
(see page 539).

Syntax
{attribute "attribute'}

This pragma instruction is valid for the subsequent POU declaration or variable declaration.

You can assign a user-defined attribute to:
e a POU or action

e avariable

e adata type

Example on POUs and Actions
Attribute vi si on for function f uni:
{attribute 'vision'}
FUNCTI ON funl : INT
VAR _| NPUT
i : |INT;
END_VAR
VAR
END VAR

Example on Variables
Attribute DoCount for variable i var :

PROGRAM PLC PRG

VAR

{attribute ' DoCount"'};
i var: | NT;

bvar : BOCOL;

END_VAR

550 EI00000000067 06/2017

Variables Declaration

Example on Types
Attribute aType for data type DUT_1:

{attribute 'aType'}
TYPE DUT_1 :

STRUCT

a: | NT;

b: BOOL;

END_STRUCT
END_TYPE

For the usage of conditional pragmas, refer to the chapter Condlitional Pragmas (see page 539).

EI00000000067 06/2017 551

Variables Declaration

Attribute call _after_init

Overview

Use the pragma{attri bute call _after_init} todefine a method that is called implicitly
after the initialization of a function block instance. For this purpose, attach the attribute both to the
function block itself and to the instance method to be called (for performance reasons). The method
has to be called after FB_Init (see page 537) and after having applied the variable values of an
initialization expression in the instance declaration.

This functionality is supported as from SoMachine V3.0.

Syntax
{attribute "attribute call_after_init'}

Example
With the following definition:

{attribute 'call _after_init'}
FUNCTI ON_BLOCK FB

<functionbl ock definition>
{attribute 'call _after_init'}
METHCD FB_Afterlnit

<met hod definition>

... declaration like the following:
inst : FB := (inl := 99);
... will result in the following order of code processing:

inst.FB Init();
inst.inl := 99;
inst. FB Afterlnit();

So, in FB_Aft eri ni t, you can react on the user-defined initialization.

552 EI00000000067 06/2017

Variables Declaration

Attribute displaynode

Overview
Use the pragma { att ri but e di spl aynbde} to define the display mode of a single variable.

This setting will overwrite the global setting for the display mode of all monitoring variables done
via the commands of the submenu Display Mode (by default in the Online menu).

Position the pragma in the line above the line containing the variable declaration.

Syntax
{attribute 'displaymode":=<displaymode>}
The following definitions are possible:
- to display in binary format

{attribute 'displaynonde':="bin'}
{attribute 'displaynode':="binary'}
- to display in decimal format

{attribute 'displaynnde':="dec'}
{attribute 'displaynode':="decimal"'}
- to display in hexadecimal format

{attribute 'displaynode': =" hex'}

{attribute 'displaynonde': =" hexadeci nal '}

Example
VAR
{attribute 'displaynode':="hex'}
dwvar 1: DWORD;
END_VAR

EI00000000067 06/2017 553

Variables Declaration

Attribute ExpandFul |y

Overview

Syntax

Use the pragma{attri bute ' ExpandFul | y'} to make all members of arrays used as input
variables for referenced visualizations accessible within the Visualization Properties dialog box.

{attribute 'ExpandFully"}

Example

Visualization vi su is intended to be inserted in a frame within visualization vi su_mai n.

As input variable ar r is defined in the interface editor of vi su and will later be available for
assignments in the Properties dialog box of the frame in vi su_nai n.

In order to get the available particular components of the array in the Properties dialog box, insert
the attribute ExpandFul | y in the interface editor of vi su directly before arr .

Declaration in the interface editor of vi su:

VAR_I NPUT

{attribute ' ExpandFul | y'}
arr : ARRAY[O0..5] OF INT;
END_VAR

Resulting Properties dialog box of frame in vi su_nmai n:

S @ A
- ¥z

Property Value A
Scaling
Interior rotation
[=) Relative movement
[#] Movement topleft
[#] Movement bottomright
[+ State variables
m_blsotropic
m_bClip
[=] m_References
[=] pReferences
[= Visu
= arr
I —
U]
121
13]
[4]
18]

Inputs v

oo

554

EI00000000067 06/2017

Variables Declaration

Attribute global init_slot

Overview

You can apply the pragma {attri bute 'global _init_slot'} onlyforsignatures. Per
default, the order of initializing the variables of a global variable list is arbitrary. However, in some
cases, prescribing an order is necessary, that is if variables of 1 global list are referring to variables
of another list. In this case, you can use the pragma to arrange the order for global initialization.

Syntax
{attribute 'global_init_slot' := '<value>"}
Replace the template <value> by an integer value describing the initialization order of the
signature. The default value is 50,000. A lower value provokes an earlier initialization. In case of
signatures carrying the same value for the attribute gl obal _i ni t _sl ot , the sequence of their
initialization rests undefined.

Example
Assume the project including 2 global variable lists GVL_1 and GVL_2.
The global variable A is member of the exemplary global variable list GVL_1:
{attribute 'global _init_slot' := '300'}
VAR_GLOBAL
A : | NT: =1000;
END_VAR

The initial values of the variables B and C of GVL_2 depend on variable A.
{attribute' global init_slot' :="350"}

VAR_GLOBAL

B : | NT: =A+1;

C : INT: =A-1;

END_VAR

Setting the attribute ' gl obal _i nit _sl ot' of GVL_1 to 300, that is the lowest value in the
exemplary initialization order, helps to ensure that the expression A+1 is well defined when
initializing B.

EI00000000067 06/2017 555

Variables Declaration

Attri bute hide

Overview
The pragma {attri bute hi de} helps you to prevent variables or even whole signatures from

being displayed within the functionality of listing components (see page 580) or the input assistant
or the declaration part in online mode. Only the variable subsequent to the pragma will be hidden.

Syntax
{attribute 'hide'}
To hide all local variables of a signature, use the attribute hide_all_locals (see page 557).

Example
The function block myPQU is implemented using the attribute:

FUNCTI ON_BLOCK myPQU
VAR _| NPUT

a: | NT;

{attribute 'hide'}
a_invisible: BOO,;
a_vi si bl e: BOOL;
END_VAR

VAR _OUTPUT

b: | NT;

END VAR

In the main program 2 instances of function block ny POU are defined:
PROGRAM PLC_PRG

VAR
POUL, POU2: myPOU;
END_VAR

When assigning an input value to POUL, the functionality of listing components (see page 580)that
works on typing POUL in the implementation part of PLC_PRGwill display the input variables a and
a_vi si bl e (and the output variable b). The hidden input variable a_i nvi si bl e will not be
displayed.

556 EI00000000067 06/2017

Variables Declaration

Attribute hide_ all locals
Overview
The pragma {attribute 'hide_all _| ocal s'} helps you to prevent all local variables of a

Syntax

signature from being displayed within the functionality of listing components (see page 580) or the
input assistant. This attribute is identical to assigning the attribute hide (see page 556)to each
particular of the local variables.

{attribute 'hide_all_locals'"}

Example

The function block myPQUis implemented using the attribute:

{attribute 'hide_all Iocals'}
FUNCTI ON_BLOCK nmyPQU
VAR _| NPUT

a: | NT;

END_VAR

VAR_QUTPUT

b: BOOL;

END_VAR

VAR

c, d: | NT;

END_VAR

In the main program 2 instances of function block my PQU are defined:
PROGRAM PLC_PRG

VAR
PQU1L, POU2: nyPQU,
END_VAR

When assigning an input value to POU1, the functionality of listing components (see page 580)that
works on typing POUL in the implementation part of PLC_PRGwill display the variables a and b.
The hidden local variables ¢ or d will not be displayed.

EI00000000067 06/2017 557

Variables Declaration

Attribute initialize on_call

Overview

You can add the pragma{attribute initialize_on_call} toinputvariables. Aninputof a
function block with this attribute will be initialized at any call of the function block. If an input expects
a pointer and if this pointer has been removed due to an online change, then the input will be set
to NULL.

Syntax
{attribute "initialize_on_call'}

558 EI00000000067 06/2017

Variables Declaration

Attribute init_nanespace

Overview
A variable of type STRING or WSTRING, which is declared with the pragma
{attribute init_nanespace} in a library, will be initialized with the current namespace of
that library. For further information, refer to the description of the library management
(see SoMachine, Functions and Libraries User Guide).

Syntax
{attribute 'init_namespace'}

Example
The function block PQU is provided with all necessary attributes:
FUNCTI ON_BLOCK PQU
VAR _OUTPUT
{attribute "init_nanespace'}
nmyStr: STRI NG
END_VAR
Within the main program PLC_PRGan instance f b of the function block PQU is defined:

PROGRAM PLC PRG

VAR

f b: PQU;

newString: STRI NG

END_VAR

newString: =fb. nyStr;

The variable ny St r will be initialized with the current namespace, for example MyLi b. XY. This
value will be assigned to newSt r i ng within the main program.

Attribute init_On_Onl change

Overview
Attachthe pragma{attri bute 'init_on_onl change'} toa variable to initialize this variable
with each online change.

Syntax
{attribute 'init_on_onichange' }

EI00000000067 06/2017 559

Variables Declaration

Attribute instance-path

Overview

You can add the pragma {attri but e i nst ance- pat h} to a local string variable. This local
string variable will be initialized with the Applications tree path of the POU to which this string
variable belongs. Applying this pragma presumes the use of the attribute reflection (see page 576)
for the corresponding POU and the additional attribute noinit (see page 569)for the string variable.

Syntax
{attribute 'instance-path'}

Example
Assume the following function block POU being equipped with the attribute ' ref | ecti on' :

{attribute 'reflection'}
FUNCTI ON_BLOCK PQU

VAR

{attribute 'instance-path'}
{attribute '"noinit'}

str: STRI NG

END_VAR

In the main program PLC_PRG an instance nyPQU of function block POU is called:

PROGRAM PLC_PRG

VAR

my POU: POU;

nyString: STRI NG
END VAR

my POU() ;

nyString: =nyPQU. str;

After initialization of instance ny PQU, the string variable st r gets assigned the path of instance
my POU, for example: PLCW nNT. Appl i cat i on. PLC_PRG myPQU. This path will be assigned to
variable my St r i ng within the main program.

NOTE: The length of a string variable may be arbitrarily defined (even >255). However, the string
will be cut (from its back end) if it gets assigned to a string variable of a shorter length.

560 EI00000000067 06/2017

Variables Declaration

Attribute |inkalways

Overview

Use the pragma{attri bute 'Iinkal ways'} tomark POUs forthe compilerin a way so that
they are always included into the compile information. As a result, objects with this option will
always be compiled and downloaded to the controller. This option only affects POUs and global
variable lists (GVL) that are located below an application or in libraries which are inserted below
an application. The compiler option Link always affects the same.

Syntax
{attribute 'linkalways'}

When you use the symbol configuration editor, the marked POUs are used as a basis for the
selectable variables for the symbol configuration.

Example
The global variable list GVLMor eSynbol s is implemented making use of the attribute
"1i nkal ways' :
{attribute 'linkal ways'}
VAR_GLOBAS

g_i Var1l: | NT;
g_i Var2: | NT;
END VAR

With this code, the symbols of GVLMor eSynbol s becomes selectable in the Symbol configuration.
Symbol configuration editor

=3 Symbol configuration X >
I View = 4 Build [Setfings »
Changed symbol configuration will be transfemed with the next download or online change
Symbols Access Rights Maximal Attribute Type Members = Comment ~
(=} [8 loConfig_Globals
a

CANopen_Optimized " _3SCOS.CANOpenManager

[0 # CANopen_Optimized CANOpenFDTDriver “® FDT_CAN.CANOpenFDTDriver
0 # MyController_1 “» SEC.PLCSystemFB
O # nloConfigTaskMapCount k) DINT
O # ploConfigTaskMap b POINTER TO loConfigTaskMap
[# RelocTable » SEC_RELOC.RelocationTableFB

(=100 loConfig_Globals_Mapping
[0 » ixi0_I0 k] BOOL 10 : Fast Input
O = ixio_1 b] BOOL 10 : Fast Input
0 = ixi0_110 “ BOGOL 10:
O # ixio_11 b BOOL 10:
O # ixi0o_H2 " BOOL 10:
0 # ixio 13 % BOOL 10:
0 # ixi0_I2 S BOOL 10 : Fast Input
O = k013 " BOOL 10 : Fast Input
0O # ixi0_l4 " BOOL 10 : Fast Input
1 # ixlO 15 % BOOL 10 : Fast Input
O # ixIO_I6) BOOL 10 : Fast Input
O « o7 L BOOL 10 : Fast Input
O # ixi0_18 L™ BOOL 10:
0 # ixl0 19 e BOOL 10:
0O # oxi0_Q0 % BOOL 10:
O # oxi0O_Q1 % BOOL 10:
0 # oxi0 Q2 L BOOL 10: o,
1 e el 2 . oA .

< >

EI00000000067 06/2017 561

Variables Declaration

Attribute nmonitoring

Overview

This attribute pragma allows you to get properties and function call results monitored in the online

view of the IEC editor or in a watch list.

Monitoring of Properties

Add the pragma in the line above the property definition. Then the name, type, and value of the

variables of the property will be displayed in online view of the POU using the property or in a watch

list. Therein, you can also enter prepared values to force variables belonging to the property.
Example of property prepared for variable monitoring
= \ﬁ Device (CoDeSys SP Win V3)
= [E]f) PLC Logic
(= 4} Application
.ﬂ Library Manager

= [E] 1)
S @; Rrop 53 Prop [Device: PLC Logic: Application: fb1]
[g; Get 1 {attribute ‘monitoring’:=variable’}
53 set 2 PROPERTY Prop : INT

Example of monitoring view

Device.Application.PLC_PRG

Expression Comment Type Value Prepared value
= # finst ' o1 ' '
“# seconds INT 22
& milli INT 0
® testvar |INT 22
1 fbinst.seconds [22 |:= 22;

2 testvar [22 |:= fbinst.seconds [22 |;[RETURN]|

Monitoring the Current Value of the Property Variables

There are 2 different ways to monitor the current value of the property variables. For the particular

use case, consider carefully which attribute is suitable to actually get the desired value. This will
depend on whether operations on the variables are implemented within the property:

1. Pragma {attribute 'monitoring':=}'variable'

An implicit variable is created for the property, which will get the current property value whenever

the application calls the set or get method. The latest value stored in this implicit variable will be
monitored.

562

EI00000000067 06/2017

Variables Declaration

Syntax

{attribute 'monitoring":='variable'}

2. Pragma {attribute 'monitoring":='call'}

You can only use this attribute for properties returning simple data types or pointers, not for
structured types.

The value to be monitored is retrieved by a direct call of property: the monitoring service of the
runtime system calls the get method and the property function will be executed.

NOTE: When choosing this monitoring type instead of using an intermediate variable (see 7.
Pragma), consider possible side effects, which can occur if any operations on the variable are
implemented within the property.

Syntax
{attribute 'monitoring":='call'}

Monitoring of Function Call Results

You can use function call monitoring for any constant value that can be interpreted as 4 byte
numerical value (for example, INT, SHORT, LONG). For the other input parameters (for example,
BOOL), use a variable instead of a constant parameter. Add the pragma

{attribute "nmonitoring :="call'} inthe line above the function declaration. You can
then monitor this variable in the text editor view in online view of the POU in which a variable gets
assigned the result of a function call. You can also add the variable to a watch list for the same
purpose. To get the variable immediately provided within a watch view, execute the command Add
watchlist.

Example 1: Functions FUN2 and FUN_BQOOL2 with attribute ' noni t or i ng'

5] Funz [£] Fun_soOL2

1 1

z| FUNCTION FUNZ : INT z| FUNCTION FUN_BOOLZ : BOOL
= 3 VAR INPUT = 3 VAR _INPUT

4 TINL : INT: 4 El : BOOL:

: INZ : INT: 5 BZ : BOOL:

END VAR EHD_VAR

< = <
- 1 IF INZ <> 0 THENW e 1| IF Bl = B2 THEW

2 FUN2 := INl / IN2: 2 FUN_BOOLZ := TRUE:

EI00000000067 06/2017 563

Variables Declaration

Example 2: Call of functions FUN2 and FUN_BQOCOL2 in a program POU

my

PLC_PRG |

1 PROGRAM PLC_PRG

2 VAR

3 nResult2, nResult3 : INT:;
4 XResultZ : BOOL:

s xResultd: BOOL;

6 ERD_VAR

1 // monitoring possible:

z nResultZ := FUN2(64,GVL.VALUEZ)

3 xResultZ := FUN_BOOL2(GVL.BOOLFALSE, GVL.BOOLTRUE):

4

s // monitoring not possible (TRUE and FALSE cannot be interpreted directly)

FUN_BOOLZ (TRUE, FALSE):

Example 3: Function calls in online mode:

[E] PLC.PRG | [§] FUN2 5] FUN_BOOL2

Device.Application.PLC_PRG

Expression Type Value Prepared value Comment

nResult2 INT 32

® nResult3 INT <7?7>

® xResult2 BOOL FALSE

¢ xResult4 BOOL <277>

1 // Monitoring possible:

2| @ nResult2[32 |:= FUN2 (64,GVL.VALUE2 [222]);

3 nResultS- FUN3 [2?7? | (64,GVL.VALUE2 [2?? | ,GVL.VALUE3 [222);

4 A : 3 (GVL.B IR

5 xResu1t4 [2227] := FUN_BoOL4 [222 | (GVL BOOLTRUE 2221, GVL.BOOLFALSE 2221, GV'L BOOL
6

2 // Monitoring not possible, True und FALSE cannot be Interpreted directly
8 FUN_BOOL2[2?2 |(TRUE, FALSE);

< 1T J
Watch 1
Expression Type Value Prepared value Comment \

Device.Application.PLC_PRG.nResult2 INT 32 ’

Device.Application.PLC_PRG.xResult2 BOOL

T
564 EI00000000067 06/2017

Variables Declaration

Monitoring of Variables with an Implicit Call of an External Function

For monitoring variables with an implicit call of an external function, the following conditions have
to be fulfilled:

e The function is marked with {attri bute 'nonitoring' := 'call'}.

e The function is marked as Link Always.

e The variable is marked with
{attribute 'nonitoring_instead :="'MExternal Function(a,b,c)'}.

e The values a, b, ¢ are integer values and match the input parameters of the function to call.

NOTE: Forcing or writing of functions is not supported. You can implicitly implement forcing by
adding an additional input parameter for the particular function that serves as an internal force flag.

NOTE: Function monitoring is not possible on the compact runtime system.

EI00000000067 06/2017 565

Variables Declaration

Attribute nanespace

Overview

Syntax

In combination with the attribute symbol (see page 577), the pragma{attri but e nanespace}
allows you to redefine the namespace of project variables. You can apply it on complete POUs,
like GVLs or programs, but not on particular variables. The concerned variables will be exported
with the new namespace definition to a symbol file and after a download of this file be available on
the controller.

This also allows you to access variables from POUs or visualizations which originally have got
different namespaces. For example, it allows you to run a previous SoMachine visualization also
in a later SoMachine environment.

For further information, refer to the description of the symbol configuration. A new symbol file will
be created at a download or online change of the project. Itis downloaded to the controller together
with the application.

{attribute 'namespace' := '<namespace>'}

Example of a Namespace Replacement for the Variables of a Program

{attribute 'namespace':="'prog'}
PROGRAM PLC_PRG
VAR
{attribute 'synbol' := 'readwite'}
i Var: | NT;
bVar : BOOL;
END_ VAR

Ifi Var, for example, was accessed by Appl. PLC_PRG i var before, now it is accessible via
prog.ivar.

Further Replacement Examples

Original Namespace Variable Namespace Replacement Access on the Variable
Within the Current
Project
Appl. Li b2. GVL2 Var 07 {attribute 'nanespace':=""} . Var 07
Appl. GVL2 Var 02 {attribute 'nanespace':="Ext'"'} Ext . Var 02
Appl. GVL2. FB1 Var 02 {attribute 'nanespace': =" Appl. GVL2' |Appl. GVL2. Var02
"}

The replacements shown in the table result in the following entries in the symbol file:

566

EI00000000067 06/2017

Variables Declaration

<NodelLi st >
<Node name="">
<Node name="Var 07" type="T_|INT" access="ReadWite">
</ Node>
</ NodelLi st >
<NodelLi st >
<Node nane="Ext">
<Node name="Var02 " type="T_INT" access="ReadWite"></ Node>
</ Node>
</ NodeLi st >
<NodelLi st >
<Node nane="Appl">
<Node nane="GVL2">
<Node nanme="Var02 " type="T_INT" access="ReadWite"></Node>
</ Node>
</ Node>
</ NodeLi st >

Attribute no_check

Overview

The pragma{attri bute no_check} added toaPOU in order to suppress the call of any POUs
for implicit checks. As checking functions may influence the performance, apply this attribute to
POUs that are frequently called or already approved.

Syntax
{attribute 'no_check'}

Attribute no_copy

Overview
Generally, an online change will require a reallocation of instances, for example of POUs. The
value of the variables within this instance will get copied.
If, however, the pragma {attri bute no_copy} is added to a variable, an online change copy

of this variable will not be performed; this variable will be initialized instead. This can be reasonable
in case of local pointer variable, pointing on a variable actually shifted by the online change (and
thus having a modified address).

Syntax
{attribute 'no_copy'}

EI00000000067 06/2017 567

Variables Declaration

Attribute no-exit

Overview
If a function block provides an exit method (see page 534), you can suppress its call for a special
instance with the help of assigning the pragma {attri bute no-exit} to the function block
instance.

Syntax
{attribute 'symbol'= 'no-exit'’}

Example
Assume the exi t method FB_Exi t being added to a function block named POU:

= &} Application
m Library Manager
[£] PLC_PRG (PRG)
= (2] Pou(FB)
[FB_Exit
® ﬂ Task Configuration

In the main program PLC_PRG 2 variables of type POU are instantiated:

PROGRAM PLC_PRG

VAR

POUL : PQU;

{attribute 'synbol' := 'no-exit'}
POU2 : PO,

END_VAR

When variable bl nCopy Code becomes TRUE within POUL, the exit method FB_Exi t is called
exiting an instance that will get copied afterwards (online change), though the value of variable
bl nCopyCode will have no influence on POU2.

568 EI00000000067 06/2017

Variables Declaration

Attribute no_init

Overview

Variables provided with the pragma {attri bute no_i nit} will notbe initialized implicitly. The
pragma belongs to the variable declared subsequently.

Syntax
{attribute 'no_init'}
also possible

{attribute 'no-init'}
{attribute 'noinit'}

Example
PROGRAM PLC_PRG
VAR
A : | NT;
{attribute 'no_init'}
B : INT;
END_VAR

If a reset is performed on the associated application, the integer variable A will be again initialized
implicitly with 0, whereas variable B maintains the value it is currently assigned to.

EI00000000067 06/2017 569

Variables Declaration

Attribute no_virtual actions

Overview

This attribute is valid for function blocks, which are derived from a base function block implemented
in SFC, and which are using the main SFC workflow of the base class. The actions called therein
show the same virtual behavior as methods. This means that the base class actions may be
overridden by specific implementations related to the derived classes.

In order to help to prevent the action of the base class from being overridden, you can assign the
pragma{attribute 'no_virtual _actions'} tothe base class.

Syntax
{attribute 'no_virtual_actions'}

Example

In the following example, the function block POU_SFC provides the base class to be extended by
the function block POU_chi | d.

|

] C,- Application é] POU_child [CoDeSys_SP_f r_Win32: PLC Logic: Application]

=0 POUsForTest 1 FUNCTION_BLOCK POU_child EXTENDS POU_SFC
= [§] Pou_sFC (FB)

_§A ActiveAction <

| METH ' 1
= [E] PoU_child (FB)

5 METH

_?A ActiveAction
m Library Manager
[Z] PLC_PRG(PRG)

super” () ;

By use of the keyword SUPER, the derived class POU_chi | d calls the workflow of the base class
that is implemented in SFC.

570 EI00000000067 06/2017

Variables Declaration

[2) POU_SFC [CoDeSys_SP_f_r_Win32 4 » X | Properties v X
1| FUNCTION BLOCK POU_SFC ~|| 7 Filter = | ¥3Sortby ~
[F] 2| VAR _OUTPUT 4 |Sort order ~
3 test meth: STRING:=' *‘;
4 test act: STRING:=' °; L] alle
5 an i;t :INT:=0; (=] Common
6 END_VAR ~ Name Step0
< = 3y Comment
: Symbol
[=] Specific
Init Initial step 3]
= Times
Minimal a...
Maximal...
‘+tr“e =) Actions
Step active | ActiveAction
Stecd Step entry
Step exit
Ttrue
Init

The exemplary implementation of this workflow is restricted to the initial step. This is followed by
1 single step with associated step action Act i veAct i on concerned with the assignment of the
output variables:

an_int:=an_int +1; /'l counting the action calls
test_act:='father_action'; // witing string variable test_act
METH() ; /] Calling method METH for witing string var

i able test_neth

In case of the derived class POU_chi | d, the step action will be overwritten by a specific implemen-
tation of Act i veAct i on. It differs from the original one by assigning the string' chi | d_acti on'
instead of ' f at her _acti on' to variablet est _act.

Likewise, the method METH, assigning the string ' f at her _net hod' to variablet est _nmeth
within the base class, will be overwritten such thatt est _net h will be assigned to
' chil d_net hod' instead.

The main program PLC_PRGwill execute repeated calls to Chi | d (an instance of POU_chi | d). As
expected, the actual value of the output string report the call to action and method of the derived
class:

|E] PLC_PRG [CoDeSys_SP_f r Win32: SPS-Logik: Applicat

CoDeSys_SP_f r_Win32.Application.PLC_PRG

Expression Type Value

= & Child POU_child
"¢ test_meth STRING ‘child_method’
"¢ test_act STRING ‘child_action’
"¢ an_int INT 53

EI00000000067 06/2017 571

Variables Declaration

You can observe a different behavior if the base class is preceded by the attribute
'no_virtual _actions'

{attribute 'no_virtual _actions'}
FUNCTI ON_BLOCK PQU_SFC. . .

Whereas method METH will still be overwritten by its implementation within the derived class, a call
of the step action will now result in a call of action Act i veAct i on of the base class. Therefore,
t est _act will be assigned to string ' f at her _acti on'.

[§| PLC_PRG [CoDeSys_SP_f r Win32: SPS-Logik: Applicat

CoDeSys_SP_f_r_Win32.Application.PLC_PRG

Expression Type Value

= ¢ Child POU_child
"¢ test_meth STRING ‘child_method"
"# fest_act STRING | ‘father_action’
"¢ an_int INT | 204

572 EI00000000067 06/2017

Variables Declaration

Attri bute obsol ete

Overview

You can add an obsolete pragma to a data type definition in order to cause a user-defined alert
during a build, if the respective data type (structure, function block, and so on) is used within the
project. Thus, you can announce that the data type is not used any longer.

Unlike a locally used message pragma (see page 538), this alert is defined within the definition and
thus global for all instances of the data type.

This pragma instruction is valid for the current line or - if placed in a separate line - for the
subsequent line.

Syntax
{attribute 'obsolete’ := 'user-defined text'}

Example
The obsolete pragma is inserted in the definition of function block f b1:
{attribute 'obsolete' := 'datatype fbl not valid!'}
FUNCTI ON_BLOCK f b1l
VAR | NPUT
i1 NT;
END_VAR

If f bl is used as a data type in a declaration, for example, f bi nst: fb1l; the following alert will
be dumped when the project is built:

'datatype fbl not valid'

EI00000000067 06/2017 573

Variables Declaration

Attribute pack _node

Overview

The pragma {attri bute ' pack_node'} defines the mode a data structure is packed while

being allocated. Set the attribute on top of a data structure. It influences the packing of the whole
structure.

Syntax
{attribute 'pack_mode' := '<value>"}

Replace the template <value> included in single quotes by one of the following values available:

Value Assigned Pack Mode

0 aligned (there will be no memory gaps)

1 1-byte-aligned (identical to aligned)

2 2-byte-aligned (the maximum size of a memory gap is 1 byte)
4 4-byte-aligned (the maximum size of a memory gap is 3 bytes)
8 8-byte-aligned (the maximum size of a memory gap is 7 bytes)

Example

{attribute 'pack_nmpde' :="'1'}
TYPE nyStruct :
STRUCT

Enabl e: BOOL;

Counter: | NT;

MaxSi ze: BOCOL;

MaxSi zeReached: BOOL;
END_STRUCT

END_TYPE

A variable of data type ny St r uct will be instantiated aligned.

If the address of its component Enabl e is 0x0100, then the component Count er will follow on
address 0x0101, MaxSi ze on 0x0103 and MaxSi zeReached on 0x0104.

With pack_nopde=2, Count er would be found on 0x0102, MaxSi ze on 0x0104 and
MaxSi zeReached on 0x0105.

NOTE: You can also apply the attribute to POUs. Use this application carefully due to eventual
existing internal pointers of the POU.

574 EI00000000067 06/2017

Variables Declaration

Attribute qualified only

Overview

When the pragma {attri bute 'qualified_only'} isassigned on top of a global variable
list, the variables of this list can only be accessed by using the global variable name, for example
gvl . g_var. This works even for variables of enumeration type. It can be useful to avoid name
mismatch with local variables.

Syntax
{attribute 'qualified_only'}

Example
Assume the following global variable list (GVL) is provided with attribute ' qual i fi ed_only' :
{attribute 'qualified only'}
VAR _GLOBAL
i Var: | NT;
END_VAR

Within POU PLC_PRG, the global variable has to be called with the prefix GVL, as shown in this
example:

GVL. i Var : =5;

The following incomplete call of the variable will be detected as an error:
i Var : =5;

EI00000000067 06/2017 575

Variables Declaration

Attribute reflection

Overview

The pragma{attribute 'reflection'} is attached to signatures. Due to performance
reasons, it is an obligatory attribute for POUs carrying the instance-path attribute (see page 560).

Syntax
{attribute 'reflection'}

Example
Refertothe attri but e i nstance- pat h example (see page 560).

Attribute subsequent

Overview

The pragma {attri bute 'subsequent'} forces variables to be allocated in a row at one
location in memory. If the list changes, the whole list will be allocated at a new location. This
pragma is used in programs and global variable lists (GVL).

Syntax
{attribute 'subsequent'}
NOTE: If one variable in the list is RETAI N, the whole list will be located in retain memory.

NOTE: VAR_TEMP in a program with attribute subsequent will be detected as a compiler error.

576 EI00000000067 06/2017

Variables Declaration

Attribute synbol

Overview

Syntax

The pragma{attribute 'synbol '} defines which variables are to be handled in the symbol
configuration.

The following export operations are performed on the variables:

e Variables are exported as symbols into a symbol list.

e Variables are exported to an XML file in the project directory.

e Variables are exported to a file not visible and available on the target system for external access,
for example, by an OPC server.

Variables provided with that attribute will be downloaded to the controller even if they have not
been configured or are not visible within the symbol configuration editor.

NOTE: The symbol configuration has to be available as an object below the respective application
in the Tools Tree.

{attribute 'symbol' :='none' | 'read' | ‘write' | 'readwrite'}

Access is only allowed on symbols coming from programs or global variable lists. For accessing a
symbol, specify the symbol name completely.

You can assign the pragma definition to particular variables or collectively to all variables declared

in a program.

e To be valid for a single variable, place the pragma in the line before the variable declaration.

e To be valid for all variables contained in the declaration part of a program, place the pragma in
the first line of the declaration editor. In this case, you can also modify the settings for particular
variables by explicitly adding a pragma.

The possible access on a symbol is defined by the following pragma parameters:

e 'none'

e 'read

e 'wite'

e 'readwite’

If no parameter is defined, the default' readw i t e' will be valid.

EI00000000067 06/2017 577

Variables Declaration

Example

With the following configuration, the variables A and B will be exported with read and write access.
Variable D will be exported with read access.

{attribute "synmbol' := 'readwite'}
PROGRAM PLC_PRG

VAR

A : | NT;

B : INT;

{attribute 'symbol' := 'none'}

C : |NT;
{attribute 'synbol"’
D : I NT,;

END_VAR

‘read'}

578 EI00000000067 06/2017

Variables Declaration

Attribute warning disable

Overview

You can use the pragmawar ni ng di sabl e to suppress alerts. To enable the display of the alert,
use the pragma war ni ng restore.

Syntax
{warning disable <compiler ID>}

Every alert and every error detected by the compiler has a unique ID, which is displayed at the
beginning of the description.

Example Compiler Messages
------ Build started: Application: Device.Application ------

typify code ...
C0196: Inplicit conversion from unsigned Type 'U NT' to signed Type 'IN
T : possible change of sign

Conpil e conplete -- 0 errors

Example
VAR
{war ni ng di sabl e C0195}
testl : UNT := -1;
{warni ng restore C0195}
test2 : UNT := -1;
END_VAR

In this example, an alert will be detected for t est 2 . But no alert will be detected for t est 1.

EI00000000067 06/2017 579

Variables Declaration

Section 27.6
The Smart Coding Functionality

Smart Coding

Overview

Wherever identifiers (like variables or function block instances) can be entered (this can be inside
of the IEC 61131-3 language editors or inside Watch, Trace, Visualization windows), the smart
coding functionality is available. You can customize this feature (activated or deactivated) in the
SmartCoding section of the Tools -~ Options dialog box.

Support in Identifier Insertion

The smart coding functionality helps to insert a correct identifier:

e If you - at any place, where a global identifier can be inserted - insert a dot (.) instead of the
identifier, a selection box will display. It lists the currently available global variables. You can
choose one of these elements and press the RETURN key to insert it behind the dot. You can
also insert the element by double-clicking the list entry.

e If you enter a function block instance or a structure variable followed by a dot (.), then a selection
box will appear. It lists the input and output variables of the corresponding function block or the
structure components. You can choose the desired element by pressing the RETURN key or by
double-clicking the list entry to insert it.

e Inthe ST editor, if you enter any string and press CTRL+SPACE, a selection box will display. It
lists the POUs and global variables available in the project. The first list entry, which is starting
with the given string, will be selected. Press the RETURN key to insert it into the program.

580 EI00000000067 06/2017

Variables Declaration

Examples
The smart coding functionality offers components of structure:

1 erg: =struvar.

oF7]
3 @ dvar
@ ivar

The smart coding functionality offers components of a function block:

EPc_pre |[E]0 E]
1 PROGRAM PLC_FPRG
= 2z VAR
3 fbinst: FEBEL:
4 avees THT «
<
1l dvar := ivar+l: (% counte

Z| fhinst(in:=11); (* call 1
3| exg:=fbinst.

LT o T

EI00000000067 06/2017 581

Variables Declaration

582 EI00000000067 06/2017

Chapter 28
Data Types

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
281 General Information 584
28.2 Standard Data Types 585
28.3 Extensions to IEC Standard 588
28.4 User-Defined Data Types 596

EIO0000000067 06/2017

583

Data Types

Section 28.1

General Information

Data Types

Overview

You can use standard data types (see page 585), user-defined data types (see page 596), or
instances of function blocks when programming in SoMachine. Each identifier is assigned to a data
type. This data type dictates how much memory space will be reserved and what type of values it
stores.

584 EI00000000067 06/2017

Data Types

Section 28.2

Standard Data Types

Standard Data Types

Overview

SoMachine supports all data types (see page 584) described by standard IEC61131-3.

The following data types are described in this chapter:

BOOL (see page 585)

Integer (see page 585)
REAL / LREAL (see page 586)
STRING (see page 587)
e Time Data Types (see page 587)

Additionally, some standard-extending data types (see page 588) are supported and you can

define your own user-defined data types (see page 596).

BOOL

BOOL type variables can have the values TRUE (1) and FALSE (0). 8 bits of memory space are

reserved.

For further information, refer to the chapter BOOL constants (see page 715).

NOTE: You can use implicit checks to validate the conversion of variable types (refer to the chapter
POUs for Implicit Checks (see page 178)).

Integer

The table lists the available integer data types. Each of the types covers a different range of values.

The following range limitations apply.

Data Type Lower Limit Upper Limit Memory Space
BYTE 0 255 8 bit

WORD 0 65,535 16 bit

DWORD 0 4,294,967,295 32 bit

LWORD 0 264_4 64 bit

SINT -128 127 8 bit

USINT 0 255 8 bit

INT -32,768 32,767 16 bit

UINT 0 65,535 16 bit

EI00000000067 06/2017

585

Data Types

Data Type Lower Limit Upper Limit Memory Space
DINT -2,147,483,648 2,147,483,647 32 bit
UDINT 0 4,294,967,295 32 bit
LINT _o63 263_4 64 bit
ULINT 0 264_4 64 bit

NOTE: Conversions from larger types to smaller types may result in loss of information.
For further information, refer to the description of number constants (see page 720).

NOTE: You can use implicit checks to validate the conversion of variable types (refer to the chapter
POUs for Implicit Checks (see page 178)).

REAL / LREAL

The data types REAL and LREAL are so-called floating-point types. They represent rational
numbers. 32 bits of memory space is reserved for REAL and 64 bits for LREAL.

Value range for REAL:

1.401e-45...3.403e+38

Value range for LREAL:
2.2250738585072014e-308...1.7976931348623158e+308

NOTE: The support of data type LREAL depends on the target device. See in the corresponding
documentation whether the 64-bit type LREAL gets converted to REAL during compilation
(possibly with a loss of information) or persists.

NOTE: If a REAL or LREAL is converted to SINT, USINT, INT, UINT, DINT, UDINT, LINT, or ULINT
and the value of the real number is out of the value range of that integer, the result will be undefined
and will depend on the target system. Even an exception is possible in this case. In order to get
target-independant code, handle any range exceedance by the application. If the REAL/LREAL
number is within the integer value range, the conversion will work on all systems in the same way.

When assigningi 1 : = r1; an erroris detected. Therefore, the previous note applies when using
conversion operators (see page 665) such as the following:

il := REAL_TO INT(r1);

For further information, refer to REAL/LREAL constants (operands) (see page 7217).

NOTE: You can use implicit checks to validate the conversion of variable types (refer to the chapter
POUs for Implicit Checks (see page 178)).

586

EI00000000067 06/2017

Data Types

STRING

A STRING data type variable can contain any string of characters. The size entry in the declaration
determines the memory space to be reserved for the variable. It refers to the number of characters
in the string and can be placed in parentheses or square brackets. If no size specification is given,
the default size of 80 characters will be used.

In general, the length of a string is not limited. But string functions can only process strings with a
length of 1...255 characters. If a variable is initialized with a string too long for the variable data
type, the string will be correspondingly cut from right to left.

NOTE: The memory space needed for a variable of type STRING is 1 byte per character +
1 additional byte. This means, the " STRI N 80] " declaration needs 81 bytes.

Example of a string declaration with 35 characters:
str: STRING35):="This is a String';

For further information, refer to WSTRING (see page 590) and STRING Constants (Operands)
(see page 722).

NOTE: You can use implicit checks to validate the conversion of variable types (refer to the chapter
POUs for Implicit Checks (see page 178)).

Time Data Types

The data types TIME, TIME_OF_DAY (shortened TOD), DATE, and DATE_AND_TIME (shortened
DT) are handled internally like DWORD. Time is given in milliseconds in TIME and TOD. Time in
TOD begins at 12:00 A.M. Time is given in seconds in DATE and DT beginning with January 1,
1970 at 12:00 A.M.

For further information, refer to the following descriptions:

e Data Types (see page 584)

o LTIME (see page 589): extension to the IEC 61131-3 standard, available as a 64-bit time data
type

TIME constants (see page 715)

DATE constants (see page 717)

DATE_AND_TIME constants (see page 718)

e TIME_OF_DAY constants (see page 719)

NOTE: You can use implicit checks to validate the conversion of variable types (refer to the chapter
POUs for Implicit Checks (see page 178)).

EI00000000067 06/2017 587

Data Types

Section 28.3
Extensions to IEC Standard

Overview

This chapter lists the data types that are supported by SoMachine in addition to the standard IEC
61131-3.

What Is in This Section?
This section contains the following topics:

Topic Page
UNION 589
LTIME 589
WSTRING 590
BIT 590
References 591
Pointers 593

588 EI00000000067 06/2017

Data Types

UNION

Overview
As an extension to the IEC 61131-3 standard, you can declare unions in user-defined types.

The components of a union have the same offset. This means that they occupy the same storage
location. Thus, assuming a union definition as shown in the following example, an assignment to
nane. a also manipulates namne. b.

Example
TYPE nane: UNI ON
a . LREAL;
b : LINT;
END_UNI ON
END_TYPE

LTIME

Overview

As an extension to the IEC 61131-3, LTIME is supported as time base for high resolution timers.
LTIME is of size 64 bit and resolution nanoseconds.

Syntax
LTIME#<time declaration>

The time declaration can include the time units as used with the TIME constant and as:
® Uus : microseconds
® ns : nanoseconds

Example
LTI ME1 : = LTI ME#1000d15h23nml2s34ns2us44ns

Compare to TIME size 32 bit and resolution milliseconds (see page 587).

EI00000000067 06/2017 589

Data Types

WSTRING

Overview
This string data type is an extension to the IEC 61131-3 standard.

It differs from the standard STRING type (ASCII) by interpretation in Unicode format, and needing
2 bytes for each character and 2 bytes extra memory space (each only 1 in case of a STRING).

Example
wstr: WSTRING ="This is a Wstring";

For further information, refer to the following descriptions:
e STRING (see page 587)
e STRING constants (see page 722) (operands)

BIT

Overview

You can use the BIT data type only for particular variables within Structures (see page 607). The
possible values are TRUE (1) and FALSE (0).

ABIT element consumes 1 bit of memory space and allows you to address single bits of a structure
by name (for further information, refer to the paragraph Bit Access in Structures (see page 602)).
Bit elements which are declared one after another will be combined in bytes. In contrast to BOOL
types (see page 585), where 8 bits are reserved in any case, the use of memory space can get
optimized. On the other hand, the access to bits takes definitely more time. For that reason, use
the BIT data type if you want to store several boolean pieces of information in a compact format.

590 EI00000000067 06/2017

Data Types

References

Overview

Syntax

This data type is available in extension to the IEC 61131-3 standard.

A reference is an alias for an object. The alias can be written or read via identifiers. The difference
to a pointer is that the value pointed to is directly affected and that the assignment of reference and
value is fixed. Set the address of the reference via a separate assignment operation. You can use
the operator __| SVALI DREF to verify whether a reference points to a valid value (that is unequal
to 0). For further information, refer to the paragraph Check for Valid References further below in
this chapter.

<identifier> : REFERENCE TO <data type>

Example Declaration

ref _int : REFERENCE TO | NT;
a . | NT;
b : INT;

ref _i nt is now available for being used as an alias for variables of type INT.

Example of Use

ref _int REF= a; (* ref _int now points to a *)

ref _int := 12; (* a now has value 12 *)

b:=ref_int * 2; (* b now has val ue 24 *)

ref _int REF= b; (* ref _int now points to b *)

ref_int :=a/ 2; (* b now has value 6 *)

ref_int REF= O; (* explicit initialization of the reference *)

NOTE: It is not possible to declare references like REFERENCE TO REFERENCE or ARRAY OF
REFERENCE or POINTER TO REFERENCE.

Check for Valid References

You can use the operator __| SVALI DREF to check whether a reference points to a valid value that
is a value unequal to 0.

Syntax

<bool ean variable> := __ | SVALI DREF(identifier, declared with type <REFE
RENCE TO <dat at ype>) ;

<bool ean variable> will be TRUE, if the reference points to a valid val
ue, FALSE if not.

Example

EI00000000067 06/2017 591

Data Types

Declaration

ivar : | NT;

ref _int : REFERENCE TO | NT;
ref _int0: REFERENCE TO | NT;
testref: BOOL := FALSE;

Implementation

ivar := ivar +1;
ref _int REF= hugo;
ref _int0 REF= O;

testref := _ | SVALI DREF(ref _int); (* will be TRUE, because ref_int po
ints to ivar, which is unequal 0 *)
testrefO := _ | SVALIDREF(ref _int0); (* will be FALSE, because ref _intO

is set to 0 *)

592 EI00000000067 06/2017

Data Types

Pointers

Overview
As an extension to the IEC 61131-3 standard, you can use pointers.

Pointers save the addresses of variables, programs, function blocks, methods, and functions while
an application program is running. A pointer can point to any of those objects and to any data type
(see page 584), even to user-defined data types (see page 597). The possibility of using an implicit
pointer check function is described further below in the paragraph CheckPointer function

(see page 594).

Syntax of a Pointer Declaration
<identifier>: POINTER TO <data type | function block | program | method | function>;

Dereferencing a pointer means to obtain the value currently stored at the address to which it is
pointing. You can dereference a pointer by adding the content operator * (ASCII caret or circumflex
symbol) (see page 662) after the pointer identifier. See pt » in the example below.

You can use the ADR address operator (see page 667)to assign the address of a variable to a

pointer.
Example
VAR
pt: PO NTER TO INT; (* of pointer pt *)
var_int1:INT :=5; (* declaration of variables var_intl and var_int2 *
)
var _i nt 2: | NT;
END_VAR
pt := ADR(var_intl); (* address of var_intl is assigned to pointer pt *
)
var_int2:= pt*; (* value 5 of var_intl gets assigned to var_int2 v

i a dereferencing of pointer pt; *)

Function Pointers

SoMachine also supports function pointers. These pointers can be passed to external libraries, but
it is not possible to call a function pointer within an application in the programming system. The
runtime function for registration of callback functions (system library function) expects the function
pointer, and, depending on the callback for which the registration was requested, the respective
function will be called implicitly by the runtime system (for example, at STOP). In order to enable
such a system call (runtime system), set the respective properties (by default under View —»
Properties... - Build) for the function object.

EI00000000067 06/2017 593

Data Types

You can use the ADR operator (see page 667)on function names, program names, function block
names, and method names. Since functions can move after online change, the result is not the
address of the function, but the address of a pointer to the function. This address is valid as long
as the function exists on the target.

Executing the Online Change command can change the contents of addresses.

A CAUTION

INVALID POINTER

Verify the validity of the pointers when using pointers on addresses and executing the Online
Change command.

Failure to follow these instructions can result in injury or equipment damage.

Index Access to Pointers

As an extension to the IEC 61131-3 standard, index access [] to variables of type POINTER,
STRING (see page 587)and WSTRING (see page 590)is allowed.

e pint[i] returns the base data type.

e Index access on pointers is arithmetic:

If the index access is used on a variable of type pointer, the offset pi nt[i] equates to
(pint + i * SIZEOF(base type))”. The index access also performs an implicit
dereferencing on the pointer. The result type is the base type of the pointer.

Consider that pi nt[7] does not equate to (pint + 7)A.

e If the index access is used on a variable of type STRING, the result is the character at offset
i ndex- expr. The result is of type BYTE. st r[i] will return the i-th character of the string as
a SINT (ASCII).

e If the index access is used on a variable of type WSTRING, the result is the character at offset
i ndex- expr. The result is of type WORD. wst r[i] will return the i-th character of the string
as INT (Unicode).

NOTE: You can also use References (see page 597). In contrast to a pointer, references directly

affect a value.

CheckPoi nt er Function

For checking pointer access during runtime, you can use the implicitly available check function
CheckPoi nt er. Itis called before each access on the address of a pointer. To achieve this, add
the object POUs for implicit checks to the application. Do this by activating the checkbox related to
the type CheckPointer, choosing an implementation language, and confirming your settings by
clicking Open. This opens the check function in the editor corresponding to the implementation
language selected. Independently of this choice, the declaration part is preset. You cannot modify
it except of adding further local variables. However, in contrast to other check functions, there is
no default implementation of CheckPoi nt er available.

594

EI00000000067 06/2017

Data Types

NOTE: There is no implicit call of the check function for the THI S pointer.
Template:

Declaration part:

/1 Inplicitly generated code : DO NOT EDI T
FUNCTI ON CheckPoi nter : PO NTER TO BYTE
VAR _| NPUT

pt ToTest : PO NTER TO BYTE;

i Size : DI NT;

i Gan : DI NT;

bWite: BOO;

END_VAR

Implementation part: (incomplete):

/1 No standard way of inplenentation. Fill your own code here
CheckPoi nter := ptToTest;

When called, the following input parameters are provided to the function:

e pt ToTest : Target address of the pointer

e i Si ze: Size of referenced variable; the data type of i Si ze has to be integer-compatible and
has to cover the maximum potential data size stored at the pointer address.

e i G an: Granularity of the access that is the largest non-structured data type used in the
referenced variable; the data type of i Gr an has to be integer-compatible

e bWt e: Type of access (TRUE= write access, FALSE= read access); the data type of bW i t e
has to be BOOL.

In case of a positive result of the check, the unmodified input pointer will be returned (pt ToTest).

EI00000000067 06/2017 595

Data Types

Section 28.4
User-Defined Data Types

What Is in This Section?
This section contains the following topics:

Topic Page
Defined Data Types 597
Arrays 598
Structures 601
Enumerations 603
Subrange Types 605

596

EI00000000067 06/2017

Data Types

Defined Data Types

Overview
Additionally, to the standard data types, you can define special data types within a project.

You can define them via creating DUT (Data Unit Type) objects in the POUs tree or Devices tree
or within the declaration part of a POU.

See the recommendations on the naming of objects (see page 508) in order to make it as unique
as possible.

See the following user-defined data types:
arrays (see page 598)

structures (see page 601)
enumerations (see page 603)
subrange types (see page 605)
references (see page 5917)

pointers (see page 593)

EI00000000067 06/2017 597

Data Types

Arrays

Overview

One, two and three-dimensional fields (arrays) are supported as elementary data types. You can
define arrays both in the declaration part of a POU and in the global variable lists. You can also
use implicit boundary checks (see page 599).

Syntax
<Array_Name>:ARRAY [<Il1>..<ul1><l12>..<ul2> <II3>..<ul3>] OF <elem. Type>
111, 112, |I3identify the lower limit of the field range.
ul 1, ul 2 and ul 3 identify the upper limit of the field range.

The range values have to be of type integer.

Example
Card_ganme: ARRAY [1..13, 1..4] OF INT,;

Initializing Arrays
Example for complete initialization of an array
arrl : ARRAY [1..5] OF INT :=1[1,2,3,4,5];
arr2 : ARRAY [1..2,3..4] OF INT :=11,3(7)]; (* short for 1,7,7,7 *)
arr3 : ARRAY [1..2,2..3,3..4] OF INT :=[2(0),4(4),2,3];
(* short for 0,0,4,4,4,4,2,3 *)
Example of the initialization of an array of a structure
Structure definition

TYPE STRUCT1
STRUCT
pl:int;
p2:int;
p3: dwor d;
END_STRUCT
END TYPE

Array initialization

ARRAY[1. .3] OF STRUCT1: = [(pl: =1, p2: =10, p3: =4723), (pl: =2, p2: =0, p3: =299)
, (pl: =14, p2: =5, p3: =112)] ;

Example of the partial initialization of an array
arrl : ARRAY [1..10] OF INT :=[1,2];

598 EI00000000067 06/2017

Data Types

Elements where no value is pre-assigned are initialized with the default initial value of the basic
type. In the previous example, the elements arr 1[6] . . . arr 1[10] are therefore initialized with
0.

Accessing Array Components
In a two-dimensional array, access the components as follows:
<Array-Name>[Index1,Index2]
Example:
Card_gane [9, 2]

Check Functions on Array Bounds

In order to access an array element properly during runtime, the function CheckBounds has to be
available to the application. Therefore, add the object POUs for implicit checks to the application
using Add Object - POUs for implicit checks. Select the checkbox related to the type
CheckBounds. Choose an implementation language. Confirm your settings with Open. The
function CheckBound will be opened in the editor corresponding to the implementation language
selected. Independently of this choice, the declaration part is preset. You cannot modify it except
for adding further local variables. The ST editor gives a proposal default implementation of the
function that you can modify.

This check function has to treat boundary violations by an appropriate method (for example, by
setting a detected error flag or adjusting the index). The function will be called implicitly as soon as
a variable of type ARRAY is assigned.

A WARNING

UNINTENDED EQUIPMENT OPERATION
Do not change the declaration part of an implicit check function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 599

Data Types

Example for the Use of Function CheckBounds

The default implementation of the check function is the following:
Declaration part

/Il Inplicitly generated code : DO NOT EDI T
FUNCTI ON CheckBounds : DI NT

VAR_| NPUT

i ndex, |ower, upper: DI NT;

END_VAR

Implementation part

/[l Inplicitly generated code : Only an | nplenmentation suggestion
IF index < | ower THEN

CheckBounds : = | ower;

ELSI F index > upper THEN
CheckBounds : = upper;
ELSE

CheckBounds : = i ndex;
END | F

When called, the function gets the following input parameters:
e i ndex: field element index

e | ower : the lower limit of the field range

e upper : the upper limit of the field range

As long as the index is within the range, the return value is the index itself. Otherwise, in
correspondence to the range violation either the upper or the lower limit of the field range will be
returned.

Exceeding the Upper Limit of the Array a

The upper limit of the array a is exceeded in the following example:

PROGRAM PLC_PRG

VAR a: ARRAY[O0..7] OF BOO;

b: | NT: =10;

END_ VAR

a[b] : =TRUE;

In this case, the implicit call to the CheckBounds function preceding the assignment affects that
the value of the index is changed from 10 into the upper limit 7. Therefore, the value TRUE will be

assigned to the element a[7] of the array. This is how you can correct attempted access outside
the field range via the function CheckBounds.

600

EI00000000067 06/2017

Data Types

Structures

Overview
Create structures in a project as DUT (Data Type Unit) objects via the Add Object dialog box.
They begin with the keywords TYPE and STRUCT and end with END_STRUCT and END_TYPE.

Syntax
TYPE <st ruct ur enane>:
STRUCT
<decl arati on of variables 1>

<decl arati on of variables n>
END_STRUCT
END_TYPE

<structurename> is a type that is recognized throughout the project and can be used like a
standard data type.

Nested structures are allowed. The only restriction is that variables may not be assigned to
addresses (the AT declaration is not allowed).

Example
Example for a structure definition named Pol ygonl i ne:

TYPE Pol ygonl i ne:

STRUCT
Start: ARRAY [1..2] OF INT;
Poi nt 1: ARRAY [1..2] OF INT;
Poi nt 2: ARRAY [1..2] OF INT;
Poi nt 3: ARRAY [1..2] OF INT;
Poi nt 4: ARRAY [1..2] OF INT;
End: ARRAY [1..2] OF INT,;

END_STRUCT

END_TYPE

Initialization of Structures
Example:
Poly_1: polygonline := (Start:=[3,3], Pointl:=[5,2], Point2:=[7,3], Poi
nt3:=[8,5], Point4:=[5,7], End:=[3,5]);

Initializations with variables are not possible. For an example of the initialization of an array of a
structure, refer to Arrays (see page 598).

EI00000000067 06/2017 601

Data Types

Access on Structure Components

You can gain access to structure components using the following syntax:

<structurename>.<componentname>

For the previous example of the structure Pol ygonl i ne, you can access the component St ar t
byPoly 1.Start.

Bit Access in Structures

The data type BIT (see page 590)is a special data type which can only be defined in structures. It
consumes memory space of 1 bit and allows you to address single bits of a structure by name.

TYPE <structurenane>:

STRUCT
<bi t nane
<bi t nane
<bi t nane

<bi t nane
END_STRUCT
END_TYPE

bitl> :
bit2> :
bit3> :

bitn> :

BI T;
BI T;
BI T;

BI T;

You can gain access to the structure component Bl T by using the following syntax:

<structurename>.<bitname>

NOTE: The usage of references and pointer on BI T variables is not possible. Furthermore, BI T
variables are not allowed in arrays.

602

EI00000000067 06/2017

Data Types

Enumerations

Overview

Syntax

An enumeration is a user-defined type that is made up of a number of string constants. These
constants are referred to as enumeration values.

Enumeration values are recognized globally in all areas of the project even if they are declared
within a POU.

An enumeration is created in a project as a DUT object via the Add Object dialog box.

NOTE: Local enumeration declaration is only possible within TYPE.

TYPE <identifier> (<enum_0>,<enum_1>, ...,<enum_n>) |<base data type>;END_TYPE

A variable of type <identifier> can take on one of the enumeration values <enum . . > and will be
initialized with the first one. These values are compatible with whole numbers which means that
you can perform operations with them just as you would do with integer variables. You can assign
a number x to the variable. If the enumeration values are not initialized with specific values within
the declaration, counting will begin with 0. When initializing, ensure that the initial values are
increasing within the row of components. The validity of the number is verified at the time it is run.

Example

TYPE TRAFFI C_SI GNAL: (red, yellow, green:=10); (* The initial value fo
r each of the colors is red O, yellow 1, green 10 *)

END_TYPE

TRAFFI C_SI GNAL1 : TRAFFI C_SI GNAL;

TRAFFI C_SI GNAL1: =0; (* The value of the traffic signal is "red" *)

FOR i:= red TO green DO

i =i + 1;

END_FOR;

First Extension to the IEC 61131-3 Standard

You can use the type name of enumerations (as a scope operator (see page 770)) to disambiguate
the access to an enumeration constant.

Therefore, it is possible to use the same constant in different enumerations.
Example
Definition of two enumerations

TYPE COLORS 1: (red, blue);

END_TYPE

TYPE COLORS 2: (green, blue, yellow;
END_TYPE

EI00000000067 06/2017 603

Data Types

Use of enumeration value blue in a POU
Declaration

colorvarl : COLORS 1;
colorvar2 : COLORS 2;
Implementation

(* possible: *)

colorvarl := col ors_1. bl ue;
colorvar2 := col ors_2. bl ue;
(* not possible: *)
colorvarl := bl ue;

col orvar2 := bl ue;

Second Extension to the IEC 61131-3 Standard
You can specify explicitly the base data type of the enumeration, which by default is INT.
Example
The base data type for enumeration Bi gEnumshould be DINT:

TYPE Bi gEnum : (yellow, blue, green:=16#8000) DI NT;
END_TYPE

604 EI00000000067 06/2017

Data Types

Subrange Types

Overview

A subrange type is a user-defined type (see page 597)whose range of values is only a subset of
that of the basic data type. You can also use implicit range boundary checks (see page 606).

You can do the declaration in a DUT object but you can also declare a variable directly with a
subrange type.

Syntax
Syntax for the declaration as a DUT object:
TYPE <name>: <Inttype> (<ug>..<og>) END_TYPE;

<hane> a valid IEC identifier

<inttype> one of the data types SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD, DWORD
(LINT, ULINT, LWORD)

<ug> a constant compatible with the basic type, setting the lower boundary of the range types

The lower boundary itself is included in this range.

<o0g> a constant compatible with the basic type, setting the upper boundary of the range types.
The upper boundary itself is included in this basic type.

Example
TYPE
Sublnt : INT (-4095..4095);
END_TYPE

Direct Declaration of a Variable with a Subrange Type
VAR
i : INT (-4095..4095);
ui : U NT (0..10000);

END_VAR
If a value is assigned to a subrange type (in the declaration or in the implementation) but does not
match this range (for example, i : =5000 in the upper shown declaration example), a message will
be issued.

EI00000000067 06/2017 605

Data Types

Check Functions for Range Bounds

In order to check the range limits during runtime, the functions CheckRangeSi gned or
CheckRangeUnsi gned have to be available to the application. You can add the object POUs for
implicit checks to the application using the Add Object dialog box. Mark the checkbox related to
the type CheckRangeSigned or CheckRangeUnsigned. Choose an implementation language.
Confirm your settings with Open. The selected function will be opened in the editor corresponding
to the implementation language selected. Independently of this choice, the declaration part is
preset. You cannot modify it except for adding further local variables. The ST editor proposes a
default implementation of the function that you can modify.

The purpose of this check function is the proper treatment of violations of the subrange (for
example, by setting an error flag or changing the value). The function is called implicitly as soon
as a variable of subrange type is assigned.

A WARNING

UNINTENDED EQUIPMENT OPERATION
Do not change the declaration part of an implicit check function.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Example

The assignment of a variable belonging to a signed subrange type entails an implicit call to
CheckRangeSi gned. The default implementation of that function trimming a value to the
permissible range is provided as follows:

Declaration part:

[l Inplicitly generated code : DO NOT EDI T
FUNCTI ON CheckRangeSi gned : DI NT

VAR _| NPUT

val ue, |ower, upper: DI NT;

END VAR

Implementation part:

[/ Inplicitly generated code : Only an | nplenentati on suggesti on
IF (value < | ower) THEN

CheckRangeSi gned : = | ower;

ELSI F(val ue > upper) THEN

CheckRangeSi gned : = upper;

ELSE

CheckRangeSi gned : = val ue;

END_| F

606

EI00000000067 06/2017

Data Types

When called, the function gets the following input parameters:
e val ue: the value to be assigned to the range type

e | ower : the lower boundary of the range

e upper : the upper boundary of the range

As long as the assigned value is within the valid range, it will be used as return value of the function.
Otherwise, in correspondence to the range violation, either the upper or the lower boundary of the
range will be returned.

The assignment i : =10*y will now be replaced implicitly by

i := CheckRangeSi gned(10*y, -4095, 4095);

If y, for example, has the value 1000, the variable i will not be assigned to 10*1000=10000 (as
provided by the original implementation), but to the upper boundary of the range that is 4095.
The same applies to function CheckRangeUnsi gned.

NOTE: If neither of the functions CheckRangeSi gned or CheckRangeUnsi gned is present, no

type checking of subrange types occurs during runtime. In this case, variable i could get any value
between —-32768 and 32767 at any time.

EI00000000067 06/2017 607

Data Types

608 EI00000000067 06/2017

Chapter 29

Programming Guidelines

What Is in This Chapter?

This chapter contains the following sections:

Section Topic Page
291 Naming Conventions 610
29.2 Prefixes 612
EIO0000000067 06/2017 609

Programming Guidelines

Section 29.1

Naming Conventions

General Information

Creating Designator Names

Choose a relevant, short, description in English for each designator: the basis name. The basis
name should be self-explanatory. Capitalize the first letter of each word in the basis name. Write
the rest in lower case letters (example: Fi | eSi ze). This basis name receives prefixes to indicate
scope and properties.

Whenever possible, the designator should not contain more than 20 characters. This value is a
guideline. You can adjust the number upward or downward if necessary.

If abbreviations of standard terms (TP, JK-FlipFlop, ...) are used, the name should not contain more
than 3 capital letters in sequence.

Case-Sensitivity

Consider case-sensitivity, especially for prefixes, to improve readability when using designators in
the IEC program.

NOTE: The compiler is not case-sensitive.

Valid Characters
Use only the following letters, numbers and special characters in designators:
0..9,A..Z a..z,

In order to be able to display the prefixes clearly, an underline is used as the separator. The syntax
is explained in the respective prefix section.

Do not use underscores in the basis name.

610 EI00000000067 06/2017

Programming Guidelines

Examples
Recommended Designator Not Recommended Designators
di State di STATE
xlnit x_lnit
di Cycl eCount er di Cycl ecount er
I rRef Vel ocity I rRef _Velocity
c_l rMaxPosition cl r MaxPosi tion
FC_Pi dControl | er FC_PI DControl | er

EI00000000067 06/2017 611

Programming Guidelines

Section 29.2

Prefixes

What Is in This Section?
This section contains the following topics:

Topic Page
Prefix Parts 613
Order of Prefixes 614
Scope Prefix 615
Data Type Prefix 616
Property Prefix 618
POU Prefix 619
Namespace Prefix 620

612

EI00000000067 06/2017

Programming Guidelines

Prefix Parts

Overview

Prefixes are used to assign names by function.

The following parts of prefixes are available:

Prefix part

Use

Syntax

Example

scope prefix (see page 615)

scope of variables and
constants

[scope]_[designator]

G _di Fi rst User Faul t

data type prefix
(see page 616)

identifying the data type of
variables and constants

[type][designator]

xEnabl e

property prefix
(see page 618)

identifying the properties of
variables and constants

[property]_[designator]

c_i Nunmber Of Axes

POU prefix (see page 619)

identifying if POU was
implemented as a function,
function block, or program

[POU]_[designator]

FB_Vi suControl | er

namespace prefix
(see page 620)

for POUs, data types,
variables, and constants
declared within a library

[namespace].[identifier]

TPL. G_dwEr r or Code

EI00000000067 06/2017

613

Programming Guidelines

Order of Prefixes

Overview

Designators contain the scope prefix and the type prefix. Use the property prefix according to the
property of the variables (for example, for constants). An additional namespace prefix is used for
libraries.

Obligatory Order
The following order is obligatory:
scope][property][_][type][identifier]
Scope prefixes and property prefixes are separated from type prefixes by an underscore (_).

Example
Gc_dwEr r or Code . DWORD;
di Cycl eCount er . DI NT;

The additional namespace prefix is used for libraries:
[namespace].[scope][property][_l[type][identifier]
Example

Exanpl eLi brary. Gc_dwEr r or Code

Independent Program Organization Units (POUs)

Insert an underscore to separate program organization units (functions, function blocks, and
programs) prefixes from identifiers:

[POU][_]lidentifier]

Example

FB_Modti onCorrection

Use the additional namespace prefix for libraries:
[namespace].[POU][_][identifier]

Namespace prefixes are separated from POU prefixes by a dot (.).
Example

Exanpl eLi brary. FC _Set Error ()

Dependent Program Organization Units (POUs)

Methods, actions, and properties are considered to be dependent POUs. These are used on a level
below an independent POU.

Methods and actions do not have any prefixes.
Properties receive the type prefix of their return value.

614 EI00000000067 06/2017

Programming Guidelines

Example
PROPERTY I rVelocity : LREAL

Scope Prefix

Overview

The scope prefix indicates the scope of variables and constants. It indicates whether it is a local or
global variable, or a constant.

Global variables are indicated by a capital G_ and a property prefix c is added to global constants
(followed by an underscore in each case).

NOTE: Additionally identify the global variables and constants of libraries with the namespace of
the library.

Scope Prefix Type Use Example

no prefix VAR local variable xEnabl e

G_ VAR _GLOBAL global variable G _di Fi rst User Faul t
Go_ VAR_GLOBAL CONSTANT | global constant Gc_dwer r or Code
Example

VAR_GLOBAL CONSTANT
Gc_dwkxanpl e : DWORD : = 16#0000001A;
END_VAR
Access to the global variable of a library with the namespace | NF:

I NF. G_dwkxanpl e : = 16#0000001A;

EI00000000067 06/2017 615

Programming Guidelines

Data Type Prefix

Standard Data Types

The data type prefix identifies the data type of variables and constants.

NOTE: The data type prefix can also be composite, for example, for pointers, references and
arrays. The pointer or array is listed first, followed by the prefix of the pointer type or array type.

The IEC 61131-3 standard data type prefixes as well as the prefixes for the extensions to the

standard are listed in the table.

Data type prefix Type Use (memory location) Example
X BOOL boolean (8 bit) xNarme
by BYTE bit sequence (8 bit) byNane
w WORD bit sequence (16 bit) wNane
dw DWORD bit sequence (32 bit) dwName
I'w LWORD bit sequence (64 bit) | wNarmre
Si SINT short integer (8 bit) si Nane
i INT integer (16 bit) i Nanme
di DINT doubled integer (32 bit) di Narre
li LINT long integer (64 bit) I'i Name
uli ULINT long integer (64 bit) ul' i Nanme
usi USINT short integer (8 bit) usi Nane
ui UINT integer (16 bit) ui Name
udi UDINT doubled integer (32 bit) udi Nane
r REAL floating-point number r Name
(32 bit)
I'r LREAL doubled floating-point I r Namre
number (64 bit)
dat DATE date (32 bit) dat Nane
t TOD time (32 bit) t Name
dt DT date and time (32 bit) dt Name
tim TIME duration (32 bit) ti mName
Itim LTIME duration (64 bit) I'ti mName
S STRING character string ASCII sName
ws WSTRING character string unicode wsNare
p pointers pointer pxNane
r reference reference r xNane
a array field axName

616

EI00000000067 06/2017

Programming Guidelines

Data type prefix Type Use (memory location) Example
e enumeration list type eName
st struct structure st Nane
if interface interface i fMotion
ut union union uNarre
fb function block function block f bName
Examples

pi Count er: PO NTER TO | NT;

ai Counters: ARRAY [1..22] OF INT;

pai Ref Counter: PO NTER TO ARRAY [1..22] OF INT;

apst Test ARRAY[1..2] OF PO NTER TO ST_Mbti onStructure;

r di Count er REFERENCE TO DI NT;

i f Mbtion | F_Moti on;

EI00000000067 06/2017

617

Programming Guidelines

Property Prefix

Overview
The property prefix identifies the properties of variables and constants.

Prefix Type | Use Syntax Example
c_ VAR CONSTANT local constant c_xName
r VAR RETAI N remanent variable type r _xNane
retain
p_ VAR PERSI STENT remanent variable type p_xNane
persistent
rp_ VAR PERSI STENT remanent variable of type | p_XxNane
retain persistent
i VAR _| NPUT input parameter of a POU | i _xNane
q_ VAR_OUTPUT output parameter of a POU | _xNane
ig_ VAR_| N_OUT in-/output parameter of a i g_xName
POU
ati_ AT A X x.y AT % B z |input variable that should ati_x0_OMast er Encoder| ni t OK
AT B WKk write on the IEC input area
atq_ AT %X x.y AT %B z |output variable that should |at q_wl8Axi sNot Done
AT Y%QW k write on the IEC input area
atm_ AT %X x.y AT 9B z | marker variable that should | at m w19Mbdul eNot Ready
AT %WV k write on the | EC marker
area
NOTE:

e Do not declare constants as RETAI N or PERSI STENT.
e Do not declare any RETAI N variables within POUs. This administers the complete POU in the
retain memory area.

Example of AT-Declared Variables

The name of the AT-declared variable also contains the type of the target variable. It is used like
the type prefix.

ati _xEncoderlnit AT % X0.0 : BOCL;
at g_wAxi sNot Done AT %QM8 : WORD;
at m wivbdul eNot Ready AT %WM9 : WORD;

NOTE: A variable can also be allocated to an address in the mapping dialog of a device in the
controller configuration (device editor). Whether a device offers this dialog is described in its
documentation.

618 EI00000000067 06/2017

Programming Guidelines

POU Prefix

Overview

The following program organization units (POU) are defined in IEC 61131-3:

function
function block
program

data structure
list type

union
interface

The designator is composed of a POU prefix and as short a name as possible (for example,
FB_Get Resul t). Just like a variable, capitalize the first letter of each word in the basis name.
Write the rest in lower case letters. Form a composite POU name from a verb and a noun.

The prefix is written with an underscore before the name and identifies the type of POU based on

the table:
POU prefix | Type Use Example
SR PROGRAM program SR_FI owPacker Machi ne
FB_ FUNCTI ON_BLOCK function blocks FB_Vi suControl | er
FC_ FUNCTI ON functions FC_Set User Faul t
ST STRUCT data structure ST_St andar dvbdul el nterf ace
ET_ Enuner ati on list type ST_St andar dvbdul el nterf ace
ur_ UNI ON union UT_Val ues
I F_ | NTERFACE interface | F_CanProfile

EI00000000067 06/2017

619

Programming Guidelines

Namespace Prefix

Overview

You can view the namespace of a library in the Library Manager. Use a short acronym
(PacDrivelLib -> PDL) as namespace. Do not change the default namespace of a library.

To reserve an unambiguous namespace for your own, self-developed libraries, contact your
Schneider Electric responsible.

Example

A function FC_DoSonet hi ng() is located within the library TestlibraryA (namespace TLA) as well
as in TestlibraryB (namespace TLB). The respective function is accessed by prefixing the
namespace.

If both libraries are located within a project, the following call-up results in an error detected during
compilation:
FC_DoSon®t hi ng() ;

In this case, it is necessary to define clearly which POU is to be called up.

TLA. FC_DoSonet hi ng() ;
TLB. FC_DoSorret hi ng() ;

620 EI00000000067 06/2017

Chapter 30

Operators

Overview

SoMachine supports all IEC operators. In contrast to the standard functions, these operators are
recognized implicitly throughout the project.

Besides the IEC operators, the following operators are supported which are not prescribed by the
standard:

ANDN

ORN

XORN

S| ZECF (refer to arithmetic operators (see page 622))

ADR

Bl TADR

content operator (refer to address operators (see page 660)

some scope operators (see page 709)

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
30.1 Arithmetic Operators 622
30.2 Bitstring Operators 634
30.3 Bit-Shift Operators 639
30.4 Selection Operators 647
30.5 Comparison Operators 653
30.6 Address Operators 660
30.7 Calling Operator 664
30.8 Type Conversion Operators 665
30.9 Numeric Functions 683

30.10 IEC Extending Operators 696
30.11 Initialization Operator 711

EI00000000067 06/2017 621

Operators

Section 30.1

Arithmetic Operators

Overview
The following operators, prescribed by the IEC1131-3 standard, are available:

ADD

MUL

SUB

DV

MOD

MOVE

Additionally, there is the following standard-extending operator:
e S| ZECF

Consider possible overflows of arithmetic operations in case the resulting value exceeds the range
of the data type used for the result variable. This may result in low values being written to the
machine instead of high values or vice versa.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Always verify the operands and results used in mathematical operations to avoid arithmetic
overflow.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What Is in This Section?
This section contains the following topics:

Topic Page
ADD 623
MJL 625
SuUB 627
D v 628
MO 631
MOVE 632
S| ZECF 633

622 EI00000000067 06/2017

Operators

ADD

Overview

IEC operator for the addition of variables

Allowed types

BYTE

WORD

DWORD

LWORD

SINT

USINT

INT

UINT

DINT

UDINT

LINT

ULINT

REAL

LREAL

TIME
TIME_OF_DAY(TOD)
DATE
DATE_AND_TIME(DT)

For time data types, the following combinations are possible:

e TIME+TIME=TIME
e TOD+TIME=TOD
e DT+TIME=DT

In the FBD/LD editor, the ADD operator is an extensible box. This means, instead of a series of
concatenated ADD boxes, you can use 1 box with multiple inputs. Use the command Insert Input

for adding further inputs. The number is unlimited.

Example in IL
LD 7
ADD 2
ADD 4
ADD 7
ST i

Example in ST
varl = 7+2+4+7;

EI00000000067 06/2017

623

Operators

Examples in FBD

ADD ADD ADD
basevarl [_1 | <5 H 238 }—] 4 H 29— + H 301 }— exgvar
addvarl addvar2 2i—
ADD
basevarl [1 i H 301 —ergvar
addvarl
sddvar2[&6 —
2 D

stare [EED
basevarl| 1 |
addvarl [232 }
addvar2| &6 |

end [IEEER

1. series of ADD boxes
2. extended ADD box
3. ADD box with EN/ ENO parameters

624 EI00000000067 06/2017

Operators

MUL

Overview

IEC operator for the multiplication of variables

Allowed types
BYTE
WORD
DWORD
LWORD
SINT
USINT
INT
UINT
DINT
UDINT
LINT
ULINT
REAL
LREAL
TIME

TIME variables can be multiplied with integer variables.

In the FBD/LD editor, the MUL operator is an extensible box. This means, instead of a series of
concatenated MJL boxes, you can use 1 box with multiple inputs. Use the command Insert Input

for adding further inputs. The number is unlimited.

Example in IL

LD 7
MUL 2
4 5
7
ST Var 1
Example in ST

varl ;= 7*2*4*7;

EI00000000067 06/2017

625

Operators

Examples in FBD

H 1456 }—res (1496

MuL MuL

vet @+ 40 HEO— 5 HEEO——

varz [1 vard [1 34 —
MUL

varl [48 X res

var2 T

vard [1

34 —
start end [IEEEED

varl | 44 |

var2 2 |

1. series of MUL boxes
2. extended MUL box
3. MJL box with EN/ ENO parameters

626

EI00000000067 06/2017

Operators

SuUB

Overview
IEC operator for the subtraction of one variable from another one.

Allowed types:

BYTE

WORD

DWORD

LWORD

SINT

USINT

INT

UINT

DINT

UDINT

LINT

ULINT

REAL

LREAL

TIME
TIME_OF_DAY(TOD)
DATE
DATE_AND_TIME(DT)

For time data types, the following combinations are possible:
TIME-TIME=TIME

DATE-DATE=TIME

TOD-TIME=TOD

TOD-TOD=TIME

DT-TIME=DT

DT-DT=TIME

Consider that negative TIME values are undefined.

Example in IL

LD 7

SUB 2

ST Var 1
Example in ST

varl := 7-2;

EI00000000067 06/2017 627

Operators

Example in FBD

SUB
7] —— Varl
2 —
DV
Overview

IEC operator for the division of one variable by another one:

Allowed types:
BYTE
WORD
DWORD
LWORD
SINT
USINT
INT
UINT
DINT
UDINT
LINT
ULINT
REAL
LREAL
TIME

TIME variables can be divided by integer variables.

Example in IL
(Resultin Var 1 is 4.)

LD 8

Dl V 2

ST Var 1
Example in ST

varl := 8/2;

628 EI00000000067 06/2017

Operators

Examples in FBD

[prv | prv DIV
. e} 1 T f { } es
varl ‘ [33 }——‘ l 1_66 | ‘ l _66 | / 1 r—res 1
var2 11 var3 1 34

DIV
varl [66 / H_ 66 —res [1]
var2[_2 1
DIV
varl [€€ — res 1]

34 —

1. series of DI V boxes
2. single DI V box
3. DIV box with ENV ENO parameters

Different target systems may behave differently concerning a division by zero error. It can lead to
a controller HALT, or may go undetected.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Use the check functions described in this document, or write your own checks to avoid division
by zero in the programming code.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: For more information about the implicit check functions, refer to the chapter POUs for
Implicit Checks (see page 178).

Check Functions

You can use the following check functions to verify the value of the divisor in order to avoid a
division by 0 and adapt them, if necessary:

e CheckDi vl nt

e CheckDi vLi nt

e CheckDi vReal

e CheckD vLReal

For information on inserting the function, refer to the description of the POUs for implicit checks
function (see page 178).

The check functions are called automatically before each division found in the application code.
See the following example for an implementation of the function CheckDi vReal .

EI00000000067 06/2017 629

Operators

Default Implementation of the Function CheckDi vReal

Declaration part

/1 Inplicitly generated code : DO NOT EDI T
FUNCTI ON CheckDi vReal : REAL
VAR_| NPUT
di vi sor: REAL;
END_VAR

Implementation part:

/1l Inplicitly generated code : only an suggestion for inplenentation
| F divisor = 0 THEN
CheckDi vReal : =1;
ELSE
CheckDi vReal : =di vi sor;
END | F;

The operator DI V uses the output of function CheckDi vReal as a divisor. In the following
example, a division by 0 is prohibited as with the 0 initialized value of the divisor d is changed to 1
by CheckDi vReal before the division is executed. Therefore, the result of the division is 799.

PROGRAM PLC_PRG
VAR
erg: REAL;
vl: REAL: =799;
d: REAL;
END_ VAR
erg:=vl / d;

630

EI00000000067 06/2017

Operators

MOD

Overview

IEC operator for the modulo division of one variable by another one.

Allowed types:
BYTE
WORD
DWORD
LWORD
SINT
USINT
INT
UINT
DINT
UDINT
LINT
ULINT

The result of this function is the integer remainder of the division.

Different target systems may behave differently concerning a division by zero error. It can lead to

a controller HALT, or may go undetected.

A WARNING

by zero in the programming code.

UNINTENDED EQUIPMENT OPERATION
Use the check functions described in this document, or write your own checks to avoid division

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: For more information about the implicit check functions, refer to the chapter POUs for

Implicit Checks (see page 178).

Example in IL
Resultin Var 1 is 1.
LD 9

MOD 2
ST Var 1

Example in ST
varl := 9 MOD 2;

EI00000000067 06/2017

631

Operators

Examples in FBD

MOD
9] — Varl
2 —
MOVE
Overview

IEC operator for the assignment of a variable to another variable of an appropriate data type.
The MOVE operator is possible for all data types.

As MOVE is available as a box in the graphic editors FBD, LD, CFC, there the (unlocking) EN' ENO
functionality can also be applied on a variable assignment.

Example in CFC in Conjunction with the EN/ ENO Function
Only ifen_i is TRUE, var 1 will be assigned to var 2.

—WOvE 1
en_i EN END en_o[:
varl vare :

Example in IL
Result: var 2 gets value of var 1

LD varl
MOVE
ST var 2
You get the same result with
LD var 1l
ST var 2
Example in ST

ivar2 := MOVE(ivarl);
You get the same result with
ivar2 := ivarli;

632 EI00000000067 06/2017

Operators

SI ZEOF

Overview

This arithmetic operator is not specified by the standard IEC 61131-3.

You can use it to determine the number of bytes required by the given variable x.

The SI ZECF operator returns an unsigned value. The type of the return value will be adapted to

the found size of variable x.

Return Value of SI ZEOF(x)

Data Type of the Constant Implicitly Used for
the Found Size

0 < size of x < 256 USINT
256 < size of x < 65,536 UINT

65,536 < size of x < 4,294,967,296 UDINT
4,294,967,296 < size of x ULINT

Example in ST
varl := SIZEOF(arr1l);

(* d.h.:

Example in IL
Resultis 10
arr1l: ARRAY[0..4] OF INT;
Var 1: | NT;
LD arrl
S| ZEOF
ST Var 1

var 1: =USI NT#10; *)

EI00000000067 06/2017

633

Operators

Section 30.2
Bitstring Operators

Overview

The following bitstring operators are available, matching the IEC1131-3 standard:
o AND (see page 635)

e OR (see page 636)

e XOR (see page 637)

o NOT (see page 638)

The following operators are not specified by the standard and are not available:

e ANDN

e ORN

o XORN

Bitstring operators compare the corresponding bits of 2 or several operands.

What Is in This Section?
This section contains the following topics:

Topic Page
AND 635
R 636
XOR 637
NOT 638

634 EI00000000067 06/2017

Operators

AND

Overview
IEC bitstring operator for bitwise AND of bit operands.
If the input bits each are 1, then the resulting bit will be 1, otherwise 0.

Allowed types:
e BOOL
BYTE
WORD
DWORD
LWORD

Example in IL
Result in Var 1 is 2#1000_0010.
Var 1: BYTE;

LD 2#1001_0011
AND 2#1000_1010
ST var 1l

Example in ST
varl := 2#1001_0011 AND 2#1000_1010

Example in FBD

Z#1001_0011— ——wvarl
2#1000_1010—

EI00000000067 06/2017 635

Operators

OR

Overview
IEC bitstring operator for bitwise OR of bit operands.

If at least 1 of the input bits is 1, the resulting bit will be 1, otherwise 0.

Allowed types:

BOOL
BYTE
WORD
DWORD
LWORD

Example in IL

Resultin var 1 is 2#1001_1011.

var 1: BYTE;

L

D 2#1001_0011

R 2#1000_1010
ST Var 1

Example in ST

Var 1

Example in FBD

2#1001 0011 —
2#1000_1010 —

:= 2#1001_0011 OR 2#1000_1010

—Varl

636

EI00000000067 06/2017

Operators

XOR
Overview
IEC bitstring operator for bitwise XOR of bit operands.
If only 1 of the input bits is 1, then the resulting bit will be 1; if both or none are 1, the resulting bit
will be 0.
Allowed types:
e BOOL
e BYTE
¢ WORD
¢ DWORD
¢ LWORD
NOTE: XOR allows adding additional inputs. If more than 2 inputs are available, then an XOR
operation is performed on the first 2 inputs. The result, in turn, will be XOR combined with input 3,
and so on. This has the effect that an odd number of inputs will lead to a resulting bit = 1.
Example in IL
Result is 2#0001_1001.
Var 1: BYTE;
LD 2#1001_0011
XOR 2#1000_1010
ST var 1l
Example in ST

Varl := 2#1001_0011 XOR 2#1000_1010

Example in FBD

XO0R
2#1001_0011— — wvarl
2#1000_1010—

EI00000000067 06/2017 637

Operators

NOT

Overview
IEC bitstring operator for bitwise NOT operation of a bit operand.
The resulting bit will be 1 if the corresponding input bit is 0 and vice versa.

Allowed types
e BOOL
BYTE
WORD
DWORD
LWORD

Example in IL
Result in Var 1 is 2#0110_1100.
Var 1: BYTE;

LD 2#1001_0011
NOT
ST varl

Example in ST
Varl := NOT 2#1001_0011

Example in FBD

HOT
2#1001_0011— —— varl

638 EI00000000067 06/2017

Operators

Section 30.3
Bit-Shift Operators

What Is in This Section?

This section contains the following topics:

Topic Page
SHL 640
SHR 642
ROL 643
ROR 645
EI00000000067 06/2017 639

Operators

SHL
Overview
IEC operator for bitwise left-shift of an operand.
erg:= SHL (in, n)
i n: operand to be shifted to the left
n: number of bits, by which i n gets shifted to the left
NOTE: If n exceeds the data type width, it depends on the target system how BYTE, WORD,
DWORD and LWORD operands will be filled. Some cause filling with zeros (0), others with
n MOD <register w dth>.
NOTE: The amount of bits which is considered for the arithmetic operation depends on the data
type of the input variable. If the input variable is a constant, the smallest possible data type is
considered. The data type of the output variable has no effect at all on the arithmetic operation.
Examples
See in the following example in hexadecimal notation the different results for er g_byt e and
er g_wor d. The result depends on the data type of the input variable (BYTE or WORD), although
the values of the input variables i n_byt e and i n_wor d are the same.
Example in ST
PROGRAM shl _st
VAR

in_byte : BYTE: =16#45; (* 2#01000101)

in_word : WORD: =16#0045; (* 2#0000000001000101)

erg_byte : BYTE

erg word : WORD;

n: BYTE :=2;

END VAR

erg byte:=SHL(in_byte,n); (* Result is 16#14, 2#00010100 *)

erg word: =SHL(in_word,n); (* Result is 16#0114, 2#0000000100010100 *)

Example in FBD

SHL
i —— erg_byte
2—

640 EI00000000067 06/2017

Operators

Example in IL

LD i n_byte
SHL 2
ST erg_byte

EI00000000067 06/2017 641

Operators

SHR
Overview
IEC operator for bitwise right-shift of an operand.
erg:= SHR (in, n)
i n: operand to be shifted to the right
n: number of bits, by which i n gets shifted to the right
NOTE: If n exceeds the data type width, it depends on the target system how BYTE, WORD,
DWORD and LWORD operands will be filled. Some cause filling with zeros (0), others with
n MOD <register w dth>.
Examples
The following example in hexadecimal notation shows the results of the arithmetic operation
depending on the type of the input variable (BYTE or WORD).
Example in ST
PROGRAM shr _st
VAR

in_byte : BYTE: =16#45; (* 2#01000101)

in_word : WORD: =16#0045; (* 2#0000000001000101)

erg_byte : BYTE

erg word : WORD;

n: BYTE :=2;

END VAR

erg_byte: =SHR(i n_byte,n); (* Result is 16#11, 2#00010001 *)

erg word: =SHR(i n_word, n); (* Result is 16#0011, 2#0000000000010001 *)

Example in FBD

SHR
in_byte] —— erg_byte
2 —

Example in IL
LD in_byte
SHR 2
ST erg_byte

642 EI00000000067 06/2017

Operators

ROL
Overview
IEC operator for bitwise rotation of an operand to the left.
erg:= ROL (in, n)
Allowed data types
e BYTE
¢ WORD
¢ DWORD
e LWORD
i n will be shifted 1 bit position to the left n times while the bit that is furthest to the left will be
reinserted from the right
NOTE: The amount of bits which is considered for the arithmetic operation depends on the data
type of the input variable. If the input variable is a constant, the smallest possible data type is
considered. The data type of the output variable has no effect at all on the arithmetic operation.
Examples
See in the following example in hexadecimal notation the different results for er g_byt e and
er g_wor d. The result depends on the data type of the input variable (BYTE or WORD), although
the values of the input variables i n_byt e and i n_wor d are the same.
Example in ST
PROGRAM r ol _st
VAR

in_byte : BYTE: =16#45;

in_word : WORD: =16#45;

erg_byte : BYTE;

erg word : WORD;

n: BYTE : =2;

END_VAR

erg byte:=ROL(in_byte,n); (* Result is 16#15 *)
erg word: =ROL(in_word,n); (* Result is 16#0114 *)

Example in FBD

ROL
in_byte—] ——exrg_byte

n

EI00000000067 06/2017 643

Operators

Example in IL
LD
ROL
ST

i n_byte
n
erg_byte

644

EI00000000067 06/2017

Operators

ROR
Overview
IEC operator for bitwise rotation of an operand to the right.
erg:= ROR (in, n)
Allowed data types
e BYTE
¢ WORD
¢ DWORD
e LWORD
i n will be shifted 1 bit position to the right n times while the bit that is furthest to the left will be
reinserted from the left.
NOTE: The amount of bits which is noticed for the arithmetic operation depends on the data type
of the input variable. If the input variable is a constant, the smallest possible data type is noticed.
The data type of the output variable has no effect at all on the arithmetic operation.
Examples
See in the following example in hexadecimal notation the different results for er g_byt e and
er g_wor d. The result depends on the data type of the input variable (BYTE or WORD), although
the values of the input variables i n_byt e and i n_wor d are the same.
Example in ST
PROGRAM r or _st
VAR

in_byte : BYTE: =16#45;

in_word : WORD: =16#45;

erg_byte : BYTE;

erg word : WORD;

n: BYTE : =2;

END_VAR

erg byte: =ROR(i n_byte,n); (* Result is 16#51 *)
erg word: =ROR(i n_word, n); (* Result is 16#4011 *)

Example in FBD

ROR
in_byte—] ——erg_byte
n—

EI00000000067 06/2017 645

Operators

Example in IL
LD
ROR
ST

i n_byte
n
erg_byte

646

EI00000000067 06/2017

Operators

Section 30.4

Selection Operators

Overview
Selection operations can also be performed with variables.

For purposes of clarity the examples provided in this document are limited to the following which

use constants as operators:
o SEL (see page 648)
MAX (see page 649)
MIN (see page 650)
LIMIT (see page 6517)
MUX (see page 652)

What Is in This Section?
This section contains the following topics:

Topic Page
SEL 648
MAX 649
M N 650
LIMT 651
MUX 652

EI00000000067 06/2017

647

Operators

SEL

Overview
IEC selection operator for binary selection.
Gdetermines whether INO or IN1 is assigned to OUT.
QUT := SEL(G | NO, INl) means:
QUT : = | NO; if GGFALSE
OUT : = I N1; if GTRUE
Allowed data types:
I NO, IN1, QUT) :any type
G BOOL

Example in IL
LD TRUE
SEL 3,4 (* INO = 3, INL =4 *)
ST Varl (* result is 4 *)
LD FALSE
SEL 3,4
ST Varl (* result is 3 *)

Example in ST
Var1: =SEL(TRUE, 3,4); (* result is 4 *)

Example in FBD

SEL
TRUE—| G OUT F—vVarl
3—1INO
4—IN1

Note

NOTE: An expression occurring ahead of | N1 will not be processed if | NO is TRUE. An expression
occurring ahead of I N2 will not be processed if | NO is FALSE.

648 EI00000000067 06/2017

Operators

MAX

Overview

IEC selection operator performing a maximum function.

The MAX operator returns the greater of the 2 values.

QUT : = MAX(I NO,
I NO, I N1 and OUT can be any type of variable.

Example in IL

Result is 90
LD 90
MAX 30
MAX 40
MAX 77
ST Var 1
Example in ST

Var 1: =MAX(30, 40) ;
Var 1: =MAX(40, MAX(90, 30)) ;

Example in FBD

MAX
90—
30—

| NL)

(* Result

is 40 *)
(* Result

40—

MAX

is 90 *)

77

MAX

— Varl

EI00000000067 06/2017

649

Operators

M N

Overview

IEC selection operator performing a minimum function.

The M N operator returns the lesser of the 2 values.

QUT := M N(I NO,
I NO, I N1 and OUT can be any type of variable.

Example in IL

Result is 30
LD 90
M N 30
M N 40
M N 77
ST Var 1
Example in ST

Var 1: =M N(90, 30) ;
Var 1: =M N(M N(90, 30), 40);

Example in FBD

MIN
90—
30

| NL)

(* Result

40—

MIN

is 30 *);
(* Result

is 30 *);

77

MIN

— Varl

650

EI00000000067 06/2017

Operators

LIMT

Overview
IEC selection operator performing a limiting function.
QUT := LIMT(Mn, IN, Mx) neans:
QUT := MN (MAX (IN, Mn), Max)

Max is the upper and M n the lower limit for the result. Should the value | N exceed the upper limit
Max, LI M T will return Max. Should | N fall below M n, the result will be M n.

I Nand QUT can be any type of variable.

Example in IL
Result is 80
LD 90
LIMT 30 ,
80
ST Var 1
Example in ST

Var1: =LI M T(30, 90, 80); (* Result is 80 *);

EI00000000067 06/2017 651

Operators

MUX
Overview
IEC selection operator for multiplexing operation.
QUT := MUX(K, INO,...,INn)) means:
QUT : = I Nk
I NO, ...,I1NnandQUT can be any type of variable.
K has to be BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, LINT, ULINT or
UDINT.
MUX selects the K" value from among a group of values.
Example in IL
Result is 30
LD 0
MUX 30
40 ,
50 ,
60 ,
70 ,
80
ST Var 1
Example in ST

Var 1: =MJX(0, 30, 40, 50, 60, 70,80); (* Result is 30 *);

NOTE: An expression occurring ahead of an input other than | Nk will not be processed to save
run time. Only in simulation mode will all expressions be executed.

652 EI00000000067 06/2017

Operators

Section 30.5

Comparison Operators

Overview

The following operators matching the IEC1131-3 standard are available:

GT (see page 654)
LT (see page 655)
LE (see page 656)
GE (see page 657)
EQ (see page 658)
NE (see page 659)

What Is in This Section?

This section contains the following topics:

Topic Page
GT 654
LT 655
LE 656
CGE 657
EQ 658
NE 659

EI00000000067 06/2017

653

Operators

Gr

Overview

Comparison operator performing a Greater Than function.

The GT operator is a boolean operator which returns the value TRUE when the value of the first

operand is greater than that of the second.
The operands can be of any basic data type.

Example in IL
Result is FALSE

LD 20

GT 30

ST Var 1
Example in ST

VARL := 20 > 30;

Example in FBD

GT
20 — Varl
30

654

EI00000000067 06/2017

Operators

LT

Overview
Comparison operator performing a Less Than function.

The LT operator is a boolean operator which returns the value TRUE when the value of the first
operand is less than that of the second.

The operands can be of any basic data type.

Example in IL
Result is TRUE

LD 20

LT 30

ST Var 1
Example in ST

VARL := 20 < 30;

Example in FBD

LT
20 — Varl
30—

EI00000000067 06/2017 655

Operators

LE

Overview

Comparison operator performing a Less Than Or Equal To function.

The LE operator is a boolean operator which returns the value TRUE when the value of the first

operand is less than or equal to that of the second.
The operands can be of any basic data type.

Example in IL
Result is TRUE

LD 20

LE 30

ST Var 1
Example in ST

VARL := 20 <= 30;

Example in FBD

LE

20 — Varl

30

656

EI00000000067 06/2017

Operators

GE

Overview
Comparison operator performing a Greater Than Or Equal To function.

The CE operator is a boolean operator which returns the value TRUE when the value of the first
operand is greater than or equal to that of the second.

The operands can be of any basic data type.

Example in IL
Result is TRUE

LD 60

GE 40

ST Var 1
Example in ST

VARL := 60 >= 40;

Example in FBD

GE
60— — Varl
40—

EI00000000067 06/2017 657

Operators

EQ
Overview
Comparison operator performing an Equal To function.
The EQoperator is a boolean operator which returns the value TRUE when the operands are equal.
The operands can be of any basic data type.
Example in IL
Result is TRUE
LD 40
EQ 40
ST Var 1
Example in ST

VARL := 40 = 40;

Example in FBD

EQ
20 — Varl
20

658 EI00000000067 06/2017

Operators

NE

Overview
Comparison operator performing a Not Equal To function.
The NE operator is a boolean operator which returns the value TRUE when the operands are not
equal.
The operands can be of any basic data type.

Example in IL

LD 40

NE 40

ST Var 1
Example in ST

VARL : = 40 <> 40;

Example in FBD

40— —— Varl
40—

EI00000000067 06/2017 659

Operators

Section 30.6

Address Operators

What Is in This Section?
This section contains the following topics:

Topic Page
ADR 661
Content Operator 662
Bl TADR 663

660

EI00000000067 06/2017

Operators

ADR

Overview
This address operator is not specified by the standard IEC 61131-3.

ADR returns the address (see page 728) of its argument in a DWORD. This address can be
assigned to a pointer (see page 593) within the project.

NOTE: SoMachine allows you to use the ADR operator with function names, program names,
function block names, and method names.

Refer to the chapter Pointers (see page 593)and consider that function pointers can be passed to
external libraries. Nevertheless, there is no possibility to call a function pointer within SoMachine.

In order to enable a system call (runtime system), set the respective object property (in the menu
View - Properties... - Build) for the function object.

Example in ST
dwVar : =ADR(bVAR) ;

Example in IL

LD bVar
ADR
ST dwvar

Considerations for Online Changes

Executing the command Online Change can move variables to another place in the memory. There
is an indication during online change if copying is necessary.

The shift of variables may have the effect that POl NTER variables point to invalid memory. So,
ensure that a pointer is not kept between cycles, but is reassigned in each cycle.

A WARNING
UNINTENDED EQUIPMENT OPERATION

Assign the value of any PO NTER TOtype variable(s) prior to the first use of it within a POU, and
at every subsequent cycle.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: PO NTER TOvariables of functions and methods should not be returned to the caller of this
function or passed to global variables.

EI00000000067 06/2017 661

Operators

Content Operator

Overview

This address operator is not specified by the standard IEC 61131-3. You can dereference a pointer
by adding the content operator * (ASCII caret or circumflex symbol) after the pointer identifier.

Example in ST

pt : PO NTER TO | NT;
var _i nt1: | NT;

var _i nt2: | NT;

pt := ADR(var_int1l);
var _i nt 2: =pt *;

Considerations for Online Changes

Executing the Online Change command can change the contents of addresses.

A CAUTION

INVALID POINTER

Verify the validity of the pointers when using pointers on addresses and executing the Online
Change command.

Failure to follow these instructions can result in injury or equipment damage.

662

EI00000000067 06/2017

Operators

Bl TADR

Overview
This address operator is not specified by the standard IEC 61131-3.
Bl TADR returns the bit offset within the segment in a DWORD. The offset value depends on
whether the option Byte addressing in the target settings is activated or not.
The highest nibble in that DWORD indicates the memory area:
Memory: 16x40000000
Input: 16x80000000
Output: 16xC0000000

Example in ST
VAR
varl AT 9% X2. 3: BOOL;
bi t of f set : DWORD;
END_VAR
bitof fset: =Bl TADR(varl); (* Result if byte addressi ng=TRUE: 16x80000013
, if byte addressi ng=FALSE: 16x80000023 *)

Example in IL
LD Var 1
Bl TADR
ST bi t of f set

Considerations for Online Changes
Executing the Online Change command can change the contents of addresses.

A CAUTION

INVALID POINTER

Verify the validity of the pointers when using pointers on addresses and executing the Online
Change command.

Failure to follow these instructions can result in injury or equipment damage.

EI00000000067 06/2017 663

Operators

Section 30.7
Calling Operator

CAL

Overview
IEC operator for calling a function block or a program.

Use CAL in IL to call up a function block instance. Place the variables that will serve as the input
variables in parentheses right after the name of the function block instance.

Example

Calling up the instance | nst of a function block where input variables Par 1 and Par 2 are 0 and
TRUE, respectively.

CAL INST(PARL := 0, PAR2 := TRUE)

664 EI00000000067 06/2017

Operators

Section 30.8

Type Conversion Operators

What Is in This Section?
This section contains the following topics:

Topic Page
Type Conversion Functions 666
BOOL_TO Conversions 667
TO_BOOL Conversions 669
Conversion Between Integral Number Types 671
REAL_TO / LREAL_TO Conversions 672
TIME_TO/TIME_OF_DAY Conversions 674
DATE_TO/DT_TO Conversions 676
STRING_TO Conversions 678
TRUNC 680
TRUNC_INT 681
ANY_. .. _TOConversions 682

EI00000000067 06/2017 665

Operators

Type Conversion Functions

Overview

It is not allowed to convert implicitly from a larger type to a smaller type (for example, from INT to
BYTE or from DINT to WORD). To achieve this, you have to perform special type conversions. You
can basically convert from any elementary type to any other elementary type.

Syntax
<elem.type1>_TO_<elem.type2>

NOTE: At ..TO_STRING conversions the string is generated as left-justified. If it is defined too
short, it will be cut from the right side.

The following type conversions are supported:

BOOL_TO conversions (see page 667)

TO_BOOL conversions (see page 669)

conversion between integral number types (see page 677)
REAL_TO-/ LREAL_TO conversions (see page 672)
TIME_TO/TIME_OF_DAY conversions (see page 674)
DATE_TO/DT_TO conversions (see page 676)
STRING_TO conversions (see page 678)

TRUNC (see page 680) (conversion to DINT)
TRUNC_INT (see page 681)
ANY_NUM_TO_<numeric data type>

ANY_..._TO conversions (see page 682)

666 EI00000000067 06/2017

Operators

BOOL_TO Conversions

Definition
IEC operator for conversions from type BOOL to any other type.

Syntax
BOOL_TO_<data type>

Conversion Results
The conversion results for number types and for string types depend on the state of the operand:

Operand State Result for Number Types Result for String Types
TRUE 1 TRUE
FALSE 0 FALSE

Examples in ST
Examples in ST with conversion results:

Example Result

i : =BOOL_TO | NT(TRUE) ; 1

str:=BOOL_TO STR NG TRUE) ; TRUE

t: =BOOL_TO_TI ME(TRUE) ; T#1ns

t of : =BOOL_TO_TOD(TRUE) ; TCOD#00: 00: 00. 001

dat : =BOOL_TO_DATE(FALSE) ; D#1970

dandt : =BOOL_TO _DT(TRUE) ; DT#1970- 01- 01- 00: 00: 01

Examples in IL
Examples in IL with conversion results:

Example Result
LD TRUE 1
BOOL_TO | NT

ST i

LD TRUE TRUE
BOOL_TO STRI. ..

ST str

LD TRUE T#1ns
BOOL_TO TI ME

ST t

EI00000000067 06/2017 667

Operators

Example Result

LD TRUE TOD#00: 00: 00. 001
BOOL_TO_TCD

ST t of

LD FALSE D#1970- 01- 01

BOOL_TO DATE

ST dandt

LD TRUE DT#1970- 01- 01- 00: 00: 01
BOOL_TO DT

ST dandt

Examples in FBD

Examples in FBD with conversion results:

Example Result
1
BOOL TO INT
TRUE—] 4
TRUE
BOOL TO STRING
TRUE—] —atr
T#1ns
BOOL TO TIME
TRUE—] I— &
TOD#00: 00: 00. 001
BOOL TO TOD
TRUE—] — tof
D#1970- 01- 01
BOOL TO DATE
FALSE—] —t
DT#1970- 01- 01- 00: 00: 01
BOOL TO DT
TRUE—] — dandt

668

EI00000000067 06/2017

Operators

TO_BOOL Conversions

Definition
IEC operator for conversions from another variable type to BOOL.

Syntax
<data type>_TO_BOOL

Conversion Results

The result is TRUE when the operand is not equal to 0. The result is FALSE when the operand is
equal to 0.

The result is TRUE for STRING type variables when the operand is TRUE. Otherwise the result is
FALSE.

Examples in ST
Examples in ST with conversion results:

Example Result
b := BYTE_TO BOOL(2#11010101); TRUE
b := I NT_TO BOOL(0); FALSE
b := TI ME_TO BOOL(T#5ns) ; TRUE
b := STRING TO BOOL(' TRUE'); TRUE

Examples in IL
Examples in IL with conversion results:

Example Result
LD 213 TRUE
BYTE_TO BOOL

ST

LD 0 FALSE
| NT_TO_BOOL

ST b

LD T#5ns TRUE
TI ME_TO_BOOL

ST b

LD TRUE TRUE
STRI NG_TO_BOOL

ST b

EI00000000067 06/2017 669

Operators

Examples in FBD

Examples in FBD with conversion results:

STRING TO BOOL

lmUEl —

Example Result
TRUE
BYTE TO BOOL
213— — b
FALSE
INT TO BOOL
0] — b
TRUE
TIME TO BOOL
C#SmS— — b
TRUE

670

EI00000000067 06/2017

Operators

Conversion Between Integral Number Types

Definition
Conversion from an integral number type to another number type.

Syntax
<INT data type>_TO_<INT data type>
For information on the integer data type, refer to the chapter Standard Data Types (see page 585).

Conversion Results

If the number you are converting exceeds the range limit, the first bytes for the number will be
ignored.

Example in ST
si = INT_TO SINT(4223); (* Result is 127 *)

If you save the integer 4223 (16#107f represented hexadecimally) as a SINT variable, it will appear
as 127 (16#7f represented hexadecimally).

Example in IL

LD 4223
I NT_TO_SI NT
ST Si

Example in FBD

INT TO SINT
4223 I s1

EI00000000067 06/2017 671

Operators

REAL_TO /LREAL_TO Conversions

Definition
IEC operator for conversions from the variable type REAL or LREAL to a different type.

The value will be rounded up or down to the nearest whole number and converted into the new
variable type.

Exceptions to this are the following variable types:
STRING

BOOL

REAL

LREAL

Conversion Results

If a REAL or LREAL is converted to SINT, USINT, INT, UINT, DINT, UDINT, LINT or ULINT and
the value of the real number is out of the value range of that integer, the result will be undefined,
and may lead to a controller exception.

NOTE: Validate any range overflows by your application and verify that the value of the REAL or
LREAL is within the bounds of the target integer before performing the conversion.

When converting to type STRING, consider that the total number of digits is limited to 16. If the
(L)REAL number has more digits, then the sixteenth will be rounded. If the length of the STRING
is defined too short, it will be cut from the right end.

Example in ST
Examples in ST with conversion results:

Example Result

i := REAL_TO INT(1.5); 2

j 1= REAL_TO INT(1.4); 1

i 1= REAL_TO INT(-1.5); -2

j 1= REAL_TO INT(-1.4); -1
Example in IL

LD 2.75

REAL_TO_ | NT

ST i

672 EI00000000067 06/2017

Operators

Example in FBD

1.5

LREAL TO INT

EI00000000067 06/2017

673

Operators

TIME_TO/TIME_OF_DAY Conversions

Definition

Syntax

IEC operator for conversions from the variable type TIME or TIME_OF_DAY to a different type.

TIME_TO_<data type>
TOD_TO_<data type>

Conversion Results
The time will be stored internally in a DWORD in milliseconds (beginning with 12:00 A.M. for the

TIME_OF_DAY variable). This value will then be converted.

In case of type STRING the result is a time constant.

Examples in ST
Examples in ST with conversion results:

Examples in IL

Example Result
str := TI ME_TO STRI NG T#12ns) ; T#12ms
dw : = TI ME_TO DWORD(T#5n) ; 300000
si := TOD_TO_SI NT(TOD#00: 00: 00. 012); |12
Examples in IL with conversion results:

Example Result
LD T#12nms T#12ns
TIME_TO STRI . . .

ST str

LD T#300000ms 300000
TI ME_TO_DWORD

ST dw

LD TOD#00: 00: 00. 012 12

TI ME_TO_SI NT

ST si

674

EI00000000067 06/2017

Operators

Examples in FBD

TIME TO STRING
t#l2ms— ——str

TIME TO DWORD
T#5m — dw

TOD TO SINT
TOD#00:00:00.012— —— si

EIO0000000067 06/2017 675

Operators

DATE_TO/DT_TO Conversions

Definition

IEC operator for conversions from the variable type DATE or DATE_AND_TIME to a different type.

Syntax
DATE_TO_<data type>
DT_TO_<data type>

Conversion Results

The date will be stored internally in a DWORD in seconds since Jan. 1, 1970. This value will then

be converted.

For STRING type variables, the result is the date constant.

Examples in ST
Examples in ST with conversion results:

Example Result
b : = DATE_TO BOOL(D#1970-01-01); FALSE
i = DATE TO | NT(D#1970-01- 15) ; 29952
byt := DT_TO BYTE(DT#1970-01- 15- 05: 05: 05) ; 129

str := DT_TO_STRI NG(DT#1998- 02- 13- 14: 20) ;

DT#1998- 02- 13- 14: 20

Examples in IL
Examples in IL with conversion results:

Example Result
LD D#1970- 01- 01 FALSE
DATE_TO BOOL

ST b

LD D#1970- 01- 01 29952
DATE_TO_| NT

ST i

LD D#1970- 01- 15- 05: 05: 129
DATE_TO BYTE

ST byt

LD D#1998- 02- 13- 14: 20 ' DT#1998- 02- 13- 14: 20'
DATE_TO STRI . ..

ST str

676

EI00000000067 06/2017

Operators

Examples in FBD

D#1970-01-01—

DATE TO BOOL

D#1970-01-15—]

DATE TO INT

D#l970-01-15-05:05:05—

DATE TO BYTE

D#1998-02-13-14:20—

DT TO STRING

I str

EI00000000067 06/2017

677

Operators

STRING_TO Conversions

Definition
IEC operator for conversions from the variable type STRING to a different type.

Syntax
STRING_TO_<data type>

Specifying Values
Specify the operand of type STRING matching the IEC61131-3 standard. The value must
correspond to a valid constant (literal) (see page 526) of the target type. This applies to the
specification of exponential values, infinite values, prefixes, grouping character (" _") and comma.
Additional characters after the digits of a number are allowed, as for example, 23xy. Characters
preceding a number are not allowed.

The operand must represent a valid value of the target data type.

NOTE: If the data type of the operand does not match the target type, or if the value exceeds the
range of the target data type, then the result depends on the processor type and is therefore
undefined.

Conversions from larger types to smaller types may result in loss of information.

A CAUTION

LOSS OF DATA

When converting mismatched data types or when the value being converted is larger than the
target data type, be sure that the result is validated within your application.

Failure to follow these instructions can result in injury or equipment damage.

Example in IL

Example Conversion result
LD ' TRUE TRUE

STRI NG_TO_BOOL

ST b

Examples in ST

Example Conversion result
b := STRING TO BOOL(' TRUE'); TRUE
w = STRING TO WORD(' abc34'); 0

678 EI00000000067 06/2017

Operators

Example

Conversion result

w = STRI NG TO WORD(' 34abc');

34

t := STRING TO TI ME(' T#127ns'); T#127ms
r 1= STRING TO REAL('1.234"); 1.234
bv := STRING TO BYTE(' 500'); 244

Example in FBD

Example

Conversion result

I'I‘RUEI —

STRING TO BOOL

TRUE

EI00000000067 06/2017

679

Operators

TRUNC

Definition

IEC operator for conversions from REAL to DINT. The whole number portion of the value will be
used.

The result of these functions is not defined if the input value cannot be represented with a DINT or
INT. The behavior of such input values is platform-dependent.

Examples in ST
Examples in ST with conversion results:

Example Result
di Var: =TRUNC(1. 9) ; 1
di Var: =TRUNC(-1. 4) ; -1

Example in IL
LD 1.9
TRUNC
ST di Var

680 EI00000000067 06/2017

Operators

TRUNCL_INT

Definition
IEC operator for conversions from REAL to INT. The whole number portion of the value will be
used.

The result of these functions is not defined if the input value cannot be represented with a DINT or
INT. The behavior of such input values is platform-dependent.

Examples in ST
Examples in ST with conversion results:

Example Result
i Var: =TRUNC_| NT(1. 9); 1
i Var: =TRUNC_| NT(- 1. 4); -1

Example in IL
LD 1.9
TRUNC | NT
ST i Var

EI00000000067 06/2017 681

Operators

ANY_. .. _TOConversions

Definition

Conversion from any data type, or more specifically from any numeric data type to another data
type. As with any type of conversion, the size of the operands must be taken into account in order
to have a successful conversion.

Syntax
ANY_NUM_TO_<numeric data type>
ANY_TO_<any data type>

Example
Conversion from a variable of data type REAL to INT:
re : REAL : 1. 234,

i : INT := ANY_TO_I NT(re)

682 EI00000000067 06/2017

Operators

Section 30.9

Numeric Functions

Overview

This chapter describes the available numeric IEC operators specified by the standard IEC 61131-
3.

What Is in This Section?
This section contains the following topics:

Topic Page
ABS 684
SQRT 685
LN 686
LOG 687
EXP 688
SIN 689
Ccos 690
TAN 691
ASI N 692
ACCS 693
ATAN 694
EXPT 695

EI00000000067 06/2017 683

Operators

ABS

Definition
Numeric IEC operator for returning the absolute value of a number.
In- and output can be of any numeric basic data type.

Example in IL
Theresultini is 2.
LD -2
ABS
ST i

Example in ST
i : =ABS(-2);

Example in FBD

684 EI00000000067 06/2017

Operators

SQRT

Definition
Numeric IEC operator for returning the square root of a number.

The input variable can be of any numeric basic data type, the output variable has to be type REAL
or LREAL.

Example in IL
The resultin q is 4.

LD 16

SQRT
ST q

Example in ST
q: =SQRT(16) ;

Example in FBD

SQRT

EI00000000067 06/2017 685

Operators

LN

Definition
Numeric IEC operator for returning the natural logarithm of a number.

The input variable can be of any numeric basic data type, the output variable has to be type REAL
or LREAL.

Example in IL
The resultin q is 3.80666.

LD 45

LN

ST q
Example in ST

g: =LN(45) ;

Example in FBD

LN

686 EI00000000067 06/2017

Operators

LOG

Definition
Numeric IEC operator for returning the logarithm of a number in base 10.

The input variable can be of any numeric basic data type, the output variable has to be type REAL
or LREAL.

Example in IL
The resultin q is 2.49762.

LD 314.5

LOG

ST q
Example in ST

g: =LO3(314.5);

Example in FBD

LOG
314.5 — q

EI00000000067 06/2017 687

Operators

EXP

Definition
Numeric IEC operator for returning the exponential function.

The input variable can be of any numeric basic data type, the output variable has to be type REAL
or LREAL.

Example in IL
The resultin g is 7.389056099.

LD 2

EXP

ST q
Example in ST

q: =EXP(2) ;

Example in FBD

EXP

688 EI00000000067 06/2017

Operators

SIN
Definition
Numeric IEC operator for returning the sine of an angle.
The input defining the angle in radians can be of any numeric basic data type, the output variable
has to be of type REAL or LREAL.
Example in IL
The result in q is 0.479426.
LD 0.5
SIN
ST q
Example in ST
g: =SI N(0. 5);

Example in FBD

SIN

EI00000000067 06/2017 689

Operators

CCs
Definition
Numeric IEC operator for returning the cosine of an angle.
The input defining the angle in arch minutes can be of any numeric basic data type where the
output variable has to be of type REAL or LREAL.
Example in IL
The resultin q is 0.877583.
LD 0.5
CCs
ST q
Example in ST
g: =COS(0. 5) ;

Example in FBD

Cos

690 EI00000000067 06/2017

Operators

TAN

Definition

Numeric IEC operator for returning the tangent of a number. The value is calculated in arch
minutes.

The input variable can be of any numeric basic data type where the output variable has to be type
REAL or LREAL.

Example in IL
The result in g is 0.546302.

LD 0.5
TAN
ST q

Example in ST
g: =TAN(0. 5) ;

Example in FBD

TAN

EI00000000067 06/2017 691

Operators

ASI N

Definition

Numeric IEC operator for returning the arc sine (inverse function of sine) of a number. The value
is calculated in arch minutes.

The input variable can be of any numeric basic data type where the output variable has to be type
REAL or LREAL.

Example in IL
The result in g is 0.523599.

LD 0.5

ASI N

ST q
Example in ST

g: =ASI N(0. 5) ;

Example in FBD

692 EI00000000067 06/2017

Operators

ACOS

Definition

Numeric IEC operator for returning the arc cosine (inverse function of cosine) of a number. The
value is calculated in arch minutes.

The input variable can be of any numeric basic data type where the output variable has to be type
REAL or LREAL.

Example in IL
The resultin q is 1.0472.

LD 0.5
ACCS
ST q

Example in ST
g: =ACCs(0. 5) ;

Example in FBD

AcCosS

EI00000000067 06/2017 693

Operators

ATAN

Definition

Numeric IEC operator for returning the arc tangent (inverse function of tangent) of a number. The
value is calculated in arch minutes.

The input variable can be of any numeric basic data type where the output variable has to be type
REAL or LREAL.

Example in IL
The resultin q is 0.463648.

LD 0.5
ATAN
ST q

Example in ST
g: =ATAN(0. 5) ;

Example in FBD

ATAN

694 EI00000000067 06/2017

Operators

EXPT

Definition
Numeric IEC operator for exponentiation of a variable with another variable:
QUT =1 N1 to the | N2

The input variable can be of any numeric basic data type where the output variable has to be type
REAL or LREAL.

The result of this function is not defined if the following applies:
e The base is negative.
e The base is zero and the exponent is < 0.

The behavior for such input values is platform-dependent.

Example in IL
The result is 49.

LD 7

EXPT 2

ST Var 1
Example in ST

var 1: =EXPT(7, 2);

Example in FBD

EXPT
7 — Varl

2 —

EI00000000067 06/2017 695

Operators

Section 30.10
IEC Extending Operators

What Is in This Section?
This section contains the following topics:

Topic Page
IEC Extending Operators 697
_ DELETE 698
__| SVALI DREF 701
_ NEW 702
__QUERY! NTERFACE 705
__QUERYPO NTER 707
Scope Operators 709

696

EI00000000067 06/2017

Operators

IEC Extending Operators

Overview

In addition to the IEC operators, SoMachine supports following IEC extending operators:
ADR (see page 661)

BITADR (see page 663)

SIZEOF (see page 633)

__DELETE (see page 695)

__ISVALIDREF (see page 707)

__NEW (see page 702)

__QUERYINTERFACE (see page 705)

__QUERYPOINTER (see page 707)

scope operators (see page 709)

EI00000000067 06/2017 697

Operators

__DELETE

Definition

Syntax

This operator is not specified by the IEC 61131-3 standard.

NOTE: For compatibility reasons, the SoMachine compiler version must be greater than or equal
to 3.1.10.1.

For further information, refer to the SoMachine/CoDeSys compiler version mapping table in the
Compatibility and Migration User Guide (see SoMachine Compatibility and Migration, User Guide).

The __DELETE operator deallocates the memory for objects allocated before via the __ NEW
operator (see page 702).
__DELETE has no return value and its operand will be set to 0 after the operation.

Activate the option Use dynamic memory allocation in the Application build options view (View -
Properties... -~ Application build options).

__ DELETE (<pointer>)

If pointer is a pointer to a function block, the dedicated method FB_Exi t will be called before the
pointer is set to NULL.

NOTE: Use the exact data type of the derived function block and not that of the base function block.
Do not use a variable of type PO NTER TO BaseFB. This is necessary because if the base
function block implements no FB_EXxi t function, then at the later usage of __ DELETE(pBaseFB) ,
no FB_Exi t is called.

Example

In the following example, the function block FBDynani c is allocated dynamically via_ NEWfrom the
POU PLC_PRG By doing so, FB_I ni t method will be called, in which a type DUT is allocated.
When __DELETE is called on, the function block pointer from PLC_PRG, FB_Exi t will be called,
which in turn frees the allocated internal type.

698

EI00000000067 06/2017

Operators

FUNCTI ON_BLOCK FBDynami c
VAR_I NPUT

inl, in2 : |INT;

END VAR

VAR _QUTPUT

out : | NT;

END_VAR

VAR

testl : INT := 1234,
_inc : INT := 0;

_dut : PO NTER TO DUT;
END_ VAR

out :=inl + in2;

METHOD FB_Exit : BOOL
VAR_| NPUT

bl nCopyCode : BOOL;
END_VAR

_ Delete(_dut);

METHOD FB I nit : BOOL
VAR _| NPUT

bl nitRetains : BOOL;
bl nCopyCode : BOQ;
END_VAR

_dut := _ NEWDUT);

METHOD I NC : | NT

VAR | NPUT
END_VAR

_inc := _inc + 1;
INC : = _inc;

PLC _PRG PRG)

VAR

pFB : PO NTER TO FBDynani c;
blnit: BOOL := TRUE;

bDel et e: BOO;

loc : INT;

END_VAR

IF (blnit) THEN

pFB : = _ NEW FBDynani c) ;

EI00000000067 06/2017 699

Operators

bl nit := FALSE;
END | F

IF (pFB <> 0) THEN
pFB*(inl := 1, in2
PFB. I NC() ;

END | F

| F (bDel ete) THEN
__DELETE(pFB);
END | F

:= loc,

out

=> | oc);

700

EI00000000067 06/2017

Operators

| SVALI DREF

Definition
This operator is not specified by the IEC 61131-3 standard.
It allows you to check whether a reference points to a valid value.
For how to use and an example, see the description of the reference (see page 597) data type.

EI00000000067 06/2017 701

Operators

NEW

Definition

Syntax

This operator is not prescribed by the IEC 61131-3 standard.
NOTE: For compatibility reasons, the SoMachine compiler version must be greater than or equal
to 3.1.10.1.

For further information, refer to the SoMachine/CoDeSys compiler version mapping table in the
Compatibility and Migration User Guide (see SoMachine Compatibility and Migration, User Guide).
The operator __NEWallocates memory for function block instances or arrays of standard data
types. The operator returns a suitably typed pointer to the object. If the operator is not used within
an assignment, a message will occur.

Activate the option Use dynamic memory allocation in the Application build options view (View -
Properties... - Application build options) to use the __NEWoperator.

If no memory could be allocated, by _ NEWwill return 0.

For deallocating, use __DELETE.

__NEW (<type>, [<size>]

The operator creates a new object of the specified type <t ype> and returns a pointer to that

<t ype>. The initialization of the object is called after creation. If 0 is returned, the operation has
not been completed successfully.

NOTE: Use the exact data type of the derived function block and not that of the base function block.
Do not use a variable of type PO NTER TO BaseFB. This is necessary because if the base
function block implements no FB_EXxi t function, then at the later usage of __DELETE(pBaseFB) ,
no FB_Exi t is called.

If <t ype> is scalar, the optional operand <l engt h> has to be set additionally and the operator
creates an array of scalar types with the size length.

Example

pScal ar Type : = _ New Scal ar Type, | ength);
NOTE: A copy code in online change of dynamically created objects is not possible.

Therefore, only function blocks out of libraries (because they cannot change) and function blocks
with attribute enabl e_dynani c_cr eat i on are allowed for the __NEWoperator. If a function
block changes with this flag so that copy code will be necessary, a message is produced.

NOTE: The code for memory allocation needs to be non-re-entrant.

A semaphore (SysSenEnt er) is used to avoid 2 tasks try to allocate memory at the same time.
Thus, extensive usage of __Newmay produce higher jitter.

702

EI00000000067 06/2017

Operators

Example with a scalar type:

TYPE DUT :

STRUCT
a,b,c,d, e, f : INT;

END_STRUCT

END_TYPE

PROGRAM PLC_PRG

VAR
pDut : PO NTER TO DUT;
blnit: BOOL := TRUE;
bDel ete: BOOL;

END_VAR

IF (blnit) THEN
pDut := _ NEWDUT);
blnit := FALSE;

END I F

I F (bDel ete) THEN
__ DELETE(pDut);

END | F

Example with a function block:

{attribute 'enabl e_dynani c_creation'}
FUNCTI ON_BLOCK FBDynami c
VAR _| NPUT
inl, in2 : |NT;
END_VAR
VAR_QUTPUT
out : | NT;
END_VAR
VAR
testl : INT := 1234;
_inc : INT := 0;
_dut : PO NTER TO DUT;
END_VAR
out :=inl + in2;

PROGRAM PLC PRG
VAR
pFB : PO NTER TO FBDynani c;
|l oc : | NT;
blnit: BOOL := TRUE;
bDel et e: BOOL;
END_VAR

EI00000000067 06/2017 703

Operators

IF (blnit) THEN
pFB : = _ NEW FBDynani c) ;
blnit := FALSE;

END | F

|F (pFB <> 0) THEN
pFBM(inl := 1, in2 :=loc, out => |loc);
PFB". I NC() ;

END | F

I F (bDel ete) THEN
__ DELETE(pFB);

END | F

Example with an array:
PLC _PRG PRG)
VAR
blnit: BOOL := TRUE;
bDel ete: BOOL;
pArrayBytes : PO NTER TO BYTE;

test: |NT;
parr : PO NTER TO BYTE;
END_VAR
IF (blnit) THEN
pArrayBytes : = _ NEWBYTE, 25);
blnit := FALSE;
END_| F
| F (pArrayBytes <> 0) THEN
pArrayByt es[24] := 125;
test := pArrayBytes[24];
END | F

| F (bDel ete) THEN
__ DELETE(pArrayBytes);
END_| F

704 EI00000000067 06/2017

Operators

__QUERYI NTERFACE

Definition

Syntax

This operator is not prescribed by the IEC 61131-3 standard.

At runtime, __ QUERYI NTERFACE is enabling a type conversion of an interface reference to

another. The operator returns a result with type BOOL. TRUE implies, that the conversion is
successfully executed.

NOTE: For compatibility reasons, the definition of the reference to be converted has to be an
extension of the base interface __ SYSTEM | Quer yI nt er f ace and the compiler version must be
= 3.3.0.20.

For further information, refer to the SoMachine/CoDeSys compiler version mapping table in the
Compatibility and Migration User Guide (see SoMachine Compatibility and Migration, User Guide).

__QUERYINTERFACE(<ITF_Source>, < ITF_Dest>

The operator needs as the first operand an interface reference or a function block instance of the
intended type and as second operand an interface reference. After execution of __ QUERYI N-
TERFACE, the | TF_Dest holds a reference to the intended interface if the object referenced from
| TF source implements the interface. In this case, the conversion is successful and the result of
the operator returns TRUE. In all other cases, the operator returns FALSE.

A precondition for an explicit conversion is that not only the | TF_Sour ce but also | TF Dest is
an extension of the interface __Syst em | Quer yl nt er f ace. This interface is provided implicitly
and needs no library.

Example

Example in ST:

| NTERFACE |t fBase EXTENDS __ System | Querylnterface
METHOD nbase : BOOL
END_METHOD
| NTERFACE |t fDerivedl EXTENDS |t fBase
METHOD nderi vedl : BOOL
END_METHOD
| NTERFACE |t fDerived2 EXTENDS |t fBase
VETHOD nderi ved2 : BOOL
END_METHOD
FUNCTI ON_BLOCK FB1 | MPLEMENTS [t f Derivedl
METHOD nbase : BOOL

nbase : = TRUE;
END_METHOD
VETHOD nderi vedl : BOOL

EI00000000067 06/2017 705

Operators

nderi vedl : = TRUE
END_METHOD
END_FUNCTI ON_BLOCK
FUNCTI ON_BLOCK FB2 | MPLEMENTS |t f Derived2
METHOD nbase : BOCL
nbase : = FALSE;
END_METHOD
METHOD nderi ved2 : BOCL
nderi ved2 := TRUE

END METHOD
END_FUNCTI ON_BLOCK
PROGRAWMM PQU
VAR
instl : FB1
inst2 : FB2;
itfbasel : |ItfBase := instl;
itfbase2 : |ItfBase := inst2;
itfderivedl : ItfDerivedl := 0
itfderived2 : ItfDerived2 := 0
bTest 1, bTest2, xResultl, xResult2: BOOL
END_VAR
XResult1l := _ QUERYI NTERFACE(itfbasel, itfderivedl);

itfderivedl <> 0

/'l references the
xResult2 := _ QUERYI NTERFACE(it fbasel, itfderived2);

, itfderived2 = 0

xResult3 := __ QUERYI NTERFACE(i tf base2, itfderivedl);

, itfderivedl = 0

XResult4 := _ QUERYI NTERFACE(i tfbase2, itfderived2);

, itfderived2 <> 0

/1 references the

I

/1

/11

I

XResult = TRUE

i nstance instl
xResult = FALSE

xResult = FALSE
xResult = FALSE

i nstance inst2

706

EI00000000067 06/2017

Operators

__QUERYPO NTER

Definition

Syntax

This operator is not specified by the IEC 61131-3 standard.

At runtime, __ QUERYPO NTER s assigning an interface reference to an untyped pointer. The

operator returns a result with type BOOL. TRUE implies, that the conversion has been successfully
executed.

NOTE: For compatibility reasons, the definition of the intended interface reference has to be an
extension of the base interface __ SYSTEM | Quer yI nt er f ace and the compiler version must be
= 3.3.0.20.

For further information, refer to the SoMachine/CoDeSys compiler version mapping table in the
Compatibility and Migration User Guide (see SoMachine Compatibility and Migration, User Guide).

__QUERYPOINTER (<ITF_Source>, < Pointer_Dest>

For the first operand, the operator requires an interface reference or a function block instance of
the intended type and for the second operand an untyped pointer. After execution of
___QUERYPA NTER, the Poi nt er _Dest holds the address of the reference to the intended
interface. In this case, the conversion is successful and the result of the operator returns TRUE. In
all other cases, the operator returns FALSE. Poi nt er _Dest is untyped and can be cast to any
type. The programmer has to ensure the actual type. For example, the interface could provide a
method returning a type code.

A precondition for an explicit conversion is that the | TF_Sour ce is an extension of the interface
__System | Queryl nt erface. This interface is provided implicitly and needs no library.

Example

TYPE Ki ndCf FB
(FBL := 1, FB2 := 2, UNKOWN := -1);
END_TYPE

| NTERFACE | tf EXTENDS __System | Queryl nterface
METHOD Ki ndOF : Ki ndOf FB
END_METHOD
FUNCTI ON_BLOCK F_BLOCK 1 | MPLEMENTS | TF
METHOD Ki ndOF : Ki ndOf FB
Ki ndOf : = Ki ndOf FB. FB1;
END_NMETHOD
FUNCTI ON_BLOCK F_BLOCK 2 | MPLEMENTS | TF
METHOD Ki ndOF : Ki ndOf FB
Ki ndOFf : = Ki ndOf FB. FB2;
END_METHOD
FUNCTI ON CAST_TO ANY_FB : BOOL

EI00000000067 06/2017 707

Operators

VAR _| NPUT
itf_in : Itf;
END_ VAR
VAR _QUTPUT
pfb_1: PO NTER TO F_BLOCK 1 : =
pfb_2: PO NTER TO F_BLOCK 2 : =
END_VAR
VAR
XxResult1, xResult2 : BOOL;
END VAR
IFitf_in <> 0
CASE itf_in.KindO¥ OF
Ki ndCOr FB. FBL1:
xResult1l := _ QUERYPO NTER(itf_in,
Ki ndOf FB. FB2 THEN
XxResult2 := _ QUERYPO NTER(itf _in,
END_CASE
END | F
CAST_TO ANY_FB : = xResult1l OR xResult2;

no
g

pfb_1);

pfb_2);

708

EI00000000067 06/2017

Operators

Scope Operators

Definition

In extension to the IEC operators, there are several possibilities to disambiguate the access to
variables or modules if the variables or module name is used multiple times within the scope of a
project.

The following scope operators can be used to define the respective namespace:
global scope operator

global variable list name

enumeration name

library namespace

Global Scope Operator

An instance path starting with dot (.) opens a global scope (namespace). Therefore, if there is a
local variable with the same name <var nane> as a global variable, then . <var nane> refers to
the global variable.

Global Variable List Name

You can use the name of a global variable list as a namespace for the variables enclosed in this
list. Thus, it is possible to declare variables with identical names in different global variable lists
and, by preceding the variable name by <gl obal variabl e |ist nane>.,itis possible to
access the desired one.

Syntax
<global variable list name>.<variable>
Example

The global variable lists gl obl i st 1 and gl obl i st 2 each contain a variable named var x. In the
following line, var x out of gl obl i st 2 is copied to var x in gl obl i st 1:

globlistl.varx := gl oblist2.varx;

If a variable name declared in more than one global variable lists is referenced without the global
variable list name as a preceding operator, a message will be generated.

Library Namespace
You can use the library namespace to access the library components explicitly.
Example

If a library which is included in a project contains a module f unl and there is also a POU f unl
defined locally in the project, then you can add the nanespace of the library to the module name
in order to make the access unique.

Syntax

EI00000000067 06/2017 709

Operators

<nanespace>. <npdul e nane>, forexample | i bl. f unl.

By default, the nanespace of a library is identical to the library name. However, you can define
another one either in the Project Information when creating a library project in the Project
Information (by default in the Project menu), or later in the Properties dialog box of an included
library in the Library Manager.

Example
There is a function f unl in library | i b. There is also a function f unl declared in the project. By
default, the namespace of library | i b isnamed ' i b’ :

resl := fun(in := 12); // call of the project function fun
res2 :=lib.fun(in := 12); // call of the library function fun

Enumeration Name

You can use the type name of an enumeration to disambiguate the access to an enumeration
constant. Therefore, it is possible to use the same constant in different enumerations.

The enumeration name has to precede the constant name, separated by a dot (.).

Syntax

<enumeration name>.<constant name>

Example

The constant Bl ue is a component of enumeration Col or s as well as of enumeration Feel i ngs.

color := Colors.Blue; // Access to enumvalue Blue in type Col ors
feeling := Feelings.Blue; // Access to enumvalue Blue in type Feelings

710

EI00000000067 06/2017

Operators

Section 30.11

Initialization Operator

INI Operator

Overview

NOTE: The | NI operator is obsolete. The method FB_i ni t replaces the | NI operator. For further
information about the FB_i ni t method, refer to the chapter FB_init, FB_reinit Methods

(see page 5317). However, the operator can still be used for keeping compatibility with projects
imported from earlier SoMachine versions.

You can use the | NI operator to initialize retain variables which are provided by a function block
instance used in the POU.

Assign the operator to a boolean variable.

Syntax
<bool-variable> := INI(<FB-instance, TRUE|FALSE)

If the second parameter of the operator is set to TRUE, all retain variables defined in the function
block FB will be initialized.

Example in ST
f bi nst is the instance of function block f b, in which a retain variable r et var is defined.

Declaration in POU

fbinst: fb;
b: bool ;

Implementation part

b :=IN(fbinst, TRUE);
ivar:=fbinst.retvar (* => retvar gets initialized *)

Example of Operator Call in FBD

INI
fhinst— ———h
TRUEH

EI00000000067 06/2017 711

Operators

712 EI00000000067 06/2017

Chapter 31
Operands

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
31.1 Constants 714
31.2 Variables 724
313 Addresses 728
31.4 Functions 731

EIO0000000067 06/2017

713

Operands

Section 31.1

Constants

What Is in This Section?
This section contains the following topics:

Topic Page
BOOL Constants 715
TIME Constants 715
DATE Constants 77
DATE_AND_TIME Constants 718
TIME_OF_DAY Constants 719
Number Constants 720
REAL/LREAL Constants 721
STRING Constants 722
Typed Constants / Typed Literals 723

714

EI00000000067 06/2017

Operands

BOOL Constants

Overview
BOOL constants are the logical values TRUE and FALSE.
Refer to the description of the data type BOOL (see page 585).

TIME Constants

Overview

TIME constants are used to operate the standard timer modules. The time constant TIME is of size
32 bit and matches the IEC 61131-3 standard. Additionally, LTIME is supported as an extension
to the standard as time base for high-resolution timers. LTIME is of size 64 bit and resolution
nanoseconds.

Syntax for TIME Constant
t#<time declaration>

Instead of t #, you can also use the following:

o T#

o tine

o TIME

The time declaration can include the following time units. They have to be used in the following
sequence, but it is not required to use all of them.
d: days

h: hours

m: minutes

s: seconds

ms: milliseconds

Examples of correct TIME constants in an ST assignment

Example Description
TI ME1 : = T#14nms; -
TI MEL : = T#100S12ns; (* The highest component may be allowed to

exceed its limit *)
TI ME1 : = t#12h34nl5s; -

Examples of incorrect usage

Example Description
TIMEL : = t#5n68s; (* limit exceeded in a lower component *)
TI ME1 : = 15ns; (* T# is missing *)

EI00000000067 06/2017 715

Operands

Example Description
TI ME1 : = t#4nms13d; (* incorrect order of entries *)

Syntax for LTIME Constant

LTIME#<time declaration>

The time declaration can include the time units as used with the TIME constant and additionally:
e us: microseconds

e ns: nanoseconds

Examples of correct LTIME constants in an ST assignment:

LTI MEL1 : = LTI ME#1000d15h23ml2s34nms2us44ns

LTI MEL1 : = LTI ME#3445343nB424732874823ns

For further information, refer to the description of the TIME data types (see page 587).

716

EI00000000067 06/2017

Operands

DATE Constants

Overview
Use these constants to enter dates.

Syntax
d#<date declaration>

Instead of d# you can also use the following:
o DH

e date

e DATE

Enter the date declaration in format <year-month-day>.

DATE values are internally handled as DWORD values, containing the time span in seconds since
01.01.1970, 00:00 clock.

Examples

DATE#1996- 05- 06
d#1972- 03- 29

For further information, refer to the description of the TIME data types (see page 587).

EI00000000067 06/2017 717

Operands

DATE_AND_TIME Constants

Overview

Syntax

DATE constants and TIME_OF_DAY constants can also be combined to form so-called
DATE_AND_TIME constants.

dt #<date and time declaration>

Instead of dt # you can use the following:

o DT#

e date and time

e DATE_AND_TI ME

Enter the date and time declaration in format <year-month-day-hour:minute:second>.
You can enter seconds as real numbers. This allows you to specify fractions of a second.

DATE_AND_TIME values are internally handled as DWORD values, containing the time span in
seconds since 01.01.1970, 00:00 clock.

Examples

DATE_AND_TI ME#1996- 05- 06- 15: 36: 30
dt #1972- 03- 29- 00: 00: 00

For further information, refer to the description of the TIME data types (see page 587).

718

EI00000000067 06/2017

Operands

TIME_OF_DAY Constants

Overview
Use this type of constant to store times of the day.

Syntax
tod#<time declaration>

Instead of t od# you can also use the following:

e TODH#

e time_of _day#

e TI ME_OF_DAY#

Enter the time declaration in format <hour:minute:second>.

You can enter seconds as real numbers. This allows you to specify fractions of a second.

TIME_OF_DAY values are internally handled as DWORD values, containing the time span in
milliseconds since 00:00 clock.

Examples

Tl ME_OF_DAY#15: 36: 30. 123
t 0d#00: 00: 00

For further information, refer to the description of the TIME data types (see page 587).

EI00000000067 06/2017 719

Operands

Number Constants

Overview

Number values can appear as binary numbers, octal numbers, decimal numbers, and hexadecimal
numbers. Integer values that are not decimal numbers are represented by the base followed by the
number sign (#) in front of the integer constant. The values for the numbers 10...15 in hexadecimal
numbers are represented by the letters A...F.

You can include the underscore character within the number.

Examples

14 (decimal number)
2#1001_0011 (dual number)

8#67 (octal number)

16#A (hexadecimal number)

These number values can be of type:
BYTE
WORD
DWORD
SINT
USINT
INT
UINT
DINT
UDINT
REAL
LREAL

Implicit conversions from larger to smaller variable types are not permitted. This means that a DINT
variable cannot simply be used as an INT variable. Use the type conversion functions
(see page 666).

720 EI00000000067 06/2017

Operands

REAL/LREAL Constants

Overview
REAL and LREAL constants can be given as decimal fractions and represented exponentially. Use
the standard American format with the decimal point to do this.

NOTE: When you create a function block with an implementation of a function that includes an
LREAL constant (such as | F_TouchPr obe), then insert the attribute monitoring (see page 562).
Example:

{attribute 'nonitoring' := 'call'}

PROPERTY CaptureVal ue : LREAL

Examples
7.4 instead of 7, 4
1. 64e+009 instead of 1, 64e+009

EI00000000067 06/2017 721

Operands

STRING Constants

Overview

A string is an arbitrary sequence of characters. STRING (see page 587) constants are preceded
and followed by single quotation marks. You may also enter blank spaces and special characters
(special characters for different languages, like accents or umlauts). They will be treated just like
all other characters.

In strings, the combination of the dollar sign ($) followed by 2 hexadecimal numbers will be
interpreted as a hexadecimal representation of the 8-bit character code.

Further on, there are some combinations of characters starting with a dollar sign which are
interpreted as follows:

Entered Combination Interpretation
$<two hex numbers> hexadecimal representation of the 8-bit
character code

$$ dollar sign

$' single quotation mark
$L or $I line feed

$Nor $n new line

$Por $p page feed

$Ror $r line break

$T or $t tab

Examples
" WiWIR?'

' Abby and Craig '

';;osts ($9%)"

722 EI00000000067 06/2017

Operands

Typed Constants / Typed Literals

Overview

Syntax

Basically, in using IEC constants, the smallest possible data type will be used. An exception is
REAL/LREAL constants where LREAL is always used. If another data type has to be used, use
typed literals (typed constants) without the necessity of explicitly declaring the constants. For this
purpose, the constant will be provided with a prefix which determines the type.

<Type>#<Literal >

<Type> is the desired data type. Possible entries are:
BOOL
SINT
USINT
BYTE
INT
UINT
WORD
DINT
UDINT
DWORD
REAL
LREAL

Write the type in uppercase letters.

<Li t eral > specifies the constant. The data entered has to fit within the data type specified in
<Type>.

Example
var 1: =Dl NT#34;

If the constant cannot be converted to the target type without data loss, a message will be
generated.

You can use typed literals wherever normal constants can be used.

EI00000000067 06/2017 723

Operands

Section 31.2

Variables

What Is in This Section?
This section contains the following topics:

Topic Page
Variables 725
Addressing Bits in Variables 726

724

EI00000000067 06/2017

Operands

Variables

Overview

You can declare variables either locally in the declaration part of a POU or in a global variable list
(GVL) or in a persistent variables list or in the /0 mapping of devices.

Refer to the chapter Variables Declaration (see page 503)for information on the declaration of a

variable, including the rules concerning the variable identifier and multiple use.

It depends on the data type (see page 583) where a variable can be used.

You can access available variables through the Input Assistant.

Accessing Variables for Arrays, Structures, and POUs

The table lists the respective syntax for accessing arrays, structures, and POUs:

Syntax

Access to

<array name>[Index1, Index2]

2-dimensional array (see page 598)
components

<structure name>.<variable name>

structure (see page 6017) variables

<function block name>.<variable name>

function block and program variables

EI00000000067 06/2017

725

Operands

Addressing Bits in Variables

Overview

In integer variables, individual bits can be accessed. For this purpose, append the index of the bit
to be addressed to the variable and separate it by a dot. You can give any constant to the bit index.
Indexing is 0-based.

Syntax
<variablename>.<bitindex>

Example
a . | NT;
b : BOOL;
a.2 := b;

The third bit of the variable a will be set to the value of the variable b, this means that variable a
will equal 3.

If the index is greater than the bit width of the variable, the following message will be generated:
'Index '<n>' outside the valid range for variable '<var>"!'

Bit addressing is possible with variables of the following data types:
SINT

INT

DINT

USINT

UINT

UDINT

BYTE

WORD

DWORD

If the data type does not allow bit accessing, the following message will be generated:

'Invalid data type '<type>' for direct indexing'.
Do not assign bit access to a VAR_| N_QUT variable.

726 EI00000000067 06/2017

Operands

Bit Access Via a Global Constant

If you have declared a global constant defining the bit index, you can use this constant for a bit
access.

Example for a bit access via a global constant and on a variable:
1. Declaration of the global constant in a global variable list

The variable enabl e defines the bit that is accessed:

VAR _GLOBAL CONSTANT

enabl e: i nt: =2;
END_VAR

2. Bit access on an integer variable
Declaration in POU:
VAR
XXX:int;
END_VAR

Bit Access on BIT Data Types

The BIT data type is a special data type which is only allowed in structures. For further information,
refer to Bit Access in Structures (see page 602).

Example: Bit access on BIT data types

Declaration of structure

TYPE Control |l erData :

STRUCT
St at us_Oper ati onEnabl ed : BIT;
Status_SwitchOnActive : BIT;
St at us_Enabl eOperation : BIT;
Status_Error : BIT;
Status_Vol t ageEnabl ed : BIT;
Status_Qui ckStop : BIT;
Status_Swi tchOnLocked : BIT;
Status_Warning : BIT;

END_STRUCT

END_TYPE

Declaration in POU

VAR
Control l erDrivel: Control | erDat a;
END_VAR

Bit access
Control | erDrivel. Operati onEnabl ed : = TRUE;

EI00000000067 06/2017 727

Operands

Section 31.3

Addresses

Address

Considerations for Online Changes
Executing the Online Change command can change the contents of addresses.

A CAUTION

INVALID POINTER

Verify the validity of the pointers when using pointers on addresses and executing the Online
Change command.

Failure to follow these instructions can result in injury or equipment damage.

Overview

When specifying an address, the memory location and size are indicated by special character
sequences.

Syntax
Y%<memory area prefix><size prefix><number|.number|.number....>
The following memory area prefixes are supported:

I input (physical inputs via input driver, sensors)

Q output (physical outputs via output driver, actors)

M memory location

The following size prefixes are supported:

X single bit

None single bit

B byte (8 bits)

W word (16 bits)

D double word (32 bits)

728 EI00000000067 06/2017

Operands

Examples

Example Address Description

%XK7. 5 output bit 7.5

%Q7. 5

% W15 input word 215

%B7 output byte 7

%vD48 double word in memory position 48 in the
memory location

WWe.5.7.1 interpretation depends on the current
controller configuration (see below)

ivar AT % W: WORD; example of a variable declaration including
an address assignment
For further information, refer to the AT
Declaration chapter (see page 575).

Assigning Valid Addresses
For assigning a valid address within an application, specify the following:
e the appropriate position within the process image that is the memory area to be used: | = input,
Q = output or M = memory area as indicated in the table above
e the desired size: X = bit, B = byte, W = word, D = dword as indicated in the example table

The current device configuration and settings (hardware structure, device description, I/O settings)
play a decisive role. Especially, consider the differences in bit address interpretation between
devices using byte addressing mode or those using word-oriented IEC addressing mode. For
example, in a byte addressing device the first element of bit address % X5. 5 will address byte 5,
but in a word addressing device it will address word 5. In contrast to that, the addressing of a word
or byte address is independent of the device type: with % W, always word 5 will be addressed,
and with byte address % B5, always byte 5.

Depending on the size and addressing mode, different memory cells can be addressed by the
same address definition.

Differences Between Byte Addressing and Word Oriented IEC Addressing
See the table below for a comparison of byte addressing and word-oriented IEC addressing for
bits, bytes, words, and dwords. It visualizes the overlapping memory areas in case of byte
addressing mode (see the example below the table).
Concerning the notation, consider that, for bit addresses, the | EC addressing mode is always
word-oriented. This means that the place before the dot corresponds to the number of the word,
the place behind names the number of the bit.

EI00000000067 06/2017 729

Operands

Comparison of byte and word oriented addressing for the address sizes D, W Band X:

DWords / Words Bytes X (Bits)
byte addressing word-oriented byte addressing word-oriented IEC addressing
IEC addressing

DO 0 DO W BO X0.7 X0.0 X0.7 X0.0

D1 WL - - Bl X1.7 X1.0 X0. 15 X0. 8
w2 - WL B2 - - X1.7 X1.0

- W3 - — B3 - - - X1.15 X1.8

- W D1 W B4 - - - - - -

_ _ - B5 - - - _ _ _

- - - B B6 - - - - - -

- — — - B7 - - - - - -

- - D2 W B8 - - - — - _

D(n-3) |- D(n/ 4) - - - - - - -

- Wn-1) |- Wn/2) |- - - - - - —

- _ _ _ Bn Xn. 7 Xn. 0 X(n/2) |.. X(n/ 2)

.15 .8

n = byte number

Example for overlapping of memory ranges in case of byte addressing mode:
e DO contains BO. . . B3

e W contains BO and B1

e W contains B1 and B2

e \\2 contains B2 and B3

In order to get around the overlap do not use WL or D1, D2, D3 for addressing.

NOTE: Boolean values will be allocated bytewise if no explicit single-bit address is specified.
Example: A change in the value of var bool 1 AT %W\ affects the range from QX0. 0. . . QX0. 7.

730 EI00000000067 06/2017

Operands

Section 31.4

Functions

Functions

Overview
In ST, a function call can be used as an operand.

Example
Result := Fct(7) + 3;

TIME() Function

This function returns the time (based on milliseconds) which has been passed since the system
was started.

The data type is TIME.

Example in IL

TI ME

ST systime (* Result for exanple: T#35ml1s342ns *)
Example in ST

systi me: =TI ME() ;

EI00000000067 06/2017 731

Operands

732 EI00000000067 06/2017

Part VIII

SoMachine Templates

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page
32 General Information about SoMachine Templates 735
33 Managing Device Templates 749
34 Managing Function Templates 763

EIO0000000067 06/2017

733

SoMachine Templates

734 EI00000000067 06/2017

Chapter 32

General Information about SoMachine Templates

EI00000000067 06/2017 735

General Information about SoMachine Templates

Section 32.1

SoMachine Templates

What Is in This Section?
This section contains the following topics:

Topic Page
General Information About SoMachine Templates 737
Administration of SoMachine Templates 740

736

EI00000000067 06/2017

General Information about SoMachine Templates

General Information About SoMachine Templates

Overview

SoMachine provides templates in order to make dedicated control and visualization functionality
that has been developed in one SoMachine project easily available to other SoMachine projects.
They help to standardize the usage of field devices and application functions throughout different
SoMachine projects.

The following types of templates are available:

Device templates that are associated with a single field device or /O module
Function templates that are associated with a high-level application function

SoMachine provides various templates, but you can also create your own templates for any
functionality you want to make available to other projects.

Creating Your Own Templates
The following steps are required for all SoMachine templates:

Step Action

1 Create your functionality within a SoMachine project and test it with the appropriate hardware or
in the simulation.

Save the functionality in a template library.

Open another SoMachine project and select the template from the template library in order to
make the functionality available to this project.

General Notes
When using SoMachine templates, note the following:

Templates are not controller-specific and can therefore be made available for any controller.
Verify that the controller to which you add the template is capable of executing the functionality
contained in the template.

After the template has been installed, you can freely adapt the created objects to your individual
requirements.

The templates function does not support Vijeo-Designer applications; HMI applications are not
included in the SoMachine templates.

Itis possible to install one template several times on the same controller device. In order to avoid
naming conflicts when creating the same objects several times, they are renamed automatically
during installation. For further information, refer to the Naming of Objects section of the Adding
Devices from Template chapter (see page 754).

User-defined data types (DUT) or function blocks must be defined in a function block library if
they should be used in templates.

Templates do not support the use of direct representations of variables (for example % X2. 0).

EI00000000067 06/2017 737

General Information about SoMachine Templates

But you can, on the other hand, use direct representations with an incomplete address
specification (for example % *). For further information, refer to the chapter Variables
configuration - VAR_CONFIG (see page 525).

NOTE: Although this form of placeholder for direct addresses is available, avoid direct addressing
in your programs, and use symbolic addressing wherever and whenever possible.

SoMachine allows you to program instructions using either a direct or indirect method of parameter
usage. The direct method is called Immediate Addressing where you use direct address of a
parameter, such as %IWx or %QWx for example. The indirect method is called Symbolic
Addressing where you first define symbols for these same parameters, and then use the symbols
in association with your program instructions.

Both methods are valid and acceptable, but Symbolic Addressing offers distinct advantages,
especially if you later make modifications to your configuration. When you configure I/O and other
devices for your application, SoMachine automatically allocates and assigns the immediate
addresses. Afterward, if you add or delete I/O or other devices from your configuration, SoMachine
will account for any changes to the configuration by reallocating and reassigning the immediate
addresses. This necessarily will change the assignments from what they had once been from the
point of the change(s) in the configuration.

If you have already created all or part of your program using immediate addresses, you will need
to account for this change in any program instructions, function blocks, etc., by modifying all the
immediate addresses that have been reassigned. However, if you use symbols in place of
immediate addresses in your program, this action is unnecessary. Symbols are automatically
updated with their new immediate address associations provided that they are attached to the
address in the 1/0 Mapping dialog of the corresponding Device Editor, and not simply an ‘AT’
declaration in the program itself.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Inspect and modify as necessary any immediate I/O addresses used in the application after
modifying the configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Systematically use symbols while programming to help avoid extensive program
modifications and limit the possibility of programming anomalies once a program configuration has
been modified by adding or deleting I/O or other devices.

738 EI00000000067 06/2017

General Information about SoMachine Templates

Supported I/O Modules
SoMachine templates can include the following I/O modules:
e TM2
e TM3
e TM5

Supported Fieldbusses
SoMachine templates can include field devices that are linked to the following fieldbusses:
e CANopen

Modbus serial line (Modbus IOScanner)

Modbus TCP 10 Scanner

SoftMotion General Drive Pool (LMC058)

CANmotion

EI00000000067 06/2017 739

General Information about SoMachine Templates

Administration of SoMachine Templates

Overview

The following paragraphs provide an overview of how to create new or change existing device or
function templates and to save them as files for transferring them to other PCs.

Template Libraries
Template libraries contain the definition of several device or function templates.

Write Protection

The standard template libraries included in the SoMachine scope of delivery are write-protected,
which means that they cannot be deleted or renamed.

NOTE: You cannot change write-protected libraries (uninstalling individual templates or changing
names), but you can completely uninstall them.

Template Administration

For administration of the available device and function templates in SoMachine, select Tools —»
Template Repository in the SoMachine Logic Builder. To access the Template Repository from
SoMachine Central, open the System Options dialog box by clicking the System Options button in
the toolbar or by clicking the Settings button in the Versions screen. In the System Options dialog
box, click the Template Repository button (see SoMachine Central, User Guide).

740 EI00000000067 06/2017

General Information about SoMachine Templates

The Template Repository dialog box opens:

g. Template Repository.
Locaton: N

(C:\Documents and Settings\All Users\Application Data\SoMachine Software\V4.0\Template Libraries)

Installed Templates:

[=) & Device Templates

=] Altivar Device Templates System

[#)-#] CANmotion Lexium Device Templates System

= Conveying Device Templates System

=] Lexium Device Templates System
[=} & Function Templates

[#]-#] Conveying Function Templates System

] TVDA Device Module Library System

Close

From the Location list, select the type of templates to be displayed in the Installed Templates box:
<All locations> is selected by default: all available device and function templates are displayed
e Legacy displays the device and function templates of SoMachine V3.1 (if installed)

e User: displays only those device and function templates that you have created or installed

e System: displays the standard device and function templates delivered by SoMachine

The path to the directory where the template libraries are stored is displayed below the Location
field.

The Installed Templates box lists the installed templates in 2 groups: Device Templates and
Function Templates. Each template library can either contain device templates or function
templates.

EI00000000067 06/2017 741

General Information about SoMachine Templates

Installing Additional Template Libraries
To add additional template libraries to this list, proceed as follows:

Step

Action

1

Click the Install button in the Template Repository dialog box.
Result: A File open dialog box opens.

Browse to the folder where the template library file you want to install is saved.

Select the library file you want to install and click OK.
Result: The selected template library is installed and is indicated in the Template Repository

dialog box, including the device or function templates it contains.

Removing Template Libraries
To remove a template library, proceed as follows:

Step

Action

1

In the Installed Templates list of the Template Repository dialog box, select the template library
you want to remove.

To remove the selected template library, click the Uninstall button.
Result: The selected template library is removed from the installation.

Renaming Template Libraries
To rename a template library, proceed as follows:

Step

Action

1

In the Installed Templates list of the Template Repository dialog box, select the template library
you want to rename.

Click the name of the template library you want to change.
Result: A box opens.

Enter the new name in the box and press Enter or leave the box.
Result: The template library is now assigned to the new name.

742

EI00000000067 06/2017

General Information about SoMachine Templates

Creating a New Template Library
To create a new template library, proceed as follows:

Step Action

1 To create a new template library, select the option User or <All locations> from the Location list.

2 To create a new template library for device templates, select the Device Templates node in the
Installed Templates list and click the Create Library button.
Result: A new template library with a default name is added at the bottom of the Device
Templates section of the Installed Templates list.
To create a new template library for function templates, select the Function Templates node in
the Installed Templates list and click the Create Library button.
Result: A new template library with a default name is added at the bottom of the Function
Templates section of the Installed Templates list.

3 Rename the new template library as stated above and fill it with device or function templates by
using for example the copy and paste operations described below.

Saving Template Libraries as File

The template libraries that contain device or function templates are SoMachine-specific XML files.

To provide them for use on other PCs, proceed as follows:

Step Action
1 Select the template library you want to export in the Installed Templates list.
Click the Save As File... button.
In the Save File dialog box, navigate to the folder where you want to save the template library
file.
4 Transfer the template library file to the other PC and install it by using the Template Repository.

Copy and Paste Operations for Template Libraries

The Template Repository dialog box also supports the copy and paste operation for template

libraries.

To copy a template library with the device or function template it contains, select the respective
item in the Installed Templates list and click the Copy button.

Now select the Device Templates or Function Templates node, and click the Paste button to insert
a copy of this template library with a default name in the Installed Templates list.

Replace the default name by a name of your choice.

EI00000000067 06/2017

743

General Information about SoMachine Templates

Copy and Paste Operations for Templates

The Template Repository dialog box supports the copy and paste operation for device or function
templates.

To copy a device or function template, select the respective item from below a template library
node in the Installed Templates list and click the Copy button.

You can now paste the template into a template library if the library is not write-protected.
A library can only be pasted into a library of the same kind.

Replace the default name, if you wish, by a name of your choice.

Adding Further Information for Templates or Template Libraries

The Template Repository dialog box allows you to enter further information for templates or
template libraries.

To add further information, select a library or template library in the Installed Templates list and
click the Properties... button.

744 EI00000000067 06/2017

General Information about SoMachine Templates

The Properties dialog box for the selected library or template library is displayed.

Properties - FUNC1

Template Name: [FUNC1

Help ID: | SoMProg.chm:/SoMProg_D-SE-0001286.htm#D-SE-0001286.1 | Show Help
Info

Language: |English ‘| Import From File |
Comment: This is a short comment

Description: LONG COMMENT

Picture: IPi ctureForATV312.jpg

I OK] [Cancel I

If the selected library or template library is not write-protected, the Properties dialog box contains
the following parameters that you can edit, along with their corresponding buttons:

Element

Description

Template Name / Library Name box

Indicates the name of the library or template library these properties
apply to. To change the name, click this box and adapt the name
according to your requirements.

EI00000000067 06/2017

745

General Information about SoMachine Templates

Element Description

Help ID box For Schneider Electric templates or template libraries, contains the
reference to the respective description in the online help.

If there is an online help document available for your own templates, you
can enter a full reference to its location in the online help or a keyword
corresponding to an index in the online help.

Show Help button Opens the online help document specified in the Help ID box or the
index of the online help searching for the keyword specified in the
Help ID box.
Info section -
Language list Contains the languages that are available for the graphical user

interface of SoMachine. If you select a language, the content of the
language-dependent elements Comment, Description, and Picture is
displayed in the selected language.

If no language-specific content is available, the default language English
is displayed.

Import From File button | Displays a standard Open dialog box. It allows you to browse for an
XML file that contains the localized content of the language-dependent
elements Comment, Description, and Picture. The structure of this
XML file must follow the structure indicated in the example

(see page 747).

Comment box Allows you to enter a short text (for example to provide an overview of
the contents and purpose of the selected library or template library). This
text is indicated as a tooltip when you select template libraries in
SoMachine.

Description box Allows you to enter a long text (for example to provide a detailed
description of the contents and purpose of the selected library or
template library.

Picture parameter Allows you to enter a path to a language-specific picture.

... button You can also click the ... button to browse for the graphic file.
Supported graphic formats:

e Bitmap: *bmp

e JPEG: *jpg

® Graphics interchange format: *gif

® Icon: */co

After the picture has been specified, it will be displayed in the Properties
dialog box.
If you click the OK button, the picture is embedded in the template.

The check box Read-Only is only available for template libraries to indicate whether the selected
template library is in read-only status. It is not possible to change the status of the template library
here.

746 EI00000000067 06/2017

General Information about SoMachine Templates

Localization of Language-Dependent Elements

You can localize the content of the language-dependent elements Comment, Description, and
Picture by importing an XML file with the following structure:

<?xm version="1.0" encodi ng="UTF-8"?>

<Tenpl at eProperti es>

<Hel pl d>SoMPr og. chm : / SoMPr og_D- SE- 0001286. ht m#D- SE- 0001286. 1</ Hel pl d>
<PropertySet |anguageld = "en">

<Conment >This is a short descri pti on</ Conment >
<Description>This is a |ong description</Description>
<I mageFi | e>Pi ct ur eEngl i sh. j pg</ | mageFi | e>

</ Pr opertySet >

<PropertySet |anguageld = "de">

<Conment >Kur ze Beschr ei bung</ Conmrent >

<Descri pti on>Lange Beschrei bung</ Descri pti on>

<I mageFi | e>Pi ct ur eGer man. j pg</ | mageFi | e>

</ PropertySet >

</ Tenpl at eProperti es>

EI00000000067 06/2017 747

General Information about SoMachine Templates

748 EI00000000067 06/2017

Chapter 33

Managing Device Templates

EI00000000067 06/2017 749

Managing Device Templates

Section 33.1

Managing Device Templates

What Is in This Section?
This section contains the following topics:

Topic Page
Facts of Device Templates 751
Adding Devices from Template 752
Creating a Device Template on the Basis of Field Devices or 1/0O Modules 755
Visualizations Suitable for Creating Device Templates 756
Further Information on Integrating Control Logic into Device Templates 757
Steps to Create a Device Template 759

750 EI00000000067 06/2017

Managing Device Templates

Facts of Device Templates

General Information on the Usage of Terms

The following description applies to field devices as well as to I/O modules even though only the
term field device is used to increase readability.

Content of Device Templates
Device templates are related to a specific field device or I/O module. They contain the following
information:
e Fieldbus configuration
e Control logic (controller programming) (optional)
e Visualization elements (visualization programming) (optional)

Using Device Templates
Already available device templates are saved in template libraries. Each template library contains
the definition for several device templates that have a common base (are related to motor control,
for example).

You can select them and adapt them to the requirements of your individual SoMachine projects in
order to create new pre-configured and ready to use field devices.

Creating New Device Templates

To make your already configured field devices reusable for any SoMachine project, save them as
device templates. This also includes the controller programming and visualization linked to this
field device.

Versions of Device Templates

During the creation of a device template, a verification is performed whether the device description
for the device to be created actually exists. If it does not, the device is automatically updated to the
latest version if a later version exists.

EI00000000067 06/2017 751

Managing Device Templates

Adding Devices from Template

Overview

Device templates are related to a specific fieldbus device. They contain the following information:
e Fieldbus device configuration

e Control logic (controller programming) (optional)

e Visualization elements (visualization programming) (optional)

You can create your own device templates from your project. For details, refer to the Steps fo
Create a Device Template chapter (see page 759).

Add Device from Template

SoMachine provides 2 ways to add a device from a device template:

e Creating a device using a device template by drag-and-drop:

Step

Action

Open the Devices & Modules view of the hardware catalog.

At the bottom of the Devices & Modules view, activate the option Device Template.
Result: The templates of field devices available in SoMachine are displayed in the Devices & Modules
view.

Select an entry in the Devices & Modules view, drag it to the Devices tree, and drop it at a suitable
subnode of a controller.

Remark: Suitable subnodes are highlighted by SoMachine.

Result: The Add Device From Template dialog box displays.

ﬁ Add Device From Template

Device Name: ‘ MyDevice |

Device Template : ‘ Altivar 71 (Man + Tune Visu) I

Device Address: 47

Program: Application.UT_CfcFlags

(0K] [Cancel |

752

EI00000000067 06/2017

Managing Device Templates

Step Action

4 In the Add Device From Template dialog box, set the Device Name as well as the Device Address if the
fieldbus requires numerical addresses. In case the device templates includes control logic, select the
program (POU) in which the control logic is inserted.

5 Click the OK button.

Result: The device is created and parameterized according to the selected device template including the
optional visualization screens and control logic.

e Creating a device using a device template via context menu:

Step Action
1 Open the Devices tree.
2 Right-click field device manager, and execute the command Add Device From Template from the context
menu.

Result: The Add Device From Template dialog box displays.

ﬁ Add Device From Template

Device Name: ‘ MyDevice ‘
Device Template : ‘ Altivar 71 (Man + Tune Visu) ‘
Device Address: 47
Program: Application.UT_CfcFlags
(OK] [cCancel |
3 In the Add Device From Template dialog box, select the Device Template to be used, and set the Device

Name as well as the Device Address if the fieldbus requires numerical addresses. In case the device
templates includes control logic, select the program (POU) in which the control logic is inserted.
4 Click the OK button.

Result: The device is created and parameterized according to the selected device template including the
optional visualization screens and control logic.

NOTE: The undo / redo function is not available for the process of creating field devices.

EI00000000067 06/2017 753

Managing Device Templates

Naming of Objects

In order to avoid naming conflicts if the same device template is used as a basis for creating
different field devices, the following naming conventions are applied to the field devices and the
associated objects (FB, visualization, and variables):

If the name of the original object... ‘ Then ...

Case 1:

contains the name of the original field device, | this part of the object is replaced by the name of the new field
device that is created.

Example:

The device template for the field device ATV1 | For a new device Axi s1 being created with this device
contains a variable Var _ATV1_| nput . template, the new variable is correspondingly named
Var _Axi s1_| nput.

Case 2:

does not contain the name of the original the name of the new device plus an underscore are inserted
device, in the original name to form a unique new name.

Example:

The device template for the field device ATV1 | For a new device Axi s1 being created with this device
contains a variable Var _I nput 1. template, the new variable is correspondingly named
Axi s1_Var _| nput 1.

754 EI00000000067 06/2017

Managing Device Templates

Creating a Device Template on the Basis of Field Devices or I/O Modules

Overview

You can create device templates based on field devices or /O modules. The following description
applies to field devices as well as to I/O modules even though only the term field device is used to
increase readability.

The following paragraphs list:

e The criteria that must be fulfilled in order to save a field device or I/O module, including logic and
visualization, as device template;

e The information that is saved in the device template.

Prerequisites for Field Devices
The field devices must meet the following criteria in order to be saved as device templates:
e Field devices must be linked to the fieldbusses listed in the Supported Fieldbusses list
(see page 739);
e The device type must be installed in the Device Repository.

Prerequisites for I/O Modules
Only the supported I/O modules can be saved as device templates (see page 739).

Prerequisites for the Application

You can only create templates from correct applications. Correct means that no errors are detected
during the Build process.

Prerequisites for Including Control Logic into a Template

In order to include control logic into a template, it is required that the control logic contains one or
more code sections that exchange data with this field device. This control logic must be executed
(added to a task or called by another program). Otherwise, it is not considered when executing the
Build command.

Device Information Saved in Device Templates
The following information of field devices is saved in device templates:
e Device configuration
e 1/O mapping of the field device
e Visualizations that are suitable for the field device
e Control logic exchanging data with the field device

EI00000000067 06/2017 755

Managing Device Templates

Visualizations Suitable for Creating Device Templates

Overview

Each device template can be associated with 1 or more Logic Builder visualizations. The supported
types of visualizations are described as follows.

Supported Visualizations
SoMachine supports both types of visualizations:
e Plain visualizations
e Modular visualizations using frames

Visualizations using frames have a better flexibility and modularity.

Plain Visualizations
Visualizations without frames are based on a single visualization object, created for the I/O device.

SoMachine references the data of the I/O device within the properties of the visual elements. When
you create a new device based on this device template, SoMachine directly replaces the variables
in the properties of the visual elements.

Visualizations Using Frames

A visualization using frames is built from a main screen that can be embedded with other
visualizations, using a number of smaller visualizations to be combined like modules in predefined
areas of the main screen (frames).

In the main screen, a frame-object is placed like a rectangular object as the container. You can
assign another visualization to such a container.

The embedded visualization can then be used with an interface to access visual elements
internally.

For more information, refer to the part Programming with SoMachine - Visualization of the
SoMachine online help.

To use embedded visualizations for device templates, define an interface that includes definitions
of all variables related to the connection to the I/O device or function block for each visualization
module. When you create a new device based on this device template, SoMachine adapts all
placeholders of the embedded visualizations according to the created I/O device name.

NOTE: All the visualizations using frames and the function blocks linked to the specific I/O device
must be defined in a library so that SoMachine can find them.

756 EI00000000067 06/2017

Managing Device Templates

Further Information on Integrating Control Logic into Device Templates

Overview

You can include control logic into a device template if the logic contains one or more code sections
that exchange data with this field device in one of the following ways:

e A code section uses a new variable that is defined in the 1/0 mapping of the field device.

e A code section and the I/O mapping of the field device use a common variable that is defined in
a GVL or a controller program contained by the application to which the code section belongs.
NOTE: If you use structures or arrays, verify that they are only related to a single field device.

e A code section and the field device use a fix device-specific variable (for example the axis-ref
variables used with the Altivar or Lexium drives).

Interconnected Calls of Code Sections

Code sections consist of a sequence of interconnected calls of function blocks, functions, and
operators.

If one of the following relationships exists between the individual calls, they are considered as
being connected:

e a graphical connection exists between the individual calls in CFC, FBD, and LD

e a variable is connected to the output of the one call and the input of the other call

e One call uses the parameter of the other call

Individually Selecting Function Blocks

You can individually select the function blocks that are included in those code sections that
exchange data with the field device to be included in the device template. This allows you to create
different device templates providing different functions for the same field device.

NOTE: The function block type must be defined in a library.

Including Expressions into Device Templates

The expressions, as well as the variables used in these expressions that are connected to the
parameters of a function block, function or operator are automatically saved in the device template.

General Practices for the Creation of Control Logic
Only include simple control logic in a device template.
By this way, the code sections work identically even if they are created in different IEC languages.
NOTE: For complex control logic, you should rather create a function template.

Practices for the Creation of Control Logic in FBD / LD
Avoid edge detection elements because they do not exist in other IEC languages.

EI00000000067 06/2017 757

Managing Device Templates

If possible, use R_TRI Gor F_TRI Gfunction blocks instead.

Practices for the Creation of Control Logic in CFC

Use the command Execution Order - Order By Data Flow to order the CFC elements belonging
to the same code section according to their position in the data flow. This provides a better
compatibility with other IEC languages.

Provide space (in horizontal direction) between the individual CFC elements because, due to
renaming, the names of variables are extended when a new device is created from a template.

Control Logic Example

The following figure shows a typical example of a code section for an Advantys OTB distributed I/O
device in a conveying application:

InOTB_Conv20
OTB_IN_Conv -
biNCto7Mod0 i_stConv
InByte2_Conv20 biN8to11Mod0
Conv20 &
Conveyor =
iq_stHdskNMnus1 q_stEqupStat |- OutOTB_Conv20 =
Hig_stHdskNPlus1 q_stStmStatSimp - OTB_OUT_Conv <:| q
—i_stEqupCmd q_stOtbOputF—a_stConv bOUTOto7Mod0 OutByte_Conv20
i_stOtblput q_stinit}
—i_stlnit q_stDevAlrm
—i_xCanAvai q_xAlrm}-
—i_xCanNodeOk q_xAlrtk
—i_stTrckStat
~i_xEmgy
—i_stAlrmCtrl
—~{i_xProgRstAlrm
—1_xDolnit

The code section consists of the following function blocks:

Name Type Function

I nOTB_Conv20 Input block Converting data coming from the OTB into
the format required by the control block

Conv20 Control block Processing data

Qut OTB_Conv20 Output block Converting data coming from the control

block into the format required by the OTB

The variables | nByt el_Conv20, | nByt e2_Conv20 and Cut Byt e_Conv20 are defined in the
I/0 mapping of the OTB. This means that the code section exchanges data with the OTB device.
It can thus become part of the device template.

758 EI00000000067 06/2017

Managing Device Templates

Steps to Create a Device Template

Overview

The following paragraphs list the steps that have to be performed in order to save field devices
meeting the criteria stated in Creating a Device Template on the Basis of Field Devices
(see page 755).

Steps for Saving a Field Device as Template
To save an already existing field device as device template, proceed as follows:

Step Action
1 Right-click the field device you want to save as device template in the Devices
tree.
2 Select the command Save As Device Template from the context menu.

Result: SoMachine automatically builds the application. After the built process
has been successfully completed, the Save as Device Template dialog box will
be displayed.

3 Define the new device template in the Save as Device Template dialog box as
stated below.

4 Click OK to close the Save as Device Template dialog box and to create your
new device template.

EI00000000067 06/2017 759

Managing Device Templates

Save As Device Template Dialog Box
The Save As Device Template dialog box contains the following parameters:

™ Save As Device Template [I/O device ‘Altivar.31°]

1 ——— Device Type: | ' |
2 —%— Fieldbus Type: ~ [CAl |
3 —%— Template Name: | (C..)
4 —— Template Library: | | =)
— Function Blocks: ~[<¢ cl ~)
5
L Visualizations:)
s —f [pomn] 5 (o)

indicates the type of the field device on which the device template is based

indicates the fieldbus type of the field device

the name of the device template that will be created (initially the name of the original field device)
select the template library the device template will be added to

select function blocks and visualizations that should be saved with the device template
Properties button to add further information to the device template

DOTHARWN -

Defining a Name for the New Device Template
Use the text box Template Name to define a name for your device template.
By default, this text box includes the name of the selected field device.

You can either type the name of your choice directly into this text box, or you can click the ... button
to select an existing device template from the lists if you want to overwrite this device template.

760 EI00000000067 06/2017

Managing Device Templates

Selecting the Template Library

To select one of the previously installed or created template libraries in which the device template
should be stored, proceed as follows:

Step Action
1 In the Save as Device Template dialog box, click the ... button right to the Template Library text
box.
Result: The Select Template Library dialog box will be displayed.
2 The Select Template Library dialog box displays all template libraries that have been installed

for the current project or have been created. Write-protected template libraries are not displayed.
To add the new device template to 1 of these template libraries, select the suitable entry and
click OK.

Selecting the Function Blocks

To select the function block instances to be included into the device template, proceed as follows:

Step Action

1 In the Save as Device Template dialog box, click the ... button to the right of the Function Blocks
text box.
Result: The Select Function Block dialog box will be displayed.
The Select Function Block dialog box displays all function block instances contained by the
control logic of the field device (see page 757).

2 Select the check box of an individual function block to select it for the device template.
Or select the check box of a root node to select all elements below this node.

3 Click the OK button.

Selecting the Visualizations

To select the visualizations to be included into the field device, proceed as follows:

Step Action

1 In the Save as Device Template dialog box, click the ... button to the right of the Visualizations
text box.
Result: The Select Visualizations dialog box will be displayed.
The Select Visualizations dialog box displays those visualizations that are linked with the field
device or with one of the selected function blocks.

2 Select the check box of an individual visualization to select it for the device template.
Or select the check box of a root node to select all elements below this node.

3 Click the OK button.

EI00000000067 06/2017

761

Managing Device Templates

Adding Further Information to the New Device Template

To add further information to the new device template, click the Properties... button. The Properties
dialog box opens. It allows you to enter further information for the device template. Since the dialog
box is identical for device templates and template libraries, see the description in the Adding
Further Information for Templates or Template Libraries chapter (see page 744).

762 EI00000000067 06/2017

Chapter 34

Managing Function Templates

EI00000000067 06/2017 763

Managing Function Templates

Section 34.1

Managing Function Templates

What Is in This Section?
This section contains the following topics:

Topic Page
Facts of Function Templates 765
Adding Functions from Template 766
Application Functions as Basis for Function Templates 773
Steps to Create a Function Template 775

764

EI00000000067 06/2017

Managing Function Templates

Facts of Function Templates

Content of Function Templates

Function templates represent dedicated control and visualization functionality that are associated
with an application function.

A function template may include the following elements:

One or several IEC programs

One or several field devices or I/O modules that are being used by the application function
One or several visualizations that are being used to visualize the application function

One or several global variable lists

One or several global variables that may be shared with other application functions

One or several traces

One or several CAM tables

One or several I/O variables to be mapped on an I/O channel

One or several template parameters

Using Function Templates

Already available function templates are saved in template libraries. Each template library contains
the definition for several function templates that have a common base (for example, all are related
to packaging applications).

You can easily select them and adapt them to the requirements of your individual SoMachine
projects in order to create new ready to use application functions.

Creating New Function Templates

To make your already created application function reusable for any SoMachine project, you can
save it as function template.

When you save the function template, decide in which template library it should be stored.

Versions of Function Templates
During the creation of a function template, a verification is performed whether the device
description for the device to be created actually exists. If it does not, the device is automatically
updated to the latest version if a later version exists.

EI00000000067 06/2017 765

Managing Function Templates

Adding Functions from Template

Procedure

SoMachine provides 2 ways to add a function from a function template:

To add an application function from a function template via drag-and-drop, proceed as follows:

Step Action
1 Open the Macros view of the Software Catalog.
2 Select a function template from the Macros view, drag it to the Applications tree, and drop it at a

suitable Application node or a folder below the Application node.
Remark: Suitable nodes are highlighted by SoMachine.
Result: The Add Function From Template dialog box opens.

To add an application function from a function template via context menu, proceed as follows:

Step Action
1 Open the Applications tree.
2 Right-click an Application node or a folder below the Application node, and execute the

command Add Function From Template from the context menu.

Result: The Add Function From Template dialog box is displayed.

766

EI00000000067 06/2017

Managing Function Templates

Add Function From Template Dialog Box

Add Function From Template 3

Function Name: |FCT1 |
Function Template: ~ [FUNC | ...
1/0 Devices:
Device Name Device Type | Fieldbus Type | Master | Address |
FCT1_Altivar_71 Altivar 71 CANopen CANopen_Performance _| <Select device address> _|

1/0 Mapping:

Name Data Type Mapping | Description
FCT1_Input1 BOOL %IX3.1 J First Input
FCT1_Input2 BOOL %IX3.4 ... | Second Input
FCT1_Output1 BOOL _| First Output
FCT1_Output2 BOOL .|| Second Output

Parameters:

Object | Name | Data Type Default New Value | Description

FCT1_POU InternalVar1 STRING XXXX Internal Variable1

FCT1_POU InternalVar2 INT 66 Internal Var2

FCT1_POU ControlWord1 INT 66 ControlWord1 : Just a variable

Cancel]

EI00000000067 06/2017

767

Managing Function Templates

The Add Function From Template dialog box provides the following elements to configure your

function:

Element

Description

Function Name text box

Enter a name that is used for the new folder of this application and for
the naming of the elements it contains.

Function Template

Click the ... button and select a function template from the Select
Function Template dialog box.

1/0 Devices table

Device Name

Contains the name of the future field device. You cannot change this
name.

Device Type

Indicates the type of the field device. You cannot edit this cell.

Fieldbus Type

Indicates the fieldbus type of the field device. You cannot edit this cell.

Master

Contains the fieldbus master to which the field device is connected. If
there are several masters, you can select the master of your choice
from the list.

Address

Initially empty. For field devices on fieldbusses that require numerical
addresses (Modbus serial line and CANopen), click the ... button right
to the field and assign the address of your choice.

1/0 Mapping table

Lists the 1/O variables that are part of the function template. It allows
you to map them to the I/O channels of existing devices and modules.

Name

Contains the name of the I/O variable that has to be mapped on an
1/0 channel.

Data Type

Indicates the data type of the I/0 channel to which the I/O variable was
originally mapped.

Mapping

Click the ... button to open the Select I/O Mapping dialog box. It allows
you to select an 1/0 channel on which you can map the selected
variable.

After the variable has been mapped to an I/O channel, this Mapping
field contains the input or output address of the 1/0O channel on which
the variable is mapped.

Description

Contains a description of the 1/O variable.

Parameters table

Lists the template parameters included in the function template.

Object

Indicates the name of the GVL or program in which the variable is
defined. You cannot edit this field.

Name

Contains the name of the variable. You cannot edit this cell.

Data Type

Indicates the data type of the variable. You cannot edit this cell.

Default

Indicates the default value of the variable. This is the initial value of the
variable when the template was created. You cannot edit this cell.

New Value

Edit this cell if you want to assign a new value to the variable. If you
leave this cell empty, the Default value is used for this variable.
Enter a value that is valid for the given data type.

768

EI00000000067 06/2017

Managing Function Templates

Element Description
Description Contains a description of the variable.
OK button Confirm your settings by clicking the OK button.

Result: SoMachine verifies whether the settings are correct and inserts
the new application function as separate node below the Application
node or displays an error detection message.

Select I/0O Mapping Dialog Box

The Select I/O Mapping dialog box is used to map a variable selected in the Add Function From
Template dialog box to an I/O channel.

It displays the available 1/0 channels in a tree structure, similar to the Devices tree. The root node
is the controller. Only those I/O channels are displayed whose data type fits to the data type of the
new variable.

2 data types are compatible if they have identical type names or if they are elementary IEC data
types of the same size.

Example:
UINT --> INT allowed
UDINT --> INT not allowed

EI00000000067 06/2017 769

Managing Function Templates

Display the subnodes by clicking the plus signs.

£ Select I/0 Mapping (x)

(= J» DO12TE 1

Channel Address
(=} 28 MyController
=% Expert
= J* DM72F0
=) QB0 %QB0
Qo %QX0.0
Q1 %QX0.1
=] Dm72F1
=2 QBO %QB1
Qo %QX1.0
Q1 %QX1.1
=% T™5
(= M) T™M5_Manager
[=} % Embedded Bus
=} 1+ DO12TE
=) Digital Outputs %QW1
[Digital Output00 %QX2.0
Digital Output01 ~ %QX2.1
Digital Qutput02 ~ %QX2.2
Digital Output03 ~ %QX2.3
Digital Output04 ~ %QX2.4
Digital Qutput05 ~ %QX2.5
Digital Output06 ~ %QX2.6
Digital Qutput07 ~ %QX2.7
Digital Output08 %QX3.0
Digital Outputd9 ~ %QX3.1
Digital Output10 %QX3.2
Digital Output11 %QX3.3

Mapping

FUNC_Output1
FUNC_Output2

Description

Fast output, push-pull
Fast output, push-pull

Fast output, push-pull
Fast output, push-pull

24VDC /0.5 A, source
24VDC/0.5A, source
24VDC/0.5A, source
24 VDC/0.5 A, source
24 VDC /0.5 A, source
First Qutput

Second Output

24 VDC/0.5 A, source
24 VDC /0.5 A, source
24 VDC /0.5 A, source
24 VDC /0.5 A, source
24 VDC /0.5 A, source

A

~

=8

The Select /0 Mapping dialog box contains the following columns:

Column Description

Channel Contains the tree structure. Each device is represented by the device name and
the device icon. Each I/O channel is represented by the channel name.

Address Contains the input / output address that corresponds to the 1/0O channel.

Mapping Contains the 1/O variable that is currently mapped on the 1/O channel.

Description Contains the description of the 1/0 channel.

770

EI00000000067 06/2017

Managing Function Templates

Consider the following practices for mapping variables to 1/O channels:

e Map all variables provided by the function template to 1/0 channels.

e You can map an I/O variable of a function template to an I/O channel that already has a
mapping. The existing mapping is overwritten.

e Any mappings that lead to multiple assignments of variables on the same 1/O channel are not

Objects Created

allowed.
The function template creates the following objects in your project:
Object Description
Root folder A new folder is created under the Application node in the Devices view that is named
as defined in the Function Name text box.
Field devices The field devices that are included in the function template are created using names that

apply to the naming rules and are connected to the fieldbus master. The I/O mapping
is automatically adjusted, if necessary.

Visualizations

The visualizations that are included in the function template are created below the root
folder using names that apply to the naming rules. The properties of the visualization
are automatically adjusted.

Programs

The programs that are included in the function template are created below the root
folder using names that apply to the naming rules. The names of those objects in the
program that are part of the function template is adjusted automatically.

Traces

The traces that are included in the function template are created below the root folder
using names that apply to the naming rules and can be used to trace variables
belonging to the application function.

CAM tables

The CAM tables that are included in the function template are created below the root
folder using names that apply to the naming rules. They are only required if the
application function includes SoftMotion devices.

Task configuration

The task configuration is adjusted as required by the function template.

Global variable
lists

The global variable lists that are included in the function template are created below the
root folder using names that apply to the naming rules.

External variables

Global variables whose global variable lists do not belong to the function template are

restored in their original global variable list as follows:

o [f a global variable list with the original name does not already exist below the
application, it is created automatically.

e |[f a global variable with the original name does not already exist in this global
variable list, it is created automatically.

If the type of global variable is not correct, SoMachine issues an error detection
message.

EI00000000067 06/2017

771

Managing Function Templates

Object Description
Persistent Persistent variables are restored in the respective variable list of the application as
variables follows:

e |[f a persistent variable list does not already exist below the application, it is created
automatically with its original name.

e |[f a variable with the original name does not already exist in the persistent variable
list, it is created automatically.

If the type of persistent variable is not correct, SoMachine issues a message.

Any objects that are created with the instantiation of the function template are listed in the
Messages pane.

Naming of Objects
In order to avoid naming conflicts, if you instantiate the same function template several times on
the same controller device, the following naming conventions are applied to the application
functions and the associated objects:

If the name of the original object... Then ...

Case 1:

contains the name of the application function, this part of the object is replaced by the name of the
new application function that is created.

Example:

The template original application function Axi s For a new application function Axi s1 being created

contains a program Axi s_Init. with this template, the new program is
correspondingly named Axi s1_Init.

Case 2:

does not contain the name of the application function, | the name of the new application function plus an
underscore are inserted in the original name to form
a unique new name.

Example:
The original application function Axi s contains a For a new application function Axi s1 being created
program | ni t Pr og. with this function template, the new program is

correspondingly named Axi s1_I ni t Pr og.

NOTE: Use rather short names for your application functions so that they are completely displayed.

772 EI00000000067 06/2017

Managing Function Templates

Application Functions as Basis for Function Templates

Overview

The following paragraphs list:

e The criteria that must be fulfilled in order to save an application function with its associated field
devices, I/O modules, and visualizations as function template;

e The information that is saved in the function template.

Defining Application Functions as Function Templates

You can save application functions as function templates by right-clicking a subnode of your
Application node in the Applications tree. Or you can create your own template in the Macros view
by selecting individual objects for your template.These 2 procedures are described in the Steps fo
Create a Function Template chapter (see page 775).

Prerequisites for the Application

You can only create templates from correct applications. Correct means that no errors are detected
during the build process.

Prerequisites for Saving an Application Function as Function Template
In order to save an application function as function template, it is a prerequisite that all programs
of the application function are executed.
This means they must meet one of the following criteria:
e They must be added to a task.
e They must be called by another program.

Otherwise, they will not be considered when executing the Build command.

I/O Variables in Function Templates

An /O variable is a variable that is mapped on an I/O channel of a field device. It is saved in the

function template if the following conditions apply:

e The |/O variable is used by any program or visualization that is included in the function template.

e The field device or /0 module to which the 1/O variable is mapped cannot be included in the
function template.

You can map an I/O variable that is saved in the function template on an existing I/O channel when
an application function is created from the function template (see page 767).

The 1/0O variable has a description that is displayed in the Add Function From Template dialog box.

EI00000000067 06/2017 773

Managing Function Templates

This description is created as follows:

e Ifthe I/O variable was newly created in the /O Mapping tab of the device editor (see page 743),
the description is taken from the description of the 1/O channel (this only applies if the original
description has been changed).

e If the I/O variable is a reference to an existing variable, the description is taken from the
comment of this variable.

Template Parameters
A template parameter is a variable with an adjustable initial value.

Example:When a device is used via a communication function block, then you have to assign the
address of the device to this function block as an input parameter. To be able to set this address,
connect a variable to the function block and define the variable as a template parameter.

A variable can become a template parameter if the following conditions apply:

e The variable is defined in a program or global variable list that is included in the function
template.

e The variable has a simple data type (BOOL, any numeric data type, any STRING, alias types
based on a simple data type).

e The initial value of the variable is explicitly defined as a literal value.

All variables that meet these conditions can be selected as template parameter when the function
template is saved (see page 779).

If a variable was selected as a template parameter, the initial value of this variable can be adjusted
when a new application function is created from the function template (see page 767).

Objects Saved in Function Templates
The following objects are saved in function templates:
All programs that are located directly in the application function folder as well as their subobjects
All global variable lists that are located directly in the application function folder
All visualizations that are located directly in the application function folder
All CAM tables that are located directly in the application function folder
All traces that are located directly in the application function folder
All field devices and 1/0 modules that are used by any program or visualization that is included
in the function template
e All global variables whose variable lists are not part of the function template but which are used
by any program or visualization that is part of the function template
e All persistent variables that are used by any program or visualization that is part of the function
template

NOTE: Any other object types are not saved in the function template (even if they are saved in the
application function folder). Only use function blocks and data types that are stored in a library.

774 EI00000000067 06/2017

Managing Function Templates

Steps to Create a Function Template

Overview

SoMachine provides 2 ways to create a function template:
e From the Macros view using the Create New Template dialog box.
e From the Applications tree using the Save as Function Template dialog box.

The following paragraphs list the steps that have to be performed in order to save already available
application functions that meet the criteria stated in Application Functions as Basis for Function
Templates (see page 773) as function templates.

Procedure via Macros View

The procedure via Macros view allows you to create your own function template by dragging and
dropping elements:

Step Action
1 In the Macros view, expand the section My Template.
2 Select the My Template node, and click the green plus button.
Result: A new node with the default name LIB1 is inserted below the MyTemplate node.

EI00000000067 06/2017 775

Managing Function Templates

Step

Action

3

Select the LIB1 node and click the green plus button.
Result: The Create New Template dialog box displays.

.. Create New template - Template Library (LIB1)

Function Template | Parameters [Properties ‘

Name: MyTemplate1

Elements
Name
- [8]] Prg_ATV32_Node12

- @ GVL_ATV32_Node04

- @ oL
[£] MAIN

-+ |£] Output_Mapping

@ GVL_LXM_ILA Node40

[£] Prg_LXM_ILA_Node40

< | |3
Information
Please drag and drop efement to create templates

[Save Template] [Cancel

In the Function Template tab of the Create New Template dialog box, enter a Name for your function
template.

Drag the elements you want to include in the function template from the Applications tree to the Elements
box of the Function Template tab. The elements listed in this box is inserted in your function template.

NOTE: The elements must belong to the same application.

776

EI00000000067 06/2017

Managing Function Templates

Step

Action

The Parameters tab of the Create New Template dialog box displays those variables that are included in
the elements you selected in the Function Template tab.

#. Create New template - Template Library (LIB1)

" Function Template‘ Parameters | Properties .

[} [g Prg_ATV32 Node12
<[® c_udiTmotGetState
= = [E] MAIN
c¢_udiTmoiGetState
(=1 @ GVL_LXM_ILA_Noded0
-0 & uiSetJogDist
uiSetDelay
O # iSelJogSlow
[0 # iSetJogFast
[0 # iVeloAbs
~[# diSetHomePos
-0 # uiSetHomeMod
O # uiSetVeloHp
[J # uiSetVeloHn
O # diSetPosHp
-0 ® diSetPosHn
(=) [g] Prg_LXM_ILA_Node40
c_udiTmotGetState

[Save Template l I Cancel

From the list of variables, select those you want to declare as template parameters by selecting the check
box of the variable or of a node.

The Properties tab of the Create New Template dialog box allows you to add further information to the
function template.

You can insert a link to the online help of this function template. The dialog box allows you to add further
textual information that can be localized, and you can add a graphic illustrating this function template. For
a description of these parameters, refer to the chapter Adding Further Information for Templates or
Template Libraries (see page 744).

Click the Save Template button.

EI00000000067 06/2017 777

Managing Function Templates

Procedure via Applications tree

To save an already available application function as function template, proceed as follows:

Step Action
1 Right-click a subfolder of your Application node in the Applications tree.
2 Select the command Save As Function Template from the context menu.

Result: SoMachine automatically builds the application. After the built process has been successfully
completed, the Save As Function Template dialog box will be displayed.

™ Save As Function Template
Template Name: | [EYN@ |)
Template Library: ‘ 1 o)
Parameters: ‘ E

[OK] [Cancel]

Define the new function template as stated below.

Click OK to close the Save as Function Template dialog box and to create your new function template.
Result: SoMachine verifies that the function template can be created and displays a message that the
function template has been created successfully or indicates the errors detected.

Assigning a Template Name

In the Template Name text box of the Save as Function Template dialog box, define the name
under which the function template is stored in the template library. By default, this text box contains
the name of the folder that contains your application function in the Applications tree but you can
adapt the name to your individual requirements.

Selecting the Template Library

To select one of the previously installed or created template libraries in which your new function
template should be stored, proceed as follows:

Step Action

In the Save as Function Template dialog box, click the ... button next to the Template Library text box.
Result: The Select Template Library dialog box is displayed.

778 EI00000000067 06/2017

Managing Function Templates

Step

Action

The Select Template Library dialog box displays all template libraries that have been installed for the
current project or have been created. Write-protected libraries are not displayed.

To add your new function template to one of these template libraries, select the suitable entry and click
OK.

Selecting Variables as Parameters

You can define variables of the function template as template parameters (see page 774).
To define variables of the function template as template parameters, proceed as follows:

Step

Action

In the Save as Function Template dialog box, click the ... button to the right of the Parameters text box.
Result: The Select Variables as Parameters dialog box is displayed.
It displays the variables that are defined in the selected application.

Select the check box of an individual variable to select it as template parameter for the function template.
Or select the check box of a root node to select all elements below this node.

Click the OK button.
Result: The selected variables are displayed in the Parameters text box of the Save as Function Template

dialog box.
They are displayed in the Parameters table of the Add Function From Template dialog box where you can

assign New Values for these parameters.

Overwriting an Existing Function Template

To overwrite an existing function template with the selected application function, proceed as

follows:
Step Action

1 In the Save as Function Template dialog box, click the ... button right to the Template Name text box.

2 Browse to the already available function template you want to replace.
Select the function template you want to replace.
Result: The name of this function template is inserted in the Template Name text box and the name of the
template library where it is stored in is inserted in the Template Library text box.

4 Click OK to close the Save as Function Template dialog box and to replace the selected function template
with the new application function.

Adding Further Information to the New Function Template

To add further information to the new function template, click the Properties... button. The
Properties dialog box opens. It allows you to enter further information for the function template.
Since the dialog box is identical for device templates and template libraries, see the description in
the Adding Further Information for Templates or Template Libraries chapter (see page 744).

EI00000000067 06/2017 779

Managing Function Templates

780 EI00000000067 06/2017

Part IX

Troubleshooting and FAQ

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page
35 Generic - Troubleshooting and FAQ 783
36 Accessing Controllers - Troubleshooting and FAQ 795

EIO0000000067 06/2017

781

Troubleshooting and FAQ

782 EI00000000067 06/2017

Chapter 35
Generic - Troubleshooting and FAQ

EI00000000067 06/2017 783

Generic - Troubleshooting and FAQ

Section 35.1

Frequently Asked Questions

What Is in This Section?
This section contains the following topics:

Topic Page
How Can | Enable and Configure Analog Inputs on CANopen? 785
Why is SoMachine Startup Performance Sometimes Slower? 787
How Can | Manage Shortcuts and Menus? 788

How Can | Increase the Memory Limit Available for SoMachine on 32-Bit Operating Systems? 790

How Can | Reduce the Memory Consumption of SoMachine? 791
How Can | Increase the Build-Time Performance of SoMachine? 791
What Can | Do in Case of Issues with Modbus |IOScanner on Serial Line? 792
What Can | Do If My Network Variables List (NVL) Communication Has Been Suspended? 793
What Can | Do If a Multiple Download is Unsuccessful on an HMI Controller? 793

784 EI00000000067 06/2017

Generic - Troubleshooting and FAQ

How Can | Enable and Configure Analog Inputs on CANopen?

Overview

This section provides instructions on enabling analog inputs according to the CANopen standard
by setting the SDO (Service Data Object) 6423 to the value 1.

Procedure

Step Action
1
2

Double-click the node of your analog CANopen device in the Devices tree.

In the CANopen Remote Device tab of the editor, enable the option Enable Expert Settings.
Result: Additional tabs are displayed and the Service Data Object tab is populated with information.

EI00000000067 06/2017 785

Generic - Troubleshooting and FAQ

Step Action
3 Open the Service Data Object tab and click the New... button.
Result: The Select item from object directory dialog box is displayed.
te DeviceT PDO Mapping [Receive PDO Mapping “ Send PDO Mapping] Service Data Object I C
Index:Subindex Name Value Bitlength | Abort if ¢
16#1600:16#00 Clear pdo mapping 16#0 8 [|:|
16#1600:16#01 Set Mapping 16#62000108 | 32 | [
16#1600:16#02 Set Mapping 16#62000208 | 32 | [
Select item from object directory
Index:Subindex Name Flags | Type Default ¢
16#3202:16#00 = Restore Saved Parameters RW | UDINT | O
16#3300:16#00 @ Extension Bus Reset RW | UINT 0
16#6102:16#00 | Polarity Input 16 bits
16#6103:16#00 | Mask Input 16 bits
16#6200:16#00 | Write Output 16 bits
16#6300:16#00 | Write Output 16 bits
16#6302:16#00 | Polarity Input 16 bits
16#6306:16#00 | Error mode 16 bits
16#6307:16#00 | Error Value 16 bits
16#6308:16#00 = Mask Output 16 bits L
16#6411:16#00 = Write Analog Output
~16#6421:16#00 | Analog Input Interrupt Trigger Selecti...
16#6423:16#00 | Analog Input Global Interrupt Enable RW | BIT 0
16#6424:16#00 | Analog Input Upper Limit N
7))
Name I Analog Input Global Interrupt Enable ‘
Index: 16# 6423 < | Bitlength:
% -~
4 From the list of objects, select object 6423, enter 1 as Value, and click OK.
Result: Analog input transmission on the CANopen bus is activated. You can now configure parameters
of the analog values as described in the hardware manual of your device.
786 EI00000000067 06/2017

Generic - Troubleshooting and FAQ

Why is SoMachine Startup Performance Sometimes Slower?

Overview

Beside the PC configuration there are several other conditions which can increase the time
SoMachine is consuming during startup:

Boot Phase Startup Performance
first start after SoMachine On first start after SoMachine has been installed, the software will generate
installation its working environment on the PC. This is done only one time but has

significant impact on the duration of the first startup.

first start after reboot After rebooting the PC, the startup time of SoMachine can be longer than
usual because Microsoft Windows consumes some time in the background to
launch services that are needed to run SoMachine. This can have impact on
the startup duration and cannot be avoided.

subsequent starts Users experience better performance of the startup when the system has
been started previously on the PC.

EI00000000067 06/2017 787

Generic - Troubleshooting and FAQ

How Can | Manage Shortcuts and Menus?

Overview

The menus and shortcuts of the SoMachine software differ depending on the current state, that is,
the window or editor that is currently open.

You can adapt the shortcuts and menus to your individual preferences or you can load the
SoMachine or CoDeSys standard shortcuts and menus as described in the following sections.

Customizing Shortcuts and Menus

You can adapt the shortcuts and menus to your individual preferences by using the Tools -
Customize menu.

Restoring the SoMachine Standard Shortcuts and Menus

To restore the SoMachine standard shortcuts and menus (after you have customized them),
proceed as follows:

Step Action

1 Execute the Customize command from the Tools menu.
Result: The Customize dialog box will be displayed.

2 In the Customize dialog box, click the Load... button.
Result: The Load Menu dialog box will be displayed.

3 In the Load Menu dialog box, navigate to the folder ...IProgram Files|Schneider
ElectriclSoMachine SoftwarelV4.0\|LogicBuilder|Settings, select the file Standard.opt. menu, and
click Open.

Result: The Customize dialog box now shows the standard SoMachine settings.

4 To load these standard settings to the SoMachine graphical user interface, click OK.

Setting the Shortcuts and Menus to CoDeSys Standard

To import the CoDeSys shortcuts and menus to your SoMachine graphical user interface, proceed
as follows:

Step Action

1 Execute the Customize command from the Tools menu.
Result: The Customize dialog box will be displayed.

2 In the Customize dialog box, click the Load button.
Result: The Load Menu dialog box will be displayed.

3 In the Load Menu dialog box, navigate to the folder ...|Program Files|Schneider
ElectriclSoMachine SoftwarelV4.0\LogicBuilder|Settings|OriginalCoDeSys, select the file
Standard.opt.menu, and click Open.

Result: The Customize dialog box now shows the CoDeSys settings.

4 To load these CoDeSys settings to the SoMachine graphical user interface, click OK.

788 EI00000000067 06/2017

Generic - Troubleshooting and FAQ

NOTE: The menus and shortcuts of the SoMachine software differ, depending on the window or
editor that is currently open.

Expanding Menus

SoMachine main menus and context menus can be displayed in a collapsed or full view. In the
collapsed mode seldom used or disabled commands are hidden. After clicking the arrow menu

item ¥ at the bottom of a menu, the corresponding menu expands, showing all its menu items.

For always showing the menus in the full viewing mode, activate the option Always show full menus
in the Tools - Options — Features dialog box.

EI00000000067 06/2017 789

Generic - Troubleshooting and FAQ

How Can | Increase the Memory Limit Available for SoMachine on 32-Bit Operating

Systems?

Overview

Large SoMachine projects can stress a 32-bit operating system to the technical limit regarding
memory consumption. This is due to 32-bit operating systems providing only 2 GB of memory for
user processes such as SoMachine.

Identifying a Large SoMachine Project

SoMachine projects can be considered to be large if they contain a large total count of Objects.
The Objects that are available in a project, such as Devices, POUs, Actions, DUTs, Global Variable
Lists, Visualizations are listed in the Statistics tab of the Project Information dialog box

(see SoMachine, Menu Commands, Online Help). However, it is not just the total count of Objects
that can indicate a large project. Even individual Objects can be inherently large.

Enabling the 3 GB Switch on Windows 7 32-Bit Operating Systems

In order to increase the memory limit for user processes on Windows 7 32-bit Operating Systems,
you can enable the 3 GB switch function as follows:

Step

Action

Goto Start Menu - All Programs —» Accessories.

Right-click Command Prompt and execute the command Run as Administrator.

Enter bcdedit /set |ncreaseUserVa 3072.

1
2
3
4

Restart the computer.

Disabling the 3 GB Switch on Windows 7 32-Bit Operating Systems

In order to increase the memory limit for user processes on Windows 7 32-bit Operating Systems,
you can enable the 3 GB switch function as follows:

Step

Action

Goto Start Menu — All Programs —» Accessories.

Right-click Command Prompt and execute the command Run as Administrator.

Enter bcdedit /del et eval ue | ncreaseUser Va.

AW IN |~

Restart the computer.

790

EI00000000067 06/2017

Generic - Troubleshooting and FAQ

How Can | Reduce the Memory Consumption of SoMachine?

Overview

This chapter provides tips that may help to reduce the memory consumption of the SoMachine
process on your system.

Splitting up Your SoMachine Project

If your SoMachine project consists of several independent parts, for example, independent root
devices (controller or panel), you can split up the project and create independent SoMachine
projects for each root device. These smaller SoMachine projects then require less memory each.

Closing SoMachine Editors

Close each SoMachine editor after you have made the respective settings because every open
editor consumes memory space.

How Can | Increase the Build-Time Performance of SoMachine?

Best Practices

The list of best practices may help you to avoid a slow performance when working with SoMachine:

o Verify that the hardware of the PC meets the system requirements (see SoMachine,
Introduction).

e Use a Solid State Drive (SSD) and verify that sufficient memory space is available. Contact your
IT administration for further details.

e Consider uninstalling components that you do not need via the SoMachine Configuration
Manager.

e If you are using Vijeo-Designer integrated in SoMachine, consider to disable the automatic
symbol export function. To achieve this, activate the option Disable automatic symbol export in
the SoMachine Logic Builder Options — Vijeo-Designer dialog box (see page 4856).

e Consider activating the option Disable undo after deleting a DTM (performance optimization) in
the SoMachine Logic Builder Options - FDT Options dialog box (see SoMachine, Menu
Commands, Online Help) if this function is not frequently used.

e Avoid large POUs. SoMachine has no limit for the size of POUs programmed in graphical
languages like LD. Nevertheless, it is a best practice to call POUs in sequences instead of
creating one large POU.

EI00000000067 06/2017 791

Generic - Troubleshooting and FAQ

What Can | Do in Case of Issues with Modbus I0Scanner on Serial Line?

Overview

This section provides instructions that may help you to solve issues that were detected when using
Modbus I0Scanner on a Serial Line.

Exception State of the Application

A Modbus I0Scanner on a Serial Line is configured on your controller and one of the Modbus slave
devices is disconnected.

If the application goes to exception state after the download or after a reset of the controller,
proceed as follows:

Step Action
1 Verify the integrity of your cable.
2 Verify that your cable is correctly connected between the controller and the Modbus Serial
slave.
3 Reset your controller.

Error Detected While Using Modbus |I0Scanner on a Serial Line

If... Then ...

an error is detected while using Modbus IOScanner | the xEr r or flag associated to the slave that has been

on a Serial Line detected as generating or causing the error is set to
TRUE.

the communication is NOT stopped (the controller still
tries to connect the slave).

the parameter
ui Nunber OF Communi cat i ngSl aves is decreased
and xAl | Sl avesKis set to FALSE.

After the communication to the slave has been re-established, a rising edge on the xReset entry
of the slave is required:

e ToresetxError.

e To update the values of ui Nunber Of Conmuni cat i ngSl aves.

e To update the values of XAl | SI avesOK.

792 EI00000000067 06/2017

Generic - Troubleshooting and FAQ

What Can | Do If My Network Variables List (NVL) Communication Has Been
Suspended?

Problem
The NVL communication has been suspended after an online change.

Solution
Restart the target controller.

What Can | Do If a Multiple Download is Unsuccessful on an HMI Controller?

Problem
A multiple download is not successfully completed on an HMI controller with an outdated firmware.

Solution

Restart the multiple download or execute the Runtime Installer in SoMachine Central via Tool
Access Bar - Maintenance —» Download Firmware HMI.

EI00000000067 06/2017 793

Generic - Troubleshooting and FAQ

794 EI00000000067 06/2017

Chapter 36

Accessing Controllers - Troubleshooting and FAQ

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
36.1 Troubleshooting: Accessing New Controllers 796
36.2 FAQ - What Can | Do in Case of Connection Problems With the Controller? 801
EIO0000000067 06/2017 795

Accessing Controllers - Troubleshooting and FAQ

Section 36.1

Troubleshooting: Accessing New Controllers

What Is in This Section?
This section contains the following topics:

Topic Page
Accessing New Controllers 797
Connecting via IP Address and Address Information 799

796

EI00000000067 06/2017

Accessing Controllers - Troubleshooting and FAQ

Accessing New Controllers

Overview

To access a new controller, adapt the network settings of the controller to the network of your
SoMachine PC. This chapter provides a step-by-step example.

Example

This example shows the steps to access an LMC058 with IP address 192.168.1.33 from a PC with
IP address 192.168.1.10 residing in subnet 255.255.255.0.

Step

Action

1

Connect the controller directly to the PC running SoMachine or to the network of the PC using
an Ethernet cable.

In SoMachine, open the Controller selection view of the device editor (see page 98).
Result: The LMCO058 controller will be included in the list.

] My Controller % e

-

| Configuration T Controller selection

PLC settings [Files [Log “Applicalions Users and Groups }Access e

c, 9 @J *x L 9

(@ Controller ProjectName IP_Address » IP_SubNetMask = NodeName
in !ETM241CECZ4T U TM241 192.168.1.30 256.255.255.0 TM241CEC:
4L @LMCOSBLHM LMC0586_MODEM_TDW33 ~ 192.168.1.33 255.255.255.0 LMCOS8BLF:
a B LMC201C SL LMC x00C V01.36.3... 192.168.1.20 255.255.0.0 Controller C

J

Connection Mode: Nodename:

|:| Secure online made Nodename v | \Contro\ler (192.168.1.20)

EI00000000067 06/2017

797

Accessing Controllers - Troubleshooting and FAQ

Step Action
3 To adapt the communication settings of the controller, right-click the controller in the Controller
selection list, and execute the command Process communication settings... from the context
menu.

Result: The Process communication settings dialog box opens.

4 In the Process communication settings dialog box, enter a free IP address available in your
network.

When configuring IP addresses, refer to the hazard message below.

Click OK to confirm the Process communication settings dialog box.

In the Controller selection view, connect to the controller.

Carefully manage the IP addresses because each device on the network requires a unique
address. Having multiple devices with the same IP address can cause unintended operation of
your network and associated equipment.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Verify that all devices have unique addresses.

Obtain your IP address from your system administrator.

Confirm that the device’s IP address is unique before placing the system into service.

Do not assign the same IP address to any other equipment on the network.

Update the IP address after cloning any application that includes Ethernet communications to
a unique address.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Some controllers support a parameter that helps to prevent them from being remotely
accessed (RemoteCommunicationAccess parameter of the LMC «0+C controllers.

798 EI00000000067 06/2017

Accessing Controllers - Troubleshooting and FAQ

Connecting via IP Address and Address Information

Overview

The used communication protocol offers a mechanism to connect to a controller independent of
the type of connection. For example, this allows access to a target controller that is connected via
Ethernet to another hop controller that is connected via USB to the PC itself.

\4

B |
N '

PC

hop controller
target controller
USB

Ethernet

AL wWON =

Address Information

In the example, USB uses a different protocol. It is therefore normally not possible to use the
IP address to address the target controller. Instead, the routing information is used that describes
the way to connect to the target controller over 1 or more hops.

This routing information is displayed as a tooltip of an entry of the controller list (in the following
example [Address] 0000.2001):

192.168.1

UECRNRTY TM241CEC24T_U TM241

— E LMCO3{ [Controller] TM241CEC24T U
[TimeSinceBoot] 05h 25m 25s
o [e2 [IP_Address] 192.168.1.30
[FW_Version] V2.0.40.18
[ProjectName] TM241
[ProjectDate] 2013-06-19-22:54:05
[NodeNAme] TM241CEC24T_U@001122334475
[CatridgelDs] none
[Address] 0000.2001

EI00000000067 06/2017 799

Accessing Controllers - Troubleshooting and FAQ

NOTE: Since this address only describes the way the controller is connected, it can change upon
each modification of the local PCs or the network adapter settings of the hop controller. For
example, upon activating or deactivating network adapters or upon starting/stopping services that
use network adapters. The address to a specific target can differ from different sending PCs.

Nodename

Since the Nodename of the controller is a stable identifier in the system, it is used to identify the
target.

If IP Address is selected as Connection Mode, it is tried to get the information from the Nodename
itself. Some controllers (such as LMC +0+C) create the Nodename automatically including the

IP address. You can also configure the Nodename by yourself (as described in the FAQ Why is
the Controller not Listed in the Controller Selection View? (see page 803)) to enable the system to
find a controller by its IP address. If the IP address is missing in the nodename, it is tried to get the
IP address from a controller. But not all devices or their current firmware version support the
service. In this case, use the Connection Mode Nodename to connect or set a device name that
includes the IP address in brackets. For example MyDevice (192.168.1.30).

800

EI00000000067 06/2017

Accessing Controllers - Troubleshooting and FAQ

Section 36.2

FAQ - What Can | Do in Case of Connection Problems With the
Controller?

What Is in This Section?
This section contains the following topics:

Topic Page
FAQ - Why is a Connection to the Controller not Possible? 802
FAQ - Why has the Communication Between PC and Controller been Interrupted? 805

EI00000000067 06/2017 801

Accessing Controllers - Troubleshooting and FAQ

FAQ - Why is a Connection to the Controller not Possible?

Why is a Connection to the Controller not Possible Even Though the IP Address Seems to Fit?

If you have set the IP address of the controller as described in the Accessing New Controllers
chapter (see page 797), and you still cannot connect to the controller, the reason can be the subnet
mask. Since the used communication protocol requires an identical subnet mask on both the
sender and the receiver site, it may be possible that a ping to the controller is successful, but a
connection cannot be established.

In order to solve this issue, proceed as follows:

Step

Action

1

In SoMachine, open the Controller selection view of the device editor (see page 98).

2

To adapt the communication settings of the controller, right-click the controller in the Controller
selection list, and execute the command Process communication settings... from the context
menu.

Result: The Process communication settings dialog box opens.

Adapt the Subnet mask configured for the controller exactly to the subnet mask of your
SoMachine PC.

Example:

Change 255.255.0.0 to 255.255.255.0.

NOTE: After you have changed the Connection Mode in the Controller selection dialog box, it may
be required to perform the login procedure twice to gain access to the selected controller.

Why is a Login to a Controller not Possible?

For communications between an application (such as SoMachine Central, SoMachine Logic
Builder, Controller Assistant) and a controller, a running SoMachine gateway is required. If you
attempt to login to a controller, the application automatically starts the active SoMachine gateway.
If SoMachine has not been started with (Windows) administrator rights, the start of the gateway
cannot be executed.

In order to solve this issue, proceed as follows:

Step Action

1 In the Windows notification area, verify whether the Gateway Management Console icon is
displayed in red to indicate that the selected gateway is stopped: .

2 Right-click the Gateway Management Console icon, and execute the command Start Gateway
from the context menu.
Result: The selected gateway service is started.

3 In the Windows notification area, verify whether the Gateway Management Console icon is
displayed in green to indicate that the selected gateway is running:

4 Start another attempt to log in to the controller.

802

EI00000000067 06/2017

Accessing Controllers - Troubleshooting and FAQ

Why is the Controller not Listed in the Communication Settings View?

If you establish a connection between the controller and the SoMachine PC by using the active
path, then the Communication Settings view is displayed in the device editor (see page 7713). This
is the default setting for SoMachine V3.1 and earlier versions.

If the controller of your choice is not displayed in the Communication Settings view, you can
temporarily switch to connection establishment via IP address as follows:

Step Action

Open the Project Settings -~ Communication settings dialog box from the Project menu.

2 Select the option Dial up via “IP-Address” and confirm your setting by clicking OK.

Adapt the network settings of the controller to the network of your SoMachine PC as described
in the Accessing New Controllers chapter (see page 797).

4 Set connection establishment back to active path.
The controller should now be displayed in the Communication Settings view.

Why is the Controller not Listed in the Controller Selection View?

If you do not find your controller in the list of the Controller selection view of the device editor
(see page 98), the reason can be that 2 different devices are assigned the same Nodename. If 2
devices are assigned the same Nodename, only 1 of these devices is listed in the Controller
selection list.

You must carefully manage the Nodename because each device on the network requires a unique
Nodename. Having multiple devices with the same Nodename can cause unpredictable operation
of your network and associated equipment.

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Verify that all devices have unique Nodenames before placing the system into service.
e Update the Nodename after cloning any application that includes Ethernet communications to
a unique Nodename.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EI00000000067 06/2017 803

Accessing Controllers - Troubleshooting and FAQ

To change the Nodename of a device, proceed as follows:

Step

Action

1

Right-click the device that is assigned a double Nodename in the Controller selection list and
execute the command Change device name from the context menu.
Result: The Change device name dialog box is displayed.

Change device name

' The device name must be unique in the current network!
- Otherwise it won't be listed correctly and connecting can lead to
unexpected behaviour.

Device name

Current: TM241CEC24T_U @001122334475

New: | MyDevice (192.168.1.30) |

OK][Cancel]

In the Change device name dialog box, enter a unique Nodename in the New text box.

Click OK to confirm and to close the Change device name dialog box.

In the Controller selection view, click the Update button to refresh the list of devices.
Result: The second device with the same Nodename of the device you just have changed will
now be displayed in the list.

Repeat steps 1...4 until you have eliminated any double Nodenames.

NOTE: Some controllers, such as the LMC +0+C controllers, create a Nodename automatically out
of the device name of the project after a project download and the IP address (for example, MyLMC
(192.168.1.30)). This automatic name overwrites the Nodename you assigned if any changes are
executed on the controller.

804

EI00000000067 06/2017

Accessing Controllers - Troubleshooting and FAQ

FAQ - Why has the Communication Between PC and Controller been Interrupted?

Why has the Communication Between PC and Controller been Interrupted?
It may be necessary to restart the gateway as follows:

Step Action
1
Right-click the Gateway Tray Application icon in the Windows task bar
2 Execute the command Restart Gateway from the context menu.

EI00000000067 06/2017

805

Accessing Controllers - Troubleshooting and FAQ

806 EI00000000067 06/2017

Appendices

What Is in This Appendix?
The appendix contains the following chapters:

Chapter Chapter Name Page
A Network Communication 809
B Usage of the OPC Server 3 817
C Script Language 831
D User Management for Soft PLC 877
E Controller Feature Sets for Migration 887

EIO0000000067 06/2017

807

808 EI00000000067 06/2017

Appendix A

Network Communication

What Is in This Chapter?

This chapter contains the following topics:

Topic Page
Network Topology 810
Addressing and Routing 811
Structure of Addresses 813
EIO0000000067 06/2017 809

Network Communication

Network Topology

Overview

The SoMachine control network is a system programmed to configure itself (address assignment)
to support transparent communication media and to route packets between different networks. The
routing mechanism is simple enough that any node in the network, that is, even nodes with low
resources, are able to reroute packets. So, large routing tables, complex calculations, or requests
during runtime are avoided.

The control network is configured hierarchically, that is, each node has one parent node and an
arbitrary number of children. A node without a parent is referred to as top-level node. Cycles are
not permitted, that is, a control network has a tree structure.

Parent-child relationships arise from the specification of network segments. A network segment
corresponds, for example, to a local Ethernet or a serial point-to-point connection. It distinguishes
between the main network (mainnet) and the subnetworks (subnet). Each node has, at most, one
main network, wherein it expects its parent. For each node, an arbitrary number of subnets can be
configured. The node acts as parent for all of them.

If a network segment had been defined simultaneously as subnet of several nodes, the network
would have several parents. However, the resulting configuration will be invalid, as each network
segment is allowed to have one single parent only.

810

EI00000000067 06/2017

Network Communication

Addressing and Routing

Overview

Addressing maps the topology of the control network to unique addresses. A node address
(see page 8174)is built up hierarchically.

For each network connection, a local address identifying the node uniquely within its respective
local network is allocated by the relevant block driver. For the entire node address, this local
address is preceded by the subnet index the local network is assigned to by the parent.
Furthermore, it must be preceded by the node address of its parent.

The length of the subnet index (in bit) is determined by the device, whereas the length of the local
address is determined by the network type.

A node without a main network is a top-level node with address 0. A node with a main network that

does not contain a parent is also a top-level node and will be assigned to its local address in the
main network.

Example: Main net and sub nets

FostPC
IP:192.168.100.212

212
Ethernet
PLCT CZ | B 9= FLCE
IP:192.163.100.122 IP:192.168.100.124 IP:192.168.100.123 IP:192.168.100.125
122 swo 124 123 w0 st 125
Seriel L SERCOS
CAN . O ‘ N, [DrieTldZ
#| ox00781002

|

|

|

[}

\ 4 |Dmel:ld

b
McroPLC1: K 1 \ /|0

0x007B1004

EI00000000067 06/2017

811

Network Communication

In the example, the addresses of the child nodes are given in hexadecimal representation. The first
4 digits represent the address of the particular parent within the main net. For example,
0x007A=122 for PLC1. The next byte (displayed in blue) is reserved for the subnet index and this
is followed by the local address, for example, C=12 for node ID 12.

Due to the structuring of the address, the routing algorithm can be kept relatively lean. For
example, no routing tables are necessary. Information is required locally: on the own address and
on the address of the parent node.

Thereon, a node may properly handle data packets.

e If the target address equals the address of the current node, it is determined as receiver.

e Ifthe target address starts with the address of the current node, the packet is intended for a child
or descendant of the node and has to be forwarded.

e Else, the receiver is not a descendant of the current node. The packet has to be forwarded to
the own parent.

Relative Addressing

Relative addressing is a special feature. Relative addresses (see page 875) do not contain the
node number of the receiver node, but directly describe the path from the sender to the receiver.
The principle is similar to a relative path in the file system: The address consists of the number of
steps the packet has to move up, that is, to the next respective parent, and the subsequent path
down to the target node.

The advantage of relative addressing is that 2 nodes within the same subtree are able to continue
the communication when the entire subtree is moved to another position within the overall control
network. While the absolute node addresses will change due to such a relocation, the relative
addresses are still valid.

Determination of Addresses

A node attempts to determine its own address as that coming from its parent or whether itself is a
top-level node. For this purpose, a node will send an address determination via a broadcast
message to its main network during boot-up. As long as this message is not responded to, the node
considers itself to be a top-level node, although it will continue to try to detect a parent node. A
parent node will respond by an address notification. Thereon, the node will complete its own
address and pass it to the subnets.

Address determination can be executed at bootup or on request of the programming PC.

812 EI00000000067 06/2017

Network Communication

Structure of Addresses

Overview

Below is a detailed description on the structure of the following address types:
Network Addresses (see page 813)

Node Addresses (see page 874)

Absolute and Relative Addresses (see page 815)

Broadcast Addresses (see page 876)

Network Addresses

Network addresses represent a mapping of addresses of a network type (for example,

IP addresses) to logical addresses within a control network. This mapping is handled by the
respective block driver. Within an Ethernet with class C IP addresses, the first 3 bytes of the

IP address are the same for all network devices. Therefore, the last 8 bits of the IP address suffice
as a network address since they allow unambiguous mapping between the 2 addresses at the
block driver.

A node has separate network addresses for each network connection. Different network
connections may have the same network address since this address has to be unique only locally
for each network connection.

Terminology: In general, the network address of a node without a statement of the network
connection refers to the network address in the main network.

The length of a network address is specified in bits and can be chosen by the block driver as
required. Within a network segment, the same length must be used for all nodes.

A network address is represented as an array of bytes with the following coding:

e Length of the network address: n bits

e Required bytes: b= (n+7)DIV 8

e The (n MOD 8) lowest-order bits of the first byte and all remaining (n DIV 8) bytes are used for
the network address.

Example - Network Address
Length: 11 bit
Address: 111 1000 1100

Example for network address coding

[Byte [0 1
Bit 716]5 4 321 Jollz]6]5]4]3]2]1]0
11 [t oo o 11 o]0
ﬁ_/
Reserved (0)

EI00000000067 06/2017 813

Network Communication

Node Addresses

The node address indicates the absolute address of a node within a control network, and therefore,
is unique within the whole tree. The address consists of up to 15 address components, each
consisting of 2 bytes. The lower a node is located within the network hierarchy, the longer its
address.

The node address consists of the partial addresses of all predecessors of the node and the node
itself. Each partial address consists of one or several address components. The length is therefore
always a multiple of 2. The partial address of a node is formed from the network address of the
node in its main network and the subnet index of the main network in the parent node. The bits
required for the subnet index are determined by the router of the parent node. Filler bits are
inserted between the subnet index and the network address in order to ensure that the length of
the partial address is a multiple of 2 bytes.

Special cases:

e Node has no main network: This means that there is no subnet index nor a network address in
the main network. In this case, the address is set to 0x0000.

e Node with main network but without parent: In this case, a subnet index with 0-bit length is
assumed. The partial address corresponds to the network address, supplemented by filler bits
if required.

Example - node address

|Main network

A Network address: 0x274 (12 bits)
Length of subnet index: 4 bits

Main network
B Network address: 0x10C, length 17 bits

Partial address of B:
0x1000010C:

Node address of B: 0274 : 1000 : 010C

The node address representation is always hexadecimal. The individual address components

(2 bytes in each case) are separated by a colon (:). The bytes within a component display
sequentially without a separator (see example above). Since this represents a byte array and not
a 16-bit value, the components are not displayed in little-endian format. For manually entered
addresses missing digits in an address component are filled with leading zeros from the left:

274 = 0274. To improve readability, the output should always include the leading zeros.

814

EI00000000067 06/2017

Network Communication

Absolute and Relative Addresses

Communication between 2 nodes can be based on relative or absolute addresses. Absolute
addresses are identical to node addresses. Relative addresses specify a path from the sender to
the receiver. They consist of an address offset and a descending path to the receiver.

The (negative) address offset describes the number of address components that a packet has to
be handed upwards in the tree before it can be handed down again from a common parent. Since
nodes can use partial addresses consisting of more than one address component, the number of
parent nodes to be passed is always = the address offset. This means that the demarcation
between parent nodes is no longer unambiguous. This is why the common initial part of the
addresses of the communication partners is used as parent address. Each address component is
counted as an upward step, irrespective of the actual parent nodes. Any error introduced by these
assumptions can be detected by the respective parent node and must be handled correctly by the
node.

On arrival at the common parent, the relative path (an array of address components) is then
followed downwards in the normal way.

Formal: The node address of the receiver is formed by removing the last address offset
components from the node address of the sender and appending the relative path to the remaining
address.

Example

Within the example, a letter will represent an address component, whereas a point will separate
the particular nodes. Since a node is allowed to have multiple address components, it is allowed
to have multiple letters within the example.

Node A: a.bc.d.ef.g
Node B: a.bc.i.j.kl.m

e Address of the lowest common parent: a.bc
e Relative address from A to B: -4/i.j.kl.m (The number -4 results from the 4 components d, e, f,
and g. Therefore the packet has to be raised).

The relative address has to be adjusted with each pass through an intermediate node. It is
sufficient to adjust the address offset. This is always done by the parent node: If a node receives
a packet from one of its subnets, the address offset is increased by the length of the address
component of this subnet.

e |f the new address offset is < 0, the packet must be forwarded to the parent node.

e |f the address offset 1 = 0, the packet must be forwarded to the child node of the local address
of which is located at the position described by the address offset within the relative address.
First, the address offset must be increased by the length of the local address of the child node
to ensure that the node sees a correct address.

EI00000000067 06/2017 815

Network Communication

A special situation arises when the error described above occurs while determining the common
parent. In this case, the address offset at the “real” common parent is negative, but the magnitude
is greater than the length of the partial address of the subnet the packet originates from. The node
must detect this case, calculate the local address of the next child node based on the address of
the previous node and the length difference, and adapt the address offset such that the next node
will see a correct relative address. Also, the address components themselves remain unchanged
and only the address offset will be modified.

Broadcast Addresses

There are 2 types of broadcasts - global and local ones. A global broadcast is sent to all nodes
within a control network. The empty node address (length 0) is reserved for this purpose.

Local broadcasts are sent to all devices of a network segment. For this purpose, all bits of the
network address are set to 1. This is possible both in relative and in absolute addresses.

A block driver must be able to handle both broadcast addresses, that is, empty network addresses
and network addresses with all bits set to 1, must be interpreted and sent as broadcast.

816 EI00000000067 06/2017

Appendix B
Usage of the OPC Server 3

Overview

The description provided in this chapter is dedicated to persons experienced in OPC server
technology.

The file OPC_V3_how _to_use_E.pdf, that is automatically installed with SoMachine in the
directory C:IProgram Files|Schneider ElectriclSoMachine OPCServer provides a more detailed
description of how to configure the OPC server.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
General Information 818
Declaring a Variable to be Used With OPC 820
OPC Server Configuration 823
Usage of the CoDeSys OPC Server 830

EI00000000067 06/2017 817

Usage of the OPC Server 3

General Information

What is OPC?

OPC is a standardized interface for access to process data. It is based on the Microsoft standard
COM/DCOM2 (Component Object Model / Distributed COM) that has been extended due to the

requirements of data access in automation, where the interface is mainly used to read data from
or write data to the controller.

Examples of typical OPC clients
e visualizations
e programs whose purpose is to collect operating data

Examples of typical providers of OPC servers
e controller systems
e field bus interface cards

What is an OPC Server?

The OPC server is an executable program that is started automatically during the establishment of
a connection between client and controller. Hence, the OPC server is able to inform the client about
changed variable values or states.

The OPC server provides all variables (referred to as Items in OPC) that are available on the
controller (Item Pool or Address Space). These items are managed within a Data Cache that helps
to ensure fast access to their values. Also possible is a direct, not cached access to the items of
the controller.

In the OPC server the items can be organized in so-called Groups (Private and Public).

The private groups can be composed in the client arbitrarily from particular items. Initially they do
not effect the groupings in the OPC server, but if necessary can be transformed to Public Groups.
Working with Private Groups, for example, is useful in order to be able to activate or deactivate
certain groups of variables with just one single command, depending on whether they should be
accessible or not.

Grouped data should be read from the OPC server coherently, that is, all variables should be read
at the same time. However, this is not always possible in case of target systems with restricted
communication buffers.

Due to the characteristics of COM / DCOM it is possible to access an OPC running on another
computer. It is also allowed that more than one client accesses the data source at the same time.
The applicability of different languages (C++, Visual Basic, Delphi, Java) is another benefit of the
concept.

818

EI00000000067 06/2017

Usage of the OPC Server 3

Overview of the CoDeSys OPC Server 3

The CoDeSys OPC server is based on the PLCHandler of 3S - Smart Software Solutions GmbH.
This communication module permits a direct communication to those controllers that are
programmable with CoDeSys.

The OPC server V.3 or later supports the following OPC specifications:
OPC Common Definitions and Interfaces Version 1.0

Data Access Custom Interface Standard Version 1.0

Data Access Custom Interface Standard Version 2.05A

Data Access Custom Interface Standard Version 3.0

Data Access Automation Interface Standard Version 2.0

Communication between OPC server and controller can be carried out via the following interface:
e Gateway V3 (parameter Interface -~ GATEWAY3 in the OPC configuration tool (see page 825))

NOTE: You can configure the OPC server for simulation with the parameter Interface -
SIMULATIONS, but the values of the configured variables cannot be read or written.

EI00000000067 06/2017 819

Usage of the OPC Server 3

Declaring a Variable to be Used With OPC

Steps to Declare a Variable

Declare a variable to be used with OPC as follows:

Step Action Example
1 Create a project. ExampleOPC
2 Add and select a controller using the Add Device command. -
Configure the name of the device by clicking the device node twice to make | MyPLCexample
it editable.
4 Create a PROGRAM in your application by right-clicking the Application item | Example program:
and executing the command Add Object -~ POU.... Increment a UINT variable:
VARIABLEEXAMPLE
Configure the name of the PROGRAM. MyPOUexample
Double-click a task and associate the PROGRAM to the task. Task example: MAST
PROGRAM example:
MyPOUexample
7 Execute the Build All command from the Build menu and verify there isno |-
error detected during execution of the Build command.
File Edit View Project Build Online Debug/Watch Tools Window Help
HE oo tBBAX AL 4%%% B 895 & &
Devices v 2 X |E] MyPOUL ple [MyPLCq ple: PLC Logic: Applicati {
_i' % Sortby - 21 sortorder - ,’.3"’ Find PROGRAM MyPOUexample
[=] - £} ExampleOPC = M . .
EJ '_j MyPLCexample ; o VZRARIABLEEXAMPLE. UINT;
[=] 8 PLC Logic 5 =
[=} €3 Application
@ oL el
Q Library Manager 1 VariableExample: =VariableExample+l;
8] MyPOUexample (PRG) |
[=) (&3 Task Configuration
£ MAsT
820 EIO0000000067 06/2017

Usage of the OPC Server 3

Step Action Example
8 Create a Symbol configuration object in your application by right-clicking the | -
Application item and executing the command Add Object - Symbol
configuration....
File Edit View Project Build Online Debug/Watch Tools Window Help
H &8 o - %8@E X M e GE s o
S
ivnces > : B Adi ject
1] % Sort by ~ Ql Sortorder ¥ 44" Find
29 ExampleOPC £ Applcaton Name:
= _'dMyPLCexampIe “) -
_) @ CAM table Symbol configuration
[=}- 2l PLC Logic
(=) £ Application 6 CNC program
@ov 3 Data Server
B Library Manager 1) DatalogManager
---5] MyPOUexample (PRG) i |2 20Ut
=@ Za;»k Configuration & Global Variable List
© MAST |_:| Image Pool
>0 Interface
? Persistent Variables
&7 rou
:g] POUs for implicit checks
ﬂ Recipe Manager
" Relocation Table
i1 confsion
L_'] Text List
alr...
9 In the Add Symbol configuration dialog box click Open. -
10 Click the Refresh link. -
1 Expand the Variables item in the Available variables list. -
12 Select the variable you want to share with your OPC client from your Variable example:
program. VARIABLEEXAMPLE
Program example:
MyPOUexample
EI00000000067 06/2017 821

Usage of the OPC Server 3

Step Action Example
13 Click the > button to send the variable to a shared data base to make it -
accessible for the OPC client.
File Edit View Project Build Online Debug/Watch Tools Window Help
o & R TR T]
Devices w % X |/ 3)MyPOUexample [MyPLCexample: PLC Logic: Application] / ® & Symbol configuration [MyPLCexample:
Y % sotby - 24 Sotorder -+ g4 Find
r- Available variables Refresh Selected variables
& E’fa’wzfé’:mme Wicosrisy | |AaEBe e Sl fns Aocess
) B PLC Logic (=)) Variables =) QVar\ab\es
T 50 Application [#) &) loConfig_Globals 2 (=} 2) MyPOUexample
I X8 (=) 2) MyPOUexample IZ] # VARIABLEEXAMPLE L]
@0 Library Manager # VARIABLEEXAMPLE *2 Data Types
2) MyPOUexample (PRG) [+ {} lecVarAccessLibrary <
* 2 Symbol configuration [} {} loStandard
[=} @ Task Configuration &0 sec «
& MAST h
& Do [+ -*2 Data Types
14 Execute the Build All command from the Build menu and verify thereisno |-
error detected during execution of the Build command.
15 Close the tab Symbol configuration. Remark:
In the directory where you
have stored your project
you will find an XML file
which includes a list of the
variables which are
accessible for the OPC
client.
16 Connect your PC to your controller by using the Communication Setting tab. | —
17 Download the application. -
18 Start the application. -
File Edt View Prowect Build Onfine DebugWatch Tools Window Help
o & N W Y
Devices - 3 % 4] MyPOUexample [MyPLCexample PLC logic: Application] 3 MyPLCexample
T ¥% Sotby - £ Sotoder - e Find
= Communication Settings | Applications | Files | Log [PLC setings | Users and Groups | Aocess Rights
= (§ ExampieOPC
= 4 MyPLCexampls [connacted] (ATV-IMC. Select the network palh to the conroler:
= 8 PLCLogic Gateway-1:007F §200.0001 v
= icati - . -
= :’zw et B gy Galeway-1 "w‘ﬁc":x’:;w
Library Manager =R, P07
2 MyPOUexample (FRG) 4 & MyPLCexample [007F.6200.0001] (active) |Tarpet-Typs:

XML File Listing the Variables Accessible for the OPC Client

In the directory where you have stored your project, an XML file is automatically created which
describes the list of the variables which are accessible for the OPC client.

822

EI00000000067 06/2017

Usage of the OPC Server 3

Variables Mapped to %

Variables mapped to % selected in a Symbol configuration are not automatically available inside
an OPC client.

Add the path to the variable manually.

Example:

M251. Appl i cati on. | OCONFI G_GLOBALS_MAPPI NG t enrper at ur eLabo
OPC Server Configuration

Starting the OPC Configuration Tool
Configure the OPC server and link it with the project you have created, as follows:

Step Action

1 Go to the directory:
C:|Program Files|Schneider ElectriclSoMachine OPCServer

Double-click the: OPCConfig.exefile

The configuration tool OPCconfig.exe allows to generate an INI file which is
needed to initialize the OPC server with the desired parameters for the
communication between the CoDeSys project and the controller(s).

OPC Configuration Tool
The configuration tool contains the following elements:
e amenu bar

e a tree view for mapping the assignments of one or several controllers to the server
e a configuration dialog that corresponds to the currently selected tree entry

EI00000000067 06/2017 823

Usage of the OPC Server 3

After having started the tool, it will appear as follows, containing the default common settings:

& OPCConfig - (no ini-file opened)

File Edit ?
[=)- ™ Server

Settings for OPC Server

Update Rate (ms): 200
Public Groups:
Sync Init: v

Log Events:

File Menu of the OPC Configuration Tool

The File menu provides commands for loading and saving the configuration files to / from the
configuration tool:

Command Shortcuts Description

Open CTRL+O For editing an existing configuration.
The default dialog box for opening a file opens. Select an already existing
INI file. The filter is automatically set to OPCconfg Files *.ini. The
configuration described in the chosen INI file will be loaded to the
configuration tool.

New CTRL+N For creating a new configuration.
If a configuration is open, you will be asked whether it should be saved
before being closed. Then the configuration tool will show the default
settings.

Save CTRL+S Saves the current configuration to the currently loaded INI file.

Save as - Saves the current configuration to a file by another name that you can

specify in the default dialog box.

<n> recently
opened INI-files

List of the INI files which have been edited since having last started the
tool.
You can select a file to get it reloaded in the configuration tool.

Exit

Terminates the tool.
If any changes to the current configuration have not been saved, you will
be asked to do so.

824

EI00000000067 06/2017

Usage of the OPC Server 3

Edit Menu of the OPC Configuration Tool

The Edit menu provides the commands for editing the configuration tree in the left part of the
configurator.
Command Shortcuts Description
New CTRL+G A Redundant Group entry will be added below Server. If there are already
Redundancygrou controller or Redundant Groups listed in the tree, the new Redundant
p Group will be appended at the end. By default, a new entry is named
Redundant<n>, with n being a consecutive number starting with 1.
To rename the entry, select it in the tree and either use the command Edit
- Rename PLC or click it twice to make it editable.
Append PLC CTRL+O A controller entry will be added below Server. A new controller will be
appended at the end of the existing tree. By default, a new entry is named
PLC<n>, with n being a consecutive number starting with 1.
To rename the entry, select it in the tree and either use the command Edit
— Rename PLC or click it twice to make it editable.
Delete PLC CTRL+D The currently selected controller entry will be removed from the
configuration tree.
Rename PLC CTRL+R The currently selected controller entry can be renamed.
Reset PLC CTRL+Z The settings of the currently selected controller entry will be reset to the
default values defined in the PLC Default Settings.
PLC Default - not yet available
Settings...
Configuring the OPC Server

Configure the OPC server as follows:

Step

Action

1

Right-click the Server icon and execute the Append PLC command:

3 OPCConfig — (no ini-file opened)

File Edit ?

[+ = E‘m a | Settinas for OPC Server
New Redundancygroup Strg+G

Append PLC Strg+A

{PLC Strg+Z Update Rate [msl; |200
PLC Default Settings... Strg+V Public Groups:
Sync Init: v

Log Events:

EI00000000067 06/2017 825

Usage of the OPC Server 3

Step Action
2 Select GATEWAY3 from the Interface list.
) OPCConfig - (noini-file opened)
File Edit ?
o = Server |Settings for PLC1
=GE Interface: | GATEWAY3 -
Connection ’ J
Project name:
Timeout (ms): {10000
Number of Tries: |3
Buffer Size (Byte): |0
Wait Time(s): |10
Reconnect Time(s): |15
Active: v
Motorola Byteorder:
No Login-Service:
Logging
v Enable logging (Defaultevents)
IV Log Additional Events
~ Add Debug Events (slow)
3 Double-click the PLC1 item to rename it (for example: MyPLCexample).

) OPCConfig— (no ini-file opened)

File Edit ?
[=)- = Server Settings for MyPLCexample
e) FLCeranle Interface: | GATEWAY3 =
¢ Connection

Project name:

826

EI00000000067 06/2017

Usage of the OPC Server 3

Step Action
4 Double-click the Connection icon and click the Edit button.
Result: The CoDeSys address of PLC dialog box will be displayed:
| { |
=™ Server " [Settings for connection to MyPLCg

CoDeSys address of PLC

(=) (3 MyPLCexample

o™ Connection Gateway
IP-Address | localhost
Gateway: Unknown Port 1217

Device: CoDeSys PLC address [{Iil}

Parameter |Value | Comment

5 To be able to access your variable from your OPC client, enter the address of the controller (for example:
MyPLCexample). The address is given in the SoMachine Communication Setting dialog box of your
project.

The address can be physical or logical. To avoid address value reconfigurations when there are
many devices in your project, you should use logical addresses.

Logical Addressing
In our example the address is: MyPLCexample.

Enter directly the Node name given in the Communication Setting tab of MyPLCexample in your
project. To configure the Node name, click the Edit button.

| Communication Settings | Applications | Files | Log | PLC settings | Users and Groups | Access Rights | Status | Information

Select the network path to the controller:

Gateway-1:007F.6200.0001 ~ Set active path
(= . Node name: a
’go Cateway-1 MyPLCexample
=R e [007F] TargelTyps: Add gateway...
20 MyPLCexample [007F.6200.0001] \ 16#1000 Add device...
Address:
007F.6200.0001 !
S Edit...

EI00000000067 06/2017 827

Usage of the OPC Server 3

CoDeSys address of PLC @

Gateway ’TI

IP-Address [|ocalhost

Port 1217

CoDeSys PLC address

Physical Addressing
In our example the address is: 007F.6200.0001

Communicalion Setlings I Applications I Files I Log I PLC settings IUsers and Grc

Select the network path to the controller:
[Gateway-1:007F 6200.0001
= ‘-)'go Galeway-1
= :‘ o [007F]
s o MyPLCexample [007F.6200.0001] (active)

Proceed as follows:

Step Action

1 Take this address and configure the value of the CoDeSys address of PLC :

_[.':; ORCEONtGEICHARIogramIEES\Schineid el ectriciS oIV achine\CoDESSIORCISEIVerBIORCSEIVEri Nl

File Edit ?
[=- ™ Server Settings for connection to MyPL Gaxamalg
[=)-- i MyPLCexample CoDeSys address of PLC
.o Connection ~Gateway
IP-Address | localhost
Gateway: Tep/lp Port 1217
Device: CoDeSys PLC address [0IFEZOEMN
Parameter | Value | Comment

828

EI00000000067 06/2017

Usage of the OPC Server 3

Step Action

2 Click the OK button.
Result: The following dialog box will be displayed:

__:; OPCConfig - C:\Program Files\Schneider Electric\SoMachine\CoDeSys OPC Server 3\OPCServer.ini

File Edit ?
(=)™ Server
[=)--[3 MyPLCexample

.. 4 Connection

Settings for connection to MyPLCexample

Gateway: Tcpl/lp Address: localhost
Port: 1217

Device:

Parameter | Value | Comment

Address 007F.6200.0001 Address from CoDeSys V3 Device Scan

3 Open the menu File and execute the command Save As.
Click the OK button and the following dialog box will be displayed:
OPCCoNfig=CARIGOram Files\Sehneid rREIEBtHc\SoMacH e\ CODES B 0RC S erver8\ORCSEIverini
File Edit ?
=} !‘ Server Settings for connection to MyPLCexample
=@ MyPLCexample -E 1
"o Connection (e
Gateway: Tcp/lp Address: localhost
Port: 1217
Device:
| Parameter | Value | Comment |
|Address 007F.6200.0001 Address from CoDeSys V3 Device Scan
Save As
Save As : |5 CoDeSys OPC Server 3 ~| «= (& ¢ F3-
% OPCServer.ini
File Name : |
Type: |“OPCConfig Files (*.ini) ~| Cancel
4 Select the OPCServer.iniand click Save.
NOTE: Please note that the name of the file must be OPCServer.ini. Do not use another file name.
EIO0000000067 06/2017

829

Usage of the OPC Server 3

Usage of the CoDeSys OPC Server

Overview

After the installation of the OPC server it should be offered for selection by the OPC client (for
example visualization). The name of the OPC server is CoDeSys.OPC.DA.

The OPC server will be started automatically by the operating system as soon as a client
establishes a connection. The OPC server will terminate automatically as soon as the clients have
closed their connections to the server.

There will be no OPC server icon in the task bar. It will only appear in the Windows Task Manager
as a process.

Executing the OPC Client on a PC not Running SoMachine

To be able to execute the OPC client on a PC where SoMachine is not installed, proceed as
follows:
e Refer to the chapter /nstallation of the CoDeSys OPC Serverin the SoMachine /nstallation and
Configuration Manager User Guide, and execute the following actions:
O Install the gateway on the PC where the OPC client is running.
O Depending on the OPC client, you need to launch the WinCoDeSysOPC.exefile.

e Copy the file OPCServer.inito the same directory where the WinCoDeSysOPC.exe is installed.

830

EI00000000067 06/2017

Appendix C
Script Language

What Is in This Chapter?

This chapter contains the following sections:
Section Topic Page
CA1 General Information 832
C.2 Schneider Electric Script Engine Examples 842
C.3 CoDeSys Script Engine Examples 857

EIO0000000067 06/2017

831

Script Language

Section C.1

General Information

What Is in This Section?
This section contains the following topics:

Topic Page
Introduction 833
Executing Scripts 836
Best Practices 838
Reading .NET API Documentations 839
Entry Points 840

832

EI00000000067 06/2017

Script Language

Introduction

SoMachine Script Language

The SoMachine script language provides a powerful tool to automize sequences. You can start
single commands or complex command sequences directly from the SoMachine program
environment or from the Windows command line. The SoMachine script language is a modular
language based on IronPython 2.7. The IronPython interpreter is integrated into the SoMachine
development environment. This implementation allows using the extensive framework libraries of
Python. Among other things, they provide access to files in networks.

This chapter does not provide an example for each member of the Script Engine because this
would go beyond the scope of this document. The examples provided here have been selected
due to a certain logic that runs like a common thread through the API (Application Programming
Interface). If you follow this thread, you can find further members in the document Aufomation
Platform SDKthat is provided as online help on the CoDeSys webpage. You will then be able to
use these members in the same manner as described for the examples in this chapter.

Programming Environments for Python
The following free IDE (Integrated Development Environments) are available:

IDE Features
Notepad++ e Syntax highlighting.
o Universal editor.
IDLE (Integrated DeveLopment Environment) e Syntax highlighting.
Visual Studio plugin e Syntax highlighting.
o |IntelliSense for IronPython language constructs
(and .NET).

o |Integrated debugging function.
o Easy to use.
® Requires Visual Studio.

EI00000000067 06/2017 833

Script Language

IDE Features

PyCharm Syntax highlighting.

IntelliSense

Integrated debugging function.

Easy to use.

Standalone software product.

Free Community Edition version 3.0 and later

supporting numerous features such as:

O For pure Python coding and learning.

O Intelligent editor, with code completion, on-the-
fly error highlighting, auto-fixes, etc.

O Automated code refactorings and rich
navigation capabilities.

Q Integrated debugger and unit testing support.

O Native VCS (Version Control System)
integrations.

Q Customizable user interface and key-bindings,
with VIM (Vi IMproved text editor) emulation
available.

Notes on Compatibility

Python is a dynamic language used for a wide variety of purposes with an emphasis on clean and
expressive code. It allows the maximum flexibility for the developer, while maintaining readability
of code. IronPython brings Python to .NET and allows native access to the .NET framework and
classes. The implementation of the IronPyhon interpreter is based on Python version 2.7. There
are many free tutorials and online help systems available on the Internet.

NOTE: Version incompatibility to Python V3.x. Keep in mind that the language Python uses may
be upgraded, and if so, may delete old, deprecated language constructs. Therefore, write your
scripts in a forward-compatible way. This involves, for example, using the

from__future__ inport print_function statement.

For more information, refer directly to the websites

o hitp.//wiki.python.orq/

e htip.//docs.python.org/

Examples of new functions:

from__future__ inport print_function
from___future__ inport division

New Pyt hon print syntax

print('Hello Wrld!")

Division

Python 2 return an integer and rounds off
Python 3 returns a float

print(17/3)

834

EI00000000067 06/2017

http://wiki.python.org/
http://docs.python.org/

Script Language

Coding Conventions

In order to harmonize and facilitate the work of different programmers on the same programming
project, it makes sense to agree on a common programming style. Schneider Electric and
CoDeSys have agreed on accepting the Style Guide for Python Code. Any new scripts should also
comply with this standard.

For further information, refer to the Style Guide for Python Code at
http://www.python.org/dev/peps/pep-0008;.

Useful Links
For further information, refer to the following websites:

Official Python webpage providing a tutorial and language references at Affp./docs.python.org/.
Official Python blog at Atip.//blog.python.org/.

Beginner’s Guide to Python at http.//wiki.python.orq/moin/BeginnersGuide.
Wikipedia article Python (programming language) at

http.//en. wikipedia.org/wiki/Python (programming language).

Official CoDeSys forum providing examples and helpful information at
http.//forum.codesys.comny/.

IronPython interpreter at Afto./ironpython.codeplex.comy.

PyTools (Visual Studio plugin) at Atip./pytools.codeplex.comny/.

lronPython Cookbook at htip.//www.ironpython.info/index.php/Contents.
Free Galileo Openbook (only available in German) at
http.//openbook.galileocomputing.de/python/.

EI00000000067 06/2017 835

http://www.python.org/dev/peps/pep-0008/
http://docs.python.org/
http://blog.python.org/
http://wiki.python.org/moin/BeginnersGuide
http://en.wikipedia.org/wiki/Python_(programming language)
http://forum.codesys.com/
http://ironpython.codeplex.com/
http://pytools.codeplex.com/
http://www.ironpython.info/index.php/Contents
http://openbook.galileocomputing.de/python/

Script Language

Executing Scripts

Overview

You can execute script files (filename.py), containing a sequence of script commands, from the
SoMachine user interface.

For further information on running scripts form the SoMachine user interface, refer to the chapter
Script-Related Commands (see SoMachine, Menu Commands, Online Help).

Batch Files
Frequently used commands

Command Description

- REM or:: The line is a comment and will be ignored.
cd Changes to another directory.

echo of f The commands will not be displayed.

In order to prevent single commands from being displayed, insert an
@character in front of the command.

echo Displays a string or a variable on the programming console.

set Declares a variable and assigns a value to this variable.

> Writes the output to a file. If the file already exists, it will be
overwritten.

>> Appends the output to a file. If the file does not already exist, it will be
created.

Application example:

@cho off

REM Go to the directory where SoMachine is installed

cd "<Replace this with the path to the Central.exe, for exanple,
C.\Program Fil es (x86)\ Schnei der El ectric\SoMachi ne Software\>"

REM Run Central .exe with no graphical user interface and the full path
to the script

Central . exe --noui --runscript="<Replace this with the full file path
where the script is stored, for exanple, D:\MScripts\TestScript.py>"
pause

C# Console Application

Running the script in a C# application allows you to edit the script dynamically before the script is
executed by the engine. In addition, some previous steps can be performed in the C# application
as well

836 EI00000000067 06/2017

Script Language

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Li ng;

usi ng System Text ;

usi ng System Di agnosti cs;
nanespace ExecuteScri pt Exanpl e

{
cl ass Program
{
static void Main(string[] args)
{
try
{
ProcessStartinfo psi = new ProcessStartlnfo();

/1 Specify the name and the argunments you want to pass
psi.FileNane = @<Replace this with the path to the
Central . exe, for exanpl e,
C:\ Program Fil es (x86)\ Schnei der El ectric\SoMachi ne Software\>Central . e
xe>";
psi . Arguments = "--noui --enablescripttracing --
AdvancedPyt honFuncti ons --runscri pt=\
"<Replace this with the full file path where the script is stored,
for exanple, D:\MScripts\TestScript.py>"";
/'l Create new process and set the starting infornmation
Process p = new Process();
p. Startinfo = psi;
// Set this so that you can tell when the process has

conpl et ed
p. Enabl eRai si ngEvents = true;
p.Start();
/1 Wait until the process has conpl eted
whi |l e (!p. HasExi t ed)
{
Syst em Thr eadi ng. Thr ead. Sl eep(1000) ;
}
}
catch (Exception ex)
{
Consol e. Wi te(ex. Message) ;
}
Consol e. ReadKey() ;
}
}
}

EI00000000067 06/2017 837

Script Language

Best Practices

Best Practices

Consider the following practices that can help you to avoid errors in your program code:
e Function blocks are not created using curly brackets ({ }) but by indentation of blocks of code.

Examples:

C Programming language

Python programming language

int factorial (int x)

{
if (x > 1)

el se
return 1;

return x* factorial (x - 1);

def factorial (x):
if x> 1:
return x * factorial (x - 1)
el se:
return 1

e Be careful when using copy and paste commands.
Tab characters are internally replaced by 8 spaces. Since numerous editors by default use
4 spaces, this can lead to code errors that are difficult to find. Source code blocks appear to
have the same size of the indent but actually the indentation is different.
To help to avoid this, configure your editor in such a way that it automatically replaces tabs by

spaces.

e Consider case sensitivity (even in the command line).

e Be careful when entering path names.

e Do not forget to enter the closing quotation marks at the end of a command line (- -

runscript="").

e Be careful with control characters that are frequently used in path names. A control character is
preceded by a backslash (\) character. In order to deactivate this effect, insert an r in front of

the quotation mark.
Example:

project _path = r"D:\ Pyt honPr oj ect s\ Set Par anet er . proj ect "
e Make sure that loop declarations and conditions end with a colon.

Example:
i f | en(messages)

print("---

Bui | d successf ul

---t)

838

EI00000000067 06/2017

Script Language

Reading .NET API Documentations

Reading .NET API Documentations for Python Programmers

The current preliminary version of the script interface documentation is auto-generated from the
underlying .NET / C# sources. Thus, it contains some idioms which are not common to Python
programmers.

The list gives some hints on how to translate them to the Pythonic way of thinking:

Interfaces in .NET are a contract about which members (methods, properties) have to be
provided by the classes implementing that interface. In IronPython, one can implement one or
several .NET interfaces by deriving them as one does with base classes. When a member
declared by the interface is missing in the declaration, an exception will be thrown at runtime.
(The DevicelmportFromSvn.py example shows a class implementing the | npor t Repor t er
interface.)

In .NET, all parameters, properties, and function return values are statically typed. The allowed
type is annotated in front of the parameter name. For functions, the type of the return value is
in front of the function name. Instances of subclasses are allowed when a parent class (or
interface) is mentioned. voi d denotes a function without a return value.

Methods may be overloaded, a class can have several methods with the same name, but they
differ in the number and/or types of parameters. IronPython will automatically call the matching
variant.

The type INT can contain an integral number between -2,147,483,648... 2,147,483,647, BOOL
is equal to the Python type BOOL (TRUE and FALSE), the type STRING is equal to the Python
type st r and unicode (which are equal in IronPython). IDictionary<Object, Object> denotes a
normal Python dictionary. IronPython automatically converts between the Python and .NET
types.

If a type T derives from | BaseChj ect <T>, that type can be extended with more members by
other plugins. The actual usages of that type T in parameters or return values will be marked
with | Ext endedCbj ect <T>.

The interface | Enuner abl e<T> describes any sequence (lists, arrays, generators) which yield
only objects of type T (or subclasses). When the sequence yields an incompatible object, an
exception will be thrown at runtime.

The interface | Li st <T> describes a list which contains only objects of type T (or subclasses).
When trying to add an incompatible object, an exception will be thrown.

The syntax parans T [] nane is equal to the Python syntax * nane for variable argument
lists, but restricts the parameters to type T (or subclasses).

EI00000000067 06/2017 839

Script Language

e Enumerations (ENUM) do not exist as a language construct in Python. They are used to define

a fixed amount of constant values, for example, the days of a week. Enumeration values defined
in .NET can be accessed in IronPython via Name.Member syntax (similar to static class
members), for example, Onl i neChangeQOpt i on. Try. There are several patterns of emulating
enums in Python, for example, htto.//pypi.python.org/pypi/enum/ or
htto.//www.ironpython.info/index.php/Enumerations.

e Properties marked with { get; set; } areread-write, properties only marked with

{ get; } areread-only. They are similar to the @r operty decorator in Python.

For scripts the following entry points are available:
e syst em Basic functionality for integration in the SoMachine system. This object provides all

functions described under /System Interface, such as the exit of SoMachine, the access to the
message window or the query if the --noUl mode is running by use of the ui - pr esent
command.

pr oj ect s: Basic functionality for project management. This object provides all functions
described under /ScriptProjects Interface, such as loading of projects and project archives.
Furthermore, it is the entry point to the individual projects.

onl i ne: Basic functionality for online connection to device. By use of the cr eat e_on-

I i ne_appl i cati on method, the online object of an application object can be created. This
online object allows login to controllers, starting applications and retrieving variable values.

Entry Points

Detailed Information About Entry Points

Driver Name (Type) Description

System system (ISystem) basic functionality for integration in the SoMachine system
Severity ENUM for news priority
Guid data type for Globally unique identifier
PromptResult ENUM for return values for user request
MultipleChoiceSelector delegate type for the selection of multiple choice prompts
PromptChoiceFilter

Projects projects (IScriptProjects) basic functionality for project management
ExportReporter interface for event handling during export
ImportReporter interface for event handling during import
ConflictResolve ENUM for conflict resolve during import

840

EI00000000067 06/2017

http://pypi.python.org/pypi/enum/
http://www.ironpython.info/index.php/Enumerations

Script Language

Driver Name (Type) Description
Online online (IScriptOnline) basic functionality for online connection to device
OnlineChangeOption ENUM for download types during login to device
ApplicationState ENUM for application state
OperatingState ENUM for operation state
ValuesFailedException exception due to errors detected with online expressions
TimeoutException exception on timeout during online operations
DeviceObject DevicelD type encapsulation for device identification

EI00000000067 06/2017

841

Script Language

Section C.2

Schneider Electric Script Engine Examples

What Is in This Section?
This section contains the following topics:

Topic Page
Device Parameters 843
Compiler Version 845
Visualization Profile 846
Update Libraries 847
Clean and Build Application 848
Communication Settings 849
Reset Diagnostic Messages 849
Reboot the Controller 850
Convert Device 851
Comparing Projects 854
Advanced Library Management Functions 855
Accessing POUs 856

842

EI00000000067 06/2017

Script Language

Device Parameters

Overview
To change a parameter, the parameter ID and the Par anet er Set are required.

In order to find the required device and list the respective parameters, use the find method that
finds objects by a given name or path in the project.

Script Engine Example

We enabl e the new python 3 print syntax
from__future__ inport print_function
The path to the project
project _path = r"D:\ Pyt honPr oj ect s\ Set Par anet er . proj ect "
Cl ean up any open project:
if projects.prinary:
projects. primary. cl ose()
Load the project
proj = projects. open(project_path);
Set the project as primary project
proj = projects.prinmary
To set a paraneter you need a device, a paraneter and a new val ue
that should be assigned to the paraneter
At first search for the SERCCSIII node. ..

sercos Node = proj.find('SERCCSII|', True)][O]

... and add a device named Robot XK29 to the node, assuning that no
ot her device is below the SERCOSI || node, otherw se the index nust be c
hanged

sercosNode. i nsert (" Robot _XK29", 0, Devicel D(4096, "1003

0082", "1.36.2.2"), 'LXM62DxS')

Now get the children of the SERCOS node, assumi ng that Robot XK29 is
the only one, otherw se the index nust be changed

Robot _XK29 = sercosNode. get _chi |l dren(True)[0]

Call the get_all _paranmeters() function, to get a conplete list of all
paraneters of that device object.

A paranmeter can contain subparaneter, which can be checked with

. HasSubEl ement s property

parameter_list = treeobj.get_all _paraneters()

prints all paraneters

EI00000000067 06/2017 843

Script Language

for paraneter in paraneter_list:

print("ID:. " + paranmeter.ldentifier + " Name: " + paraneter.Visible

Name + " Value: " + paraneter.Value + " ParaneterSet: " +
str((paraneter. Get Associ at edConnect or) . Connector | d))

Get the Worki ngMode paraneter:

I D: 191 Name: Worki ngMbde Val ue: 1 ParaneterSet: 1

wor ki ng_node = Robot XK29. get _paraneter (191, 1)

Finally set the Wrki ngvbde paraneter to 2 = Deactivated

Robot _XK29. set _par anet er (wor ki ng_node, "2")

844

EI00000000067 06/2017

Script Language

Compiler Version

Overview

With the compiler version extension, you can display the mapped compiler versions and you can
set a new compiler version by executing the script.

Script Engine Example

Enabl e the new python 3 print syntax
from __future__ inport print_function
The path to the project
proj ect _path = r"D:\ Pyt honProj ect s\ Get Conpi | er Ver si on. proj ect "
Clean up any open Project:
i fprojects. primary:
projects. primary. cl ose()
Load the project
proj = projects. open(project_path);
Set the project as primary project
proj = projects.primry
print("All conpiler versions")
Get all conpiler versions (filtered)
conpi | er_versions = conpiler_settings.get_all_conpil er_versions()
Print all conpiler versions (filtered)
for version in conpiler_versions:
print (" - OEM napped version: " + version)
Get active conpiler version
conpi | er_version = conpil er_settings. active_conpil er_version
print("Current conpiler version:" + conpiler_version)
Set new conpil er version
conpi | er_settings.active_conpiler_version = "3.5.0.20"
print("New conpiler version: " + conpiler_settings.active_conpil -
er _version)
Save proj ect
proj ects. primary. save()

EI00000000067 06/2017 845

Script Language

Visualization Profile

Overview

With the visualization profile extension, you can display the visualization profiles and you can set
the active visualization profile of the project.

Script Engine Example
Enabl e the new python 3 print syntax
from __future__ inport print_function
#The path to the project
proj ect _path = r"D:\ Pyt honProj ect s\ Get Vi sual i zati onProfil e. project"
Clean up any open Project:
if projects.primary:
proj ects. primary. cl ose()
Load the project
proj = projects.open(project_path);
Set the project as prinmary project
proj = projects.primry
Print the active profile
print("Current visual profile: " + visualization_settings.active pro-
fil e_nane)
Get all available visualization profiles
profile_nanes = visualization_settings.get_all_visual _profile_nanes()
Print the profiles
for visual _profile in profile_nanes:
print (" - " + visual _profile)
Set the profile to V1.35.12.0
vi sual i zati on_settings. active_profile_nane = "V1.35. 20.0"
Get the active profile
profile_nane = visualization_settings.active_profile_nane
Print the active profile
print("New visual profile: " + profile_nanme)
Save proj ect
proj ects.primary. save()

846 EI00000000067 06/2017

Script Language

Update Libraries

Overview

With the update libraries extension, you can update the libraries of the project automatically. This
is the same function as provided by the Libraries - Automatic version mapping (all libraries)
command in the graphical user interface of SoMachine.

Script Engine Example
Enabl e the new python 3 print syntax
from__future__ inport print_function
The path to the project
project _path = r"D:\ Pyt honPr oj ect s\ Exanpl e. proj ect"
Cl ean up any open project:
if projects.primary:
projects. primary. cl ose()
Load the project
proj = projects. open(project_path);
Set the project as primary project

proj = projects.primry
Search for die library manager objects in the project
lib_managers = [i for i in proj.get _children(True) if i.is_|ibman]

Make the auto nmapping for each library manager found
for Iib_manager in |ib_managers:
I'i b_rmanager . make_aut o_nappi ng()

EI00000000067 06/2017 847

Script Language

Clean and Build Application

Overview
With the clean and build application extension, you can clean a project or build a new project.

Script Engine Example
Enabl e the new python 3 print syntax
from__future__ inport print_function
The path to the project
project _path = r"D:\ Pyt honPr oj ect s\ Exanpl e. proj ect"
Clean up any open project:
if projects.prinary:
proj ects. primary. cl ose()
Load the project
proj = projects.open(project_path);
Set the project as prinmary project
proj = projects.prinmary
Fetch the active application.
app = proj.active_application
Clean application
new_proj ect. cl ean_appl i cati on(app)
Conpile application and store conpiler messages in a |ist
messages = new_proj ect.conpil e_application(app)

| f messages == None the build was successf ul
i f | en(nessages) ==
print("--- Build successful ---")
Otherwise print results
el se:
for i in messages:
|f serverity == 'Script Engine Exception' the plugin caused

an excepti on.
The text describes the exeption details.
print(i.Serverity, i.Text)

848 EI00000000067 06/2017

Script Language

Communication Settings

Overview

This example shows how to load or set the IP address of a controller of your choice by executing
the script.

Script Engine Example
from __future__ inport print_function
def main():
if not projects.prinmary:
systemui.error("No active project.")
return
project = projects.primary
#find the controller by the object nanme where address shoul d be set
and read.
controller = project.find('LMC, True)[O]
#reboot the controller
control | er.set _conmuni cati on_address(' 192. 168. 2. 25")
#read address back and show it.
print (' get_comuni cati on_address: =
tion_address())
system ui .i nfo("Test conplete")
mai n()

+ control | er.get_comuni ca-

Reset Diagnostic Messages

Overview

Once logged in to the application, you can reset the diagnostic messages of the controller. This is
an extension method of the controller object.

The following example shows how to reset diagnostic messages. You have to get the primary
project and log in to the application, as shown in the other examples (building an application
(see page 848)).

Script Engine Example
get the project instance and log in to the application
find the controller which messages shall be reset
controller = project.find("LMC', True)[O]
Cet all testelenents fromtestseries "TS Crank"
control |l er.reset _di agnosi s_nessages()

EI00000000067 06/2017 849

Script Language

Reboot the Controller

Overview

Once there is an instance of the controller object in the script, you can reboot the controller by using
a method on that object.

Script Engine Example
from__future__ inport print_function
def perform application_| ogin(project):
app = project.active_application
onl i neapp = online.create_online_application(app)
onl i neapp. | ogi n(Onl i neChangeOpti on. Try, True)
def main():
if not projects.primary:
systemui.error("No active project.")
return
perform application_| ogi n(project)
#find the controller naned ' LMC which shall be rebooted
controller = project.find('LMC, True)[O]
#reboot the controller
control |l er.reboot plc()
system ui .i nfo("Test conplete")
mai n()

850 EI00000000067 06/2017

Script Language

Convert Device

Overview

Converting devices within the project can become a complex procedure. This API simplifies the
conversion process and helps to avoid errors.

Using the Devi cel D Object

The conversion API uses the Devi cel D object which identifies a device or a device module by a
specific version. The Devi cel Dis created as follows:

<device type> <device model> <device version> <module name>

Element Example Description

device type 4096 identifies a controller

device model 1003 0082 or 1003 009D for LMCx00C or LMCx01C,
respectively

device version 1.50.0.4 firmware version of the controller

module name LXMB2 target device module

The conversion API accepts the Devi cel Das object instance or as single parameter. This allows
using a Devi cel D containing all elements mentioned in the above table or passing each element
as a single parameter.

The following example shows how to create a Devi cel Dfor an LMCx00C controller with firmware
version 1.50.0.4:

Lncx00c = Devi cel D(4096, "1003 0082", "1.50.0.4")

EI00000000067 06/2017 851

Script Language

Testing Whether a Device Can be Converted

The following script allows you to verify whether a conversion to a given version is possible before
converting a device.

from__future__ inport print_function
def mai n():
Set the project as prinmary project
proj = projects.primry
controller = proj.find('LMC, True)[O]
drive = proj.find('Drive', True)[O]
test if controller can be converted using Devicel D
x01lc = Devi cel D(4096, "1003 009D', "1.36.2.6")
if controller.can_convert(x01c):
system ui . i nfo(" Conversion to LMCx01C possi bl e")
test if drive can be converted using Paraneters and nodule id
if drive.can_convert (4096, "1003 0082", "1.36.2.6", "LXVb2"):
system ui . i nfo("Conversion to LXMb2 possi bl e")
mai n()

Getting Alternative Conversion Targets

The API provides a call that retrieves the possible conversion targets for a certain device. It returns
the Devi cel D for each target.

from__future__ inport print_function
#hel p function to print the delivered device ids
def deviceid_to_string(devld):
nystr = "ID: {0.id} Type: {O.type} Version:
{0.version}".format (devl d)
if hasattr(devlid, 'nodule_id) and devld. nodule_id is not None:
nystr += " Mdul el D: {0.nodul e_id}".format (devld)
return nystr
def main():
if not projects.primary:
systemui.error("No active project. Please open the project
Pyt honTest Pr oj ect . pr oj ect ar chi ve")
return
Set the project as prinmary project
proj = projects.primry
controller = proj.find('LMC, True)[O]
alternativeControllers = controll er.get_alternative_devices()
print (" ALTERNATI VE DEVI CES FOR LMC")
for id in alternativeControllers:

852 EI00000000067 06/2017

Script Language

print(deviceid_ to_string(id))
drive = proj.find('drive', True)[O0]
alternativeDrives = drive.get_alternative_devices()
print (" ALTERNATI VE DEVI CES FOR DRI VE")
for id in alternativeDrives:
print(deviceid to_string(id))
system ui .info("Test conplete. Please check the script output
wi ndow")
mai n()

Converting the Device
The process of converting the device is straightforward because the only required action is calling
the conversion method.

from__future__ inport print_function
def main():
proj = projects.primary
controller = proj.find('LMC, True)[O0]
drive = proj.find('Drive', True)[O0]
converting the controller
control |l er.convert (4096, "1003 009D', "1.36.2.6")
converting the drive
dri ve. convert (Devi cel D(4096, "1003 0082", "1.50.0.4"), "LXMp2")

mai n()

EI00000000067 06/2017 853

Script Language

Comparing Projects

Overview

There are several use cases where it is useful to have a script automatically comparing the
contents of 2 projects. The Python project comparison function allows you to compare 2 projects.
As a result it provides the information if the projects are different, as well as a detailed XML tree
that reflects the project tree and shows the differences for each object.

Script Engine Example
from__future__ inport print_function

def

mai n():

proj = projects.primry

conpare the Primary Project to another Project on disk

diff = proj.conpare_to("ConpTest_Ri ght. project")

wite diff(diff, "Diffl.xm")

conpare, but ignore whitespaces, coments and properties

diff = proj.conpare_to("ConpTest Right.project", True, True, True)
wite diff(diff, "Diff2.xm")

def wite diff(differences, filenane):
if differences. D fferenceFound:
f = open(filenanme, 'wbh')
f.witelines(differences.ResultTree)
mai n()

854

EI00000000067 06/2017

Script Language

Advanced Library Management Functions

Overview

SoMachine Logic Builder offers advanced functions for managing libraries, the so-called forward
compatible libraries (see SoMachine, Functions and Libraries User Guide). They provide a
convenient way to manage references and dependencies among libraries.

This functionality is also available via scripts and can be used on the Library Manager of the entire
project or on a single application within the project. The following script shows how to check the
libraries for forward compatibility and valid references. It automatically maps the references and
explicitly sets library versions.

Script Engine Example
p = projects.primry
app = p.active_application
I'i bmgr = app.get_|ibrary_manager ()

print("# Checking all libraries:")
for lib in libman.get_libraries():
print("- "+ lib + " I's Forward Conpatible Library?

+ str(libmgr.is_library_forward_conpatible(lib)))
if not libngr.is_current_mapping_valid():
for lib in libmgr.get _invalid_library_mappings():
print("Li brary reference cannot be satisfied for: " + |ib)
print("Trying to auto-map libraries to valid versions")
| i brgr. make_aut o_nmappi ng()
el se:
print("Al mappings valid")
set version using individual paraneters
i brgr.set_new |ibrary version("PD_d obal Di agnosti cs",
"Schnei der Electric", "1.0.1.0")
set version using the library full nanme
libngr.set _new |ibrary versi on("PD _Axi sMbdule, 1.1.6.0 (Schneider
Electric)", "1.2.4.0")
set version to Legacy
l'ibrgr.set_new |ibrary_version("PD Tenpl ate", "Schneider El ectric",
None)

EI00000000067 06/2017 855

Script Language

Accessing POUs

Overview

The following example shows how to print and manipulate the code of a POU. It is only available

for textual programming languages.

Script Engine Example

if not projects.primry:
systemui.error('No primary project set')
p = projects.primary
pou = p.find(' SR Main', True)[O]
read and print the declaration of the program
decl = pou.get_interface_text()
print (decl)
read and print the inplenentati on of the program
code = pou. get _inpl enentation_text()
print (code)

decl = "PROGRAM SR Mai n\n" + \
"VAR\ n" + \
" i Test: INT;\n" + \
"END_VAR';

code = "iTest := iTest +1;"

wite new code to the declaration and i npl enentati on
pou. set _i nterface_text(decl)
pou. set _i npl ement at i on_t ext (code)

856

EI00000000067 06/2017

Script Language

Section C.3
CoDeSys Script Engine Examples

Overview

This chapter provides examples of frequently used members of the CoDeSysScript Engine. For a
complete description of the members of each namespace, refer to the CoDeSys API description.

What Is in This Section?
This section contains the following topics:

Topic Page
Project 858
Online Application 863
Objects 866
Devices 867
System / User Interface (Ul) 869
Reading Values 871
Reading Values From Recipe and Send an Email 872
Determine Device Tree of the Open Project 874
Script Example 4: Import a Device in PLCOpenXML From Subversion 875

EI00000000067 06/2017 857

Script Language

Project

Overview

Since the examples for this namespace are relatively short and self-explanatory, their meaning is
not explained in detail. Complete examples are provided, where appropriate.

New Project

This method creates a new project.

It consists of 2 parameters:

e a string specifying the location where the project will be stored

e a boolean parameter: If TRUE, the project will be the new primary project. This parameter is
optional, the default value is TRUE.

The method returns the | Pr oj ect instance (refer to the specification in the document Aufomation
Platform SDK) which can be used for further steps.

Creates a new project
proj = projects.create("C \PythonProjects\Exanpl e. project”, True)

Load Project

This method loads a project. Any open projects will not be closed.
The first parameter specifies the path of the project that will be loaded.

Load the project
proj = projects.open(project_path)

Save Project

This method saves the project at its physical location.

Save proj ect
projects. primary. save()

Save Archive

This method saves the project as an archive. The additional categories which are selected by
default are included, but no extra files.

The first parameter specifies the path where the archive will be saved.

Save archive
projects. prinmary. save_ar chi ve("D:\ Archi ve\ Exanpl e. archi ve")

858

EI00000000067 06/2017

Script Language

Close Project

This method closes the project. If there are unsaved changes in this project, these changes will be
discarded.
Cl ean up any open project:
if projects.primary:
projects. primary. cl ose()

Find Objects
This method finds objects matching the given name.

It consists of 2 parameters:

e The first parameter is the name of the object that is searched.

e The second parameter specifies whether a recursive search is performed. This parameter is
optional, the default value is FALSE. This method returns a collection of objects.

device = proj.find(' DRV_Lexiunb2', True)[O0]

Names are not unique in the tree. This has the effect that several objects can be found. The search
is against the nonlocalized name.

Native Import
This method imports the specified files in the native XML format in the top level of this project.

systemtrace
i mport os
project _path = r"D:\ MyProj ect s\ Exanpl e. proj ect"
i mport_path = r"D:\ MyProjects\InportFiles"
Close project if opened
if projects.primary:
projects. primary. cl ose()
proj = projects. open(project_path);
Set the new project to primary
proj =proj ects. pri mary
files = os.listdir(inport_path)
create the inport reporter
cl ass Handl er (Nati vel nport Handl er) :
def conflict(self, name, obj, gquid):
print("Object already exists: ", nane)
return Nativel nport Resol ve. skip
def progress(self, name, obj, exception):
print("in progess: ", nane)
def ski pped(self, list):
for obj in list:
print("Skipped: ", obj.get_nane())

EI00000000067 06/2017 859

Script Language

def inportFilter(nanme, guid,type, path):
return True;
create the inmporter instance.
handl er = Handl er ()
for file in files:
file_path = inport_path + "\\" + file
print(file)
proj.inport_native(file_path, inportFilter, handl er)
proj . save();

PLCOpenXML Import

This method imports the contents of the specified PLCopenXML file into the top level of the project.

CoDeSys XM inport/export functionality.
from__future__ inport print_function
i mport sys, io
Set target Project to prinmary
proj =proj ects. prinmary
Create the inmport reporter
cl ass Reporter (|l nmportReporter):
def error(self, message):
systemwite_message(Severity. Error, nmessage)
def warni ng(sel f, nmessage):
systemwite_nmessage(Severity. \Warni ng, nessage)
def resolve_conflict(self, obj):
return ConflictResol ve. Copy
def added(sel f, obj):

print("added: ", obj)
def replaced(self, obj):

print("replaced: ", obj)
def ski pped(self, obj):

print("skipped: ", obj)
@roperty

def aborting(self):

return Fal se
Create the inmporter instance.
reporter = Reporter()
filename = r"D:\ Export Cbj ect s\ Drv_Master. xm "
Search for the SERCOSI || node, where the device should be added.
device = proj.find(' SERCOSII1', True)[O]
Inport the data into the project.
device.inport_xml (reporter, filenane)

860

EI00000000067 06/2017

Script Language

Native Export

This method exports the given objects in native format into a string, or a file at the given path. The
non-exportable objects are detected as an error, but the export continues.

Tests CoDeSys native inport/export functionality.
from __future__ inport print_function
project _path = r"D:\ MyProj ect s\ Exanpl e. proj ect"
Clean up any open Project:
if projects.prinmary:
projects. primary. cl ose()
proj = projects. open(project_path);
proj =proj ects. pri mary
i nport sys, io
Collect all PQU nodes in that |ist.
project Objects = []
Col lect all the |eaf nodes.
for node in proj.get_children(True):
pr oj ect Obj ect s. append(node)
Print everything just to know what is going on.
for i in projectjects:
print("Found: ", i.type, i.qguid, i.get_name())
Export the files.
for candidate in projectObjects:
Create a |ist of objects to export:
The object itself
obj ects = [candi dat €]
And sub-objects (PQUs can have actions, properties, ...)
obj ect s. ext end(candi dat e. get _chi | dren(True))
And the parent folders.
parent = candi date. par ent
while ((not parent.is_root) and parent.is_fol der):
obj ect s. append(par ent)
parent = parent. parent
Create a unique file nane:
filename = "D:\ExportFiles\\%__%. export" % (candi dat e. get _nane(),
candi dat e. gui d)
print some user information
print("Exporting ", |len(objects), " objects to: ", filenane)
and actually export the project.
proj . export_native(objects, filenane)

EI00000000067 06/2017 861

Script Language

PLCOpenXML Export

This method exports the given objects in PLCopenXML format into a string, or a file at the given
path. The non-exportable objects are detected as an error, but the export continues.

CoDeSys XM inport/export functionality.
from__future__ inport print_function
i nport sys, io
Set target Project to primary
pr oj =proj ects. pri nary
define the printing function
def printtree(treeobj, depth=0):
name = treeobj.get_nanme(Fal se)
if treeobj.is_device:
devi ceid = treeobj.get _device_identification()
print("{0} - {1} {2}".format(" "*dept h, nane, deviceid))
for child in treeobj.get_children(Fal se):
printtree(child, depth+1)
for obj in projects.prinmary.get_children():
printtree(obj)
Create the export reporter
cl ass Reporter(ExportReporter):
def error(self, message):
systemwite_nessage(Severity. Error, nmessage)
def warni ng(sel f, nmessage):
systemwite_message(Severity. Warni ng, nessage)
def nonexportabl e(sel f, nmessage):
print (nmessage)
@roperty
def aborting(self):
return Fal se
reporter = Reporter()
Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)
filename = r"D:\ Export Cbj ect s\ Drv_Master. xm "
Exports the object to the hard drive
proj.export_xm (reporter, device, filenane, True, True)

862

EI00000000067 06/2017

Script Language

Online Application

Overview
NOTE: Some of the online application commands can temporarily change the active application.
This interface is exported to Python, and thus complies to Python naming standards.

Create Online Application
This method creates an online application.
app = online.create_online_application();

Prepared Values
This example shows how to write prepared values.

Tests for the Online functionality - listing of prepared val ues.
import utils
try:

print "Trying to create online application."”
app = online.create_online_application();
except Exception as e:
print "Currently offline, executing startup..."
execfile(utils. makepat h("OnlineTestStartup.py"))
print "Retrying to create online application."
app = online.create_online_application();
print "app:", app.application_state, "op:",
app. operation_state. ToString("f")
print "Unpreparing val ues:"
for expression in app.get_prepared_expressions():
app. set _prepared_val ue(expression, '")
print "%: '%' '9%'" % (expression, app.read_val ue(expression),
app. get _prepar ed_val ue(expressi on))
print "Unforcing val ues:"
for expression in app.get_forced_expressions():
app. set _unforce_val ue(expressi on)
print "%: '%' '9%'" % (expression, app.read_val ue(expression),
app. get _prepar ed_val ue(expressi on))
app. force_prepar ed_val ues()
assert | en(app.get_prepared_expressions()) == 0, "still sone prepared
val ues renmin..."

EI00000000067 06/2017 863

Script Language

assert | en(app.get _forced _expressions()) == 0, "still some prepared
val ues remmin..."

print "now preparing a value and forcing it:"

app. set _prepared_val ue("PQOU. testout put”, "4711");

app. force_prepared_val ues()

print "now preparing a value and witing it:"

app. set _prepared_val ue("PQU.testint", "INT#1147");

app. wite_prepared_val ues();

print "The prepared values are now witten."

Perform Application Login

This method performs the application login. If the application was logged in before, it will be logged
out and a fresh login will be performed.

It consists of 2 parameters:
e The first parameter is the change option.
e The second parameter will delete previous applications, if set to Tr ue.

project _path = r"D:\ MyProj ect s\ Exanpl e. proj ect"
Clean up any open Project:
if projects.prinary:
proj ects. primary. cl ose()
proj = projects. open(PRAJECT);
proj = projects.prinmary
Fetch the active application.
app = proj.active_application
Create the online application for it.
onlineapp = online.create_online_application(app)
Log in to the device.
onl i neapp. | ogi n(Onl i neChangeOpti on. Try, True)

Logout Application
This method logs out the application. If the application is not logged in, nothing happens.
Logout . onl i neapp. | ogout ()

864 EI00000000067 06/2017

Script Language

Start Application

This method starts the application.

project _path = r"D:\ MyProj ect s\ Exanpl e. proj ect"

Clean up any open Project:

if projects.primary:
projects. primary. cl ose()

proj = projects. open(PRAJECT);

proj = projects.primary

Fetch the active application.

app = proj.active_application

Create the online application for it.

onlineapp = online.create_online_application(app)

Log in to the device.

onl i neapp. | ogi n(Onl i neChangeOpti on. Try, True)

Start the application, if necessary.

if not onlineapp.application_state == ApplicationState.run:
onl i neapp. start ()

Let the app do its work for sone tine...

syst em del ay(1000)

Stop Application
This method stops the application.

Stop the application
onl i neapp. stop()

EI00000000067 06/2017 865

Script Language

Objects

Find

This method finds objects matching the given name.

It consists of 2 parameters:

e The first parameter is the name of the object that is searched.

e The second parameter specifies whether a recursive search is performed. This parameter is
optional, the default value is FALSE. This method returns a collection of objects.

Finds the DRV_Master object in the project

device = proj.find(' DRV_Master', True)

Remove

This method removes the object.

Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)

Renoves the DRV_Master object fromthe project
devi ce. renove()

Rename

This method renames the object to the new name.

Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)

Renpves the DRV_Master object fromthe project
devi ce. renane(' DRV_Master_2")

Import/Export

Refer to the description of imports/exports for projects (see page 860). The only difference is that
the object is called for import / export, instead of the project.

866

EI00000000067 06/2017

Script Language

Devices

Overview
This chapter describes methods for manipulating device objects.

Add
This method adds the specified device.
It consists of 3 parameters:
e a string specifying the name of the device
e Devi cel Dspecifying the ID of the device
e a string specifying the module ID

devi ce. i nsert (" Robot A", Devicel D(4096, "1003 0082", "1.36.1.1"),
* LXMB2DXS')

Disable
This method marks this device as disabled during download.

Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)[O0]
devi ce. di sabl e()

Enable
This method marks this device as enabled during download.

Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)[O0]
devi ce. enabl e()

Get Address
This method gets the address of the device. It returns a string.
Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)[O0]
devi ce. get _address()

Get Device Identification
This method gets the device identification.
Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)[O]
devi ceid = devi ce.get _device_identification()
print("{0} - {1} {2}".format(" "*dept h, name, deviceid))

EI00000000067 06/2017 867

Script Language

Get Gateway
This method returns the GUI D of the gateway.

Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)[O]
gat eway = devi ce. get _gat eway()

Insert
This method inserts the specified device at the specified index.
It consists of 4 parameters:
e a string specifying the name of the device
e | nt 32 specifying the index where to insert the device
e Devi cel Dspecifying the ID of the device
e a string specifying the module 1D
devi ce. i nsert (" Robot A", 1, Devicel D(4096, "1003 0082", "1.36.1.1"),
' LXM62DxS')
Set Gateway and Address

This method sets the gateway and the address. If you pass the empty GUI Dand an empty address,
the gateway address will be cleared.

devi ce. set _gat eway_and_addr ess(GUl D gat eway, string address)

Set Simulation Mode
This method sets the simulation mode. If set to Tr ue, simulation is enabled.

Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)[O]
devi ce. set _si nul ati on_node (True)

Update
This method updates the specified device.

Finds the DRV_Master object in the project
device = proj.find(' DRV_Master', True)[O]
devi ce. updat e(Devi cel (4096, "1003 0082", "1.36.1.1"), 'LXM62DxS')

868 EI00000000067 06/2017

Script Language

System / User Interface (Ul)

Browse Directory Dialog Box
Opens a dialog box for browsing a directory. In - - noUl mode, you can simply enter a path here.

system ui . browse_directory_di al og("Browse Directory D al og",
r"D:\ Pyt hon", Environnent. Speci al Fol der. Deskt op, True)

It consists of 4 parameters:

e a string containing the message

e a string containing the path that will be preselected when the dialog box opens

e the Envi ronnent . Speci al Fol der contains the root folder for the browse dialog box

e a boolean parameter: If Tr ue, a button allowing you to create new folders is displayed in the
dialog box.

This method returns the selected path. If you cancel the dialog box, nothing is returned.

Choose

This method allows you to choose between one of several listed items.

list = ["RobotA", "RobotB", "RobotC']

system ui . choose(" Choose", |ist, True)

It consists of 3 parameters:

e a string containing the message

e a list of options to be displayed: The objects are converted to string in order to display them.

e a boolean parameter: If Tr ue, a button allowing you to create new folders is displayed in the
dialog box.

This method returns a Python tuple containing 2 items:

e the index of the selected item, or
- 1 if cancelable was set to Tr ue and you canceled the dialog box

e the selected item or None

Error Detection

This method indicates an error detection message. It inhibits any further actions until the message
has been acknowledged.

systemui.error("Error")

Info

This method indicates an information message. It inhibits any further actions until the message has
been acknowledged.

system ui . i nfo("Info")

EI00000000067 06/2017 869

Script Language

Open File Dialog Box
This method displays an Open File dialog box. In - - noUl mode, you can simply enter a path here.
system ui . open_file_dialog("Select a file")

Query String
This method queries the input or edit of a text string.
systemui.query_string("Please enter a string")

It returns a string with the entered text.

Save File Dialog
This method displays a Save File dialog box. In - - noU mode, you can simply enter a path here.

system ui . save_fil e_di al og("Python Script: Save File")

Warning

This method indicates a warning message. It inhibits any further actions until the message has
been acknowledged.

syst em ui . war ni ng(" War ni ng")

870 EI00000000067 06/2017

Script Language

Reading Values

Overview
You can start the following example from the SoMachine user interface or from the command line.

To start it from the command line, change to the subdirectory Common of the SoMachine
installation path (<Repl/ace this with the path fo the Central.exe, for example,

C:|Program Files (x86)|Schneider ElectriclSoMachine Sofiwarel>) and enter the command
start /wait Central.exe --

runscript="<Replace this with the full file path
where the script is stored, for example, D:\MScripts\ReadVari abl e. py>"

The script opens an application in SoMachine and logs in to the device. If the controller is not in
mode RUN, it will be set to RUN. Then the variable i Var 1 is read and displayed in the Messages
view or command line. At the end, the application is closed.

Script Example ReadVariable.py

Close all projects

while len(projects.all) > 0:
projects.all[0].close()

opens proj ect

proj = projects.open("D:\\data\\projects\\Anpel.project")

set "Anpel .project"” to active application

app = proj.active_application

onlineapp = online.create_online_application(app)

login to device

onl i neapp. | ogi n(Onl i neChangeOpti on. Try, True)

set status of application to "run", if not in "run"

i f not onlineapp.application_state == ApplicationState.run:
onl i neapp.start()

wait 1 second

syst em del ay(1000)

read val ue of iVarl

val ue = onlineapp.read_val ue("PLC_PRG i Var1")

di splay value in nessage view or command |ine

print val ue

log out from device and cl ose "Anpel . project”

onl i neapp. | ogout ()

proj . cl ose()

EI00000000067 06/2017 871

Script Language

Reading Values From Recipe and Send an Email

Overview

You can start the following example from the SoMachine user interface or from the command line.

To start it from the command line, change to the subdirectory Common of the SoMachine
installation path (<Repl/ace this with the path fo the Cenfral.exe, for example,

C:|Program Files (x86)|Schneider ElectriclSoMachine Sofiwarel>) and enter the command
start /wait Central.exe --

runscri pt="<Replace this with the full file path

where the script is stored, for exanple, D:\MScripts\ScriptEmil.py>".

The script opens an application in SoMachine and logs in to the device. If the controller is not in
mode RUN, it will be set to RUN. Then the variable i Var 1 is read and displayed in the Messages
view or command line. At the end, the application is closed.

Script Example ScriptEmail.py

Close current project if necessary and open "Script Test. project"”
if not projects.prinmry == None:
proj ects. primary. cl ose()
project = projects.open("D:\\Data\\projects\\scriptTest.project")
retrieve active application
application = project.active_application
create online application
online_application = online.create_online_application(application)
login to application.
onl i ne_application. | ogi n(OnlineChangeOption. Try, True)
start PLC if necessary
if not online_application.application_state == ApplicationState.run:
online_application.start()
wait 2 seconds
syst em del ay(2000)
open recipe file to read val ues.
recipe_input _file = open("D:\\Data\\projects\\Recipelnput.txt", "r")
wat ch_expressions = []
for watch_expression in recipe_input_file:
wat ch_expr essi ons. append(wat ch_expression. strip())
print watch_expressions
read values fromthe controllerd
wat ch_val ues = online_application.read_val ues(wat ch_expressi ons)
print watch_val ues
open output file to wite val ues
reci pe_output _file = open("D:\\Data\\projects\\Reci peQut put.txt", "w')
for i in range(len(watch_expressions)):
reci pe_output_file. wite(watch_expressions[i])

872

EI00000000067 06/2017

Script Language

recipe_output_file.wite(" =")
reci pe_output _file. wite(watch_values[i])
reci pe_output _file.wite("\n")
Close files
reci pe_i nput_file.close()
reci pe_output_file.close()
send Enmi |
inport respective libraries
import sntplib
fromemil.mme.text inmport M METext
#open output file
reci pe_output_file = open("D:\\Data\\projects\\Reci peQutput.txt", "r")
mail = M METext (reci pe_output _file.read())
reci pe_output_file.close()
#emai | address sender and recipi ent
fromm = "i nf o@s- sof t war e. cont
to = "info@s-sof tware. cont
set sender and recipient
mai | [" Subj ect"] = "Attention val ue has changed"
mai | ["From'] = fromm
mai | ["To"] = to
send emi |
sntp = smplib. SMIP("name of sntp server")
smtp.sendmail (fromm [to], nmil.as_string())
sntp. quit()
| ogout and cl ose application
onl i ne_application. | ogout ()
pr oj ect . cl ose()

EI00000000067 06/2017 873

Script Language

Determine Device Tree of the Open Project

Overview

This example determines the objects in the Devices tree of the open project and prints them out in
the command line or Messages view. It can be started from the SoMachine user interface or from
the command line.

To start it from the command line, change to the subdirectory Common of the SoMachine
installation path (<Repl/ace this with the path fo the Cenfral.exe, for example,

C:|Program Files (x86)|Schneider ElectriclSoMachine Softwarel>) and enter the command
start /wait Central.exe --

runscript="<Replace this with the full file path
where the script is stored, for example, D:\MScripts\DevicePrintTree.p

y>".

Script Example DevicePrintTree.py

We enabl e the new python 3 print syntax
from__future__ inport print_function
i nport sys
define the printing function
def printtree(treeobj, depth=0):
if treeobj.is_root:
name = treeobj.path
deviceid = ""
el se:
name = treeobj.get nane(Fal se)
if treeobj.is_device
devi cei d. get _devi ce_identification()
el se:
deviceid = ""
print("{0} - {1} {2}".format(" "*dept h, name, deviceid))
for child in treeobj.get _children(Fal se):
printtree(child, depth+1)
Now see whether a primary project is open.
if not projects.primary:
print("Error: Please open a project file first!", file=sys.stderr)
sys. exit()
And the actual output
print("--- The current tree of: ---")
printtree(projects. prinary)
print("--- Script finished. ---")

874

EI00000000067 06/2017

Script Language

Script Example 4: Import a Device in PLCOpenXML From Subversion

Overview

This example imports a device in PLCOpenXML from Subversion via command line svn cli ent.
It can be started from the SoMachine user interface or from the command line.

To start it from the command line, change to the subdirectory Common of the SoMachine
installation path (<Repl/ace this with the path fo the Cenlral.exe, for example,

C:|Program Files (x86)|Schneider ElectriclSoMachine Sofiwarel>) and enter the command
start wait Central.exe runscript="<Replace this with the full file
path where the script is stored, for exanple,

D:\ MyScri pt s\ Devi cel npor t FronSvn. py>".

Script Example DevicelmportFromSvn.py
lnmports a Device in PLCOpenXM. from Subversion via command |ine svn

client.
We enabl e the new python 3 print syntax
from __future__ inport print_function

i nport sys, os
some variable definitions:
SVNEXE = r" C:\ Program Fi | es\ Subver si on\ bi n\ svn. exe"
XMLURL = "file:///D:/testrepo/testfol der/ Test Export.xm "
PRQIECT = r"D:\test. project"
cl ean up any open project:
if projects.primary:
projects. primary. cl ose()
Fetch the pl copenxnm data from subversi on.
The "with' construct automatically closes the open pipe for us.
with os.popen('"' + SVNEXE + '" cat ' + XMLURL, 'r') as pipe:
xm data = pi pe.read()
create a new project:
proj = projects. create(PRAJECT)
create the inport reporter
cl ass Reporter(lnportReporter):
def error(self, message):
systemwite_nessage(Severity. Error, message)
def warni ng(self, message):
system write_nessage(Severity.Warni ng, nmessage)
def resolve_conflict(self, obj):
return Conflict Resol ve. Copy
def added(self, obj):

print("added: ", obj)
def replaced(self, obj):
print("replaced: ", obj)

EI00000000067 06/2017 875

Script Language

def ski pped(self, obj):
print("skipped: ", obj)

@roperty
def aborting(self):
return Fal se
create the inporter instance.
reporter = Reporter()

inport the data into the project.

proj.inport_xm (reporter, xmnl data)

and finally save. :-)
proj . save()
print("--- Script finished. ---")

876

EI00000000067 06/2017

Appendix D
User Management for Soft PLC

Overview

This chapter describes the Users and Groups and the Access Rights views of the device editor.

These views are only available if the SoMachine project contains Soft PLC controllers.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
General Information on User Management for Soft PLC 878
Users and Groups 879
Access Rights 883

EIO0000000067 06/2017

877

User Management for Soft PLC

General Information on User Management for Soft PLC

Overview

The user management function described in this chapter allows you to define user accounts and
to configure the access rights (permissions) for Soft PLC controllers.

The rights to access project objects via specified actions are assigned only to user groups, not to
a single user account. So each user must be member of a group.

User Management for Soft PLC
Before setting up users and user groups for Soft PLC controllers, consider the following:

By default, a group Everyone exists. Each defined user or other groups is automatically member
of this group. Thus, each user account at least is automatically provided with default settings.
Group Everyone cannot be deleted, only renamed. Members cannot be removed from this
group. By default, Everyone does not have the permission to modify the current users, groups,
and permission configuration.

By default, a group Owner also exists, containing one user Owner. In a new project, initially only
the Owner has the permission to modify the current users, groups, and permission
configuration. Thus, only Owner can assign this right to another group. Initially, the Owner can
log in with username Owner and empty password. Users can be added to or removed from
group Owner, but at least 1 user must remain. This group - such as Everyone - cannot be
deleted. It is granted all access rights. Thus, it is not possible to make a project unusable by
denying the respective rights to all groups. You can rename both group and user Owner.
When starting the programming system or starting a project, primarily no user is logged on the
project. But then the user can optionally log on via a defined user account with user name and
password in order to have a special set of access rights.

Consider that each project has its own user management. So, for example to get a special set
of access rights for a library included in a project, the user must separately log on to this library.
Also users and groups, set up in different projects, are not identical even if they have identical
names.

NOTE: Only the user Owner of group Owner is allowed to modify the currently configured
permissions, groups, and users. Thus, only Owner can assign this permission to another group.

NOTE: The user passwords are stored irreversibly. If you do not remember the password, the
respective user account becomes unusable. If you do not remember the password of the Owner
group, the entire project can become unusable.

Access Right Management for Soft PLC

User management in a project is only useful in combination with the access right (=permissions)
management.

878

EI00000000067 06/2017

User Management for Soft PLC

Consider the following:

e In a new project, basically all rights are not yet defined explicitly but set to a default value. This
default value usually is granted with exception of the right to modify the current users, groups,
and permission configuration. By default, this is only granted for the Owner group.

e When the project is created, a member of the group with the right to modify the permissions can
define rights. Each particular right can be granted or denied or set back to default.

O Perform the access right management of a project in the Project - User Management —
Permissions... - Permissions dialog box.

O Perform the access right management for objects in the View — Properties... —» Properties
- Project Information dialog box, selecting the Access control tab.

e Access rights on objects are inherited. If an object has a father object (for example, if an action
is assigned to a program object, that is inserted in the structure tree below the program, then
the program is the father of the action object), the current rights of the father will automatically
become the default settings of the child. Father-child relations of objects concerning the access
rights usually correspond with the relations shown in the Devices tree, Applications tree, and
Tools tree and are indicated in the Permissions dialog box by the syntax <father object>.<child
object>. Example: Action ACT is assigned to POU object PLC_PRG. So in the Applications tree
ACT is shown in the tree structure indented below PLC_PRG. In the Permissions dialog box, ACT
is represented by PLC_PRG. ACT indicating that PLC_PRGis the father of ACT. If the modify right
is denied explicitly for PLC_PRGand a certain user group, the default value of the modify right
for ACT will also be automatically denied.

Users and Groups

Overview

The Users and Groups view of the device editor is provided for devices supporting online user
management. It allows setting up user accounts and user groups, which, in combination with the
access right management, serves to control the access on objects on the controller in online mode.

If it is desired that certain functions of a controller can only be executed by authorized users, use
the online user management feature. It allows you to set up user accounts to assign access rights
for user groups and to force a user authentication at login.

The device-specific user management can be pre-defined by the device description. This
description also defines to which extent the definitions can be edited in the configuration dialog
boxes

As in the project user management users have to be members of groups. Only user groups can
obtain certain access rights (see page 883).

Using the Configuration Dialog

Basically, the handling of the user management dialogs is similar to that of the project user
management. There is even the possibility to import user account definitions from the project user
management.

EI00000000067 06/2017 879

User Management for Soft PLC

Users and Groups view of the device editor

v

(4] Device 4 b X

Files | Log | PLC settings | Users and Groups [Access Rights | Status | Inform ¢ »
4 Upload from device # Download to device (@ Load from disk G Save to disk
Users:
=8 [usert | © Add..
81 is member of group ‘group_1’
84 is member of group ‘main_group

=8 user2

€. is member of group ‘main_group’

, € Import...

4 Edi..
& Delete

Groups:

(=& group_1 © Add..
€ has user member ‘user?’

(=) 82 main_group € Import...
€ has user member ‘user?!’ 7 Edt.

€ has user member ‘user2’

& Delete

This view is divided in 2 parts:
e The upper part is dedicated to access management of Users.
e The lower part is dedicated to access management of Groups.

880 EI00000000067 06/2017

User Management for Soft PLC

Users Area

The following buttons are available for setting up user accounts:

Button Description

Add Opens the dialog box Add User.

Enter a user Name and a Password. Repeat the password in the Confirm
password field.

Import Opens the dialog box Import Users. It shows all user names which are
defined in the project user management.

Select 1 or several entries and click OK to confirm. The dialog box Enter
password opens. Enter the corresponding password as it is defined in the
project user management. You can then import the user account to the
device-specific user management. However, these passwords are not
imported.

NOTE: Each imported user account will have an empty password definition.

Edit Modifies the selected user account concerning user name and password.
The Edit User <user name> dialog box corresponds to the Add User dialog
box (see above).

Delete Deletes the selected user account.

Groups Area
The following buttons are available for setting up user groups:

Button Description

Add Opens the dialog box Add Group.

Enter a group Name and select from the defined users those who should be
members of this group.

Import Opens the dialog box Import Groups. It shows the groups which are defined
in the project user management.

Select 1 or several entries and click OK to integrate them in the group list of
the device-specific user management.

Edit Modifies the selected group concerning group name and associated users.
The Edit Group <group name> dialog box corresponds to the Add Group
dialog box (see above).

Delete Deletes the currently selected group.

EI00000000067 06/2017

881

User Management for Soft PLC

Applying and Storing the Current Configuration
The buttons are available in the top bar of the dialog box:

Button Description

Download to device Downloads the current user management configuration to the device. It will
become effective only after it has been downloaded.

Upload from device Uploads the configuration currently applied on the device into the
configuration dialog box.

Save to disk / Load from disk | The current configuration can be stored in an XML file (*.DUM) and reloaded
from this file. This is useful to set up the same user configuration on multiple
systems.

The standard dialog for browsing in the file system is provided for this
purpose. The file filter is automatically set to *.DUM, which means device
user management files.

Printing the User Management Configuration

To print the settings of the Users and Groups view, execute the command Print from the File menu
or the command Document from the Project menu.

882 EI00000000067 06/2017

User Management for Soft PLC

Access Rights

Overview

The Access Rights view of the device editor is part of the online user management feature

(see page 879). It serves to grant or deny the currently defined user groups certain permissions,
thus defining the access rights for users on files or objects (for example, an application) on the

controller during runtime.

Consider that the access permissions can only be assigned to groups, not to particular users. For
this reason, you have to define a user as member of a group. Do the configuration of users and
groups in the Users and Groups view of the device editor (see page 879).

See the example in the following image: the permission to add and remove children to/from the
PlcLogic object granted for user group developpers_1.

Access Rights view of the device editor

Communication Settings | Applications

% Upload from device # Download to device

Actions:

+) ("] File system objects
[=}["] Runtime objects
=] -7 Add/remove children
= Device
Logger
PlcLogic
Application
Settings
UserManagement

=) - Execute
=l Device
Logger
[+ PlcLogic
Settings
UserManagement
(+)-# Modify
[+ View

PLC settings | PLC shell | Users and Groups | Access Rights '
(@ Load from disk E Save to disk

Permissions:

4P Grant ==Deny ° Clear

o developpers_1
== group1

Howto:

Select one or more actions and target objects from the
left list.

Then select the groups in the upper view for which you
want to adjust permissions.

Click ‘Grant’ to grant permissions for the selected groups.

Click ‘Deny’ to deny permissions for the selected groups.

Click ‘Clear’ to reset permissions to default for the
selected groups.

EI00000000067 06/2017

883

User Management for Soft PLC

Defining Access Permissions
To define the permission for performing an action on 1 or multiple objects, proceed as follows:

Step Action

1 Select the object entry or entries below the desired action type in the Actions area.
2 Select the desired group in the Permissions area.

3 Click the Grant or Deny button.

NOTE: When setting an access right on an object, consider the mapping table shown in the Which
Action in Detail is Concerned by a Certain Access Right on a Certain Object? paragraph
(see page 886).

See the instructions in the Howto area of the view.

Actions Area

The Actions area lists the actions which can be performed during runtime on files in the controller
file system or runtime objects, for example, applications. The tree is structured in the following
manner:

On the top level there are 2 object categories grouped in folders:
o File system objects
e Runtime objects

Indented below the object categories, there are nodes for the 4 types of actions. They can be
performed on the particular objects.

e Modify (for example, downloading application)

e View (monitoring)

e Add/remove children (adding or removing of child objects to/from an existing object)

e Execute (for example, start/stop application, setting breakpoints)

Below each action type node, find the objects, or targets of the action. These are the controller file
or runtime objects, for example, Device.

These object entries are displayed in a tree structure mapping the device tree or the file system
structure.

NOTE: Assigning an access right definition to a father node in the objects tree usually means that
the children nodes will inherit this definition. This is valid as long as they do not apply their own
explicit definition. However, depending on the device, this can be handled differently. In any event,
inheritances are not visualized here in the view.

884 EI00000000067 06/2017

User Management for Soft PLC

Permissions Area
The Permissions area shows the defined user groups.

Before each group, one of the following icons indicates the currently assigned permission
concerning the target which is selected in the Actions area:

Icon Description

— (minus sign) The actions selected in the Actions area are granted for the group.

+ (plus sign) The actions selected in the Actions area are denied for the group.

X (cross sign) There is no explicit access right definition for the actions selected in the
Actions area.

no icon being displayed Multiple actions are selected in the Actions area which do not have unique
settings referring to the currently selected group.

After you have selected the desired objects below the desired action in the Actions area and you
have selected the desired group in the Permissions area, you can use the following buttons:

Button Description

Grant Explicit granting access permission

Deny Explicit denying access permission

Clear The granted access right for the actions currently selected in the Actions area
will be deleted that is set back to the default.

Applying and Storing the Current Configuration
The buttons are available in the top bar of the dialog box:

Button Description

Download to device Downloads the currently configured access right definitions to the device.
They will become effective only after they have been downloaded.

Upload from device Uploads the access rights currently applied on the device into the
configuration dialog box.

Save to disk / Load from disk | The current configuration can be stored in an XML file (*.DAR) and reloaded
from this file. This is useful to set up the same user configuration on multiple
systems.

The standard dialog for browsing in the file system is provided for this
purpose. The file filter is automatically set to *.DAR, which means device
access right files.

Printing the Access Rights Definition

To print the settings of the Access Rights view, execute the command Print from the File menu or
the command Document from the Project menu.

EI00000000067 06/2017 885

User Management for Soft PLC

Which Action in Detail Is Concerned by a Certain Access Right on a Certain Object?

Objects

Action

Rights

Add/
Remove
Children

Execute

Modify | View

Device

Login

Logger

Read entries

PlcLogic

Application

Login

Create

Create child

Delete

Download / Online
Change

X[X | X | X

Create bootproject

X
|

Read variable

Write variable

Force variable

Set + delete breakpoint

Set next statement

X | X

X [X [X | X

Read callstack

Single cycle

Set flow control

X | X

Read flow control

Run / Stop

Reset

Settings

Read settings

Write settings

UserManag
ement

Read configuration

Write configuration

X = right must be set explicitly
— = right is not relevant

886

EI00000000067 06/2017

Appendix E

Controller Feature Sets for Migration

Controller Feature Sets for Migration

Twido Controllers

Controller Dig In Dig Out MOD FC HSC PWM Serial ETH
TWDLCAA10DRF |6 4 No 3 1 0 1 No
TWDLCDA10DRF |6 4 No 3 1 0 1 No
TWDLCAA16DRF |9 7 No 3 1 0 1+1 No
TWDLCDA16DRF |9 7 No 3 1 0 1+1 No
TWDLCAA24DRF 14 10 No 3 1 0 1+1 No
TWDLCDA24DRF |14 10 No 3 1 0 1+1 No
TWDLCAA40DRF |24 16 No 4 2 2 1+1 No
TWDLCDA40DRF |24 16 No 4 2 2 1+1 No
TWDLCAE40DRF |24 16 No 4 2 2 1+1 Yes
TWDLCDE40DRF |24 16 No 4 2 2 1+1 Yes
TWDLMDA20DTK |12 8 Yes 2 2 2 1+1 No
TWDLMDA20DUK |12 8 Yes 2 2 2 1+1 No
TWDLMDA20DRT |12 8 Yes 2 2 2 1+1 No
TWDLMDA40DTK |24 16 Yes 2 2 2 1+1 No
TWDLMDA40DUK |24 16 Yes 2 2 2 1+1 No

Dig In = number of digital inputs

Dig Out = number of digital outputs
MOD = expansion modules

FC = number of fast counters

HSC = number of high-speed counters
PWM = number of pulse generators

Serial = number of serial ports
ETH = Ethernet ports

EIO0000000067 06/2017

887

Controller Feature Sets for Migration

M221 Controllers

Controller Dig In DigOut |Analn |MOD FC |HSC PWM | Serial ETH CART
TM221C16R 9 7 2 TM2/ TM3 |4 2 0 1 No 1
TM221C16T 9 7 2 TM2/TM3 |4 2 2 1 No 1
TM221C24R 14 10 2 TM2/ TM3 |4 2 0 1 No 1
TM221C24T 14 10 2 TM2/ TM3 |4 2 2 1 No 1
TM221C40R 24 16 2 TM2/TM3 |4 2 0 1 No 2
TM221C40T 24 16 2 TM2/ TM3 |4 2 2 1 No 2
TM221CE16R 9 7 2 TM2/ TM3 |4 2 0 1 Yes 1
TM221CE16T 9 7 2 TM2/ TM3 |4 2 2 1 Yes 1
TM221CE24R 14 10 2 TM2/ TM3 |4 2 0 1 Yes 1
TM221CE24T 14 10 2 TM2/ TM3 |4 2 2 1 Yes 1
TM221CE40R 24 16 2 TM2/TM3 |4 2 0 1 Yes 2
TM221CE40T 24 16 2 TM2/ TM3 |4 2 2 1 Yes 2
TM221M16R/G |8 8 2 TM2/TM3 |4 2 0 2 No 0
TM221M16T/G 8 8 2 TM2/TM3 |4 2 2 2 No 0
TM221M32TK 16 16 2 TM2/ TM3 |4 2 2 2 No 0
TM221ME16R/G |8 8 2 TM2/TM3 |4 2 0 1 Yes 0
TM221ME16T/G |8 8 2 TM2/TM3 |4 2 2 1 Yes 0
TM221ME32TK |16 16 2 TM2/ TM3 |4 2 2 1 Yes 0

Dig In = number of digital inputs

Dig Out = number of digital outputs
Ana In = number of analog inputs
MOD = expansion modules

FC = number of fast counters

HSC = number of high-speed counters
PWM = number of pulse generators
Serial = number of serial ports

ETH = Ethernet ports

CART = number of cartridges

888 EI00000000067 06/2017

Controller Feature Sets for Migration

SoMachine Controllers

Controller Dig In DigOut |Analn [MOD |FC |HSC PWM | Serial ETH CART

TM241C24R 14 10 0 ™2/ |4 2 2 2 No 1
T™M3

TM241C24T/U 14 10 0 ™2/ |4 2 2 2 No 1
T™M3

TM241C40R 24 16 0 ™2/ |4 2 2 2 No 2
T™M3

TM241C40T/U 24 16 0 ™2/ |4 2 2 2 No 2
T™M3

TM241CE24R 14 10 0 ™2/ |4 2 2 2 Yes 1
T™M3

TM241CE24T/U 14 10 0 ™2/ |4 2 2 2 Yes 1
T™M3

TM241CE40R 24 16 0 ™2/ |4 2 2 2 Yes 2
T™M3

TM241CE40T/U 24 16 0 ™2/ |4 2 2 2 Yes 2
T™M3

TM241CEC24R 14 10 0 ™2/ |4 2 2 2 Yes 1
T™M3

TM241CEC24T/U 14 10 0 ™2/ |4 2 2 2 Yes 1
TM3

HMISCU-A5 16 10 0 No 2 1 1 Yes 0

HMISCU-B5 8 8 2 No 2 1 1 Yes 0

Dig In = number of digital inputs

Dig Out = number of digital outputs
Ana In = number of analog inputs
MOD = expansion modules

FC = number of fast counters

HSC = number of high-speed counters
PWM = number of pulse generators
Serial = number of serial ports

ETH = Ethernet ports

CART = number of cartridges

EI00000000067 06/2017

889

Controller Feature Sets for Migration

890 EI00000000067 06/2017

Glossary ﬁ

A

application

A program including configuration data, symbols, and documentation.

C

CFC
(continuous function charf) A graphical programming language (an extension of the IEC 61131-3
standard) based on the function block diagram language that works like a flowchart. However, no
networks are used and free positioning of graphic elements is possible, which allows feedback
loops. For each block, the inputs are on the left and the outputs on the right. You can link the block
outputs to the inputs of other blocks to create complex expressions.

configuration
The arrangement and interconnection of hardware components within a system and the hardware
and software parameters that determine the operating characteristics of the system.

controller
Automates industrial processes (also known as programmable logic controller or programmable
controller).
D

DTM
(device type manager) Classified into 2 categories:
e Device DTMs connect to the field device configuration components.
e CommDTMs connect to the software communication components.
The DTM provides a unified structure for accessing device parameters and configuring, operating,
and diagnosing the devices. DTMs can range from a simple graphical user interface for setting
device parameters to a highly sophisticated application capable of performing complex real-time
calculations for diagnosis and maintenance purposes.

DUT

(data unit type) Along with the standard data types the user can define own data type structures,
enumerationen types, and references as data type units in a DUT editor.

EI00000000067 06/2017 891

Glossary

E

element

The short name of the ARRAY element.

expansion bus

An electronic communication bus between expansion 1/0O modules and a controller.

F

FBD
(function block diagram) One of 5 languages for logic or control supported by the standard IEC
61131-3 for control systems. Function block diagram is a graphically oriented programming
language. It works with a list of networks, where each network contains a graphical structure of
boxes and connection lines, which represents either a logical or arithmetic expression, the call of
a function block, a jump, or a return instruction.

FDT
(field device tool) The specification describing the standardized data exchange between the
devices and control system or engineering or asset management tools.

GRAFCET
The functioning of a sequential operation in a structured and graphic form.
This is an analytical method that divides any sequential control system into a series of steps, with
which actions, transitions, and conditions are associated.

GVL
(global variable lisf) Manages global variables within a SoMachine project.
I

/0
(input/output)

IL
(instruction list) A program written in the language that is composed of a series of text-based
instructions executed sequentially by the controller. Each instruction includes a line number, an
instruction code, and an operand (refer to IEC 61131-3).

892 EIO0000000067 06/2017

Glossary

L

LD
(/adder diagram) A graphical representation of the instructions of a controller program with symbols
for contacts, coils, and blocks in a series of rungs executed sequentially by a controller (refer to
IEC 61131-3).

M

MAC address
(media access control address) A unique 48-bit number associated with a specific piece of
hardware. The MAC address is programmed into each network card or device when it is
manufactured.

P

POU
(program organization unif) A variable declaration in source code and a corresponding instruction
set. POUs facilitate the modular re-use of software programs, functions, and function blocks. Once
declared, POUs are available to one another.

program
The component of an application that consists of compiled source code capable of being installed
in the memory of a logic controller.
R

RTS

(request fo send) A data transmission signal and CTS signal that acknowledges the RTS from the
destination node.

S

Sercos
(serial real-time communications system) A digital control bus that interconnects, motion controls,
drives, 1/Os, sensors, and actuators for numerically controlled machines and systems. Itis a
standardized and open controller-to-intelligent digital device interface, designed for high-speed
serial communication of standardized closed-loop real-time data.

SFC
(sequential function charf) A language that is composed of steps with associated actions,
transitions with associated logic condition, and directed links between steps and transitions. (The
SFC standard is defined in IEC 848. Itis IEC 61131-3 compliant.)

EI00000000067 06/2017 893

Glossary

U

UDP
(user datagram profocol) A connectionless mode protocol (defined by IETF RFC 768) in which
messages are delivered in a datagram (data telegram) to a destination computer on an IP network.
The UDP protocol is typically bundled with the Internet protocol. UDP/IP messages do not expect
a response, and are therefore ideal for applications in which dropped packets do not require
retransmission (such as streaming video and networks that demand real-time performance).
uTtC

(universal time coordinated) The primary time standard by which the world regulates clocks and
time.

894 EI00000000067 06/2017

Index Qg
Symbols analog inputs
IronPython, 833 CANopen, 785

AND
_ DELETE
tor. 698 IEC operator, 635
ISO\F;/iﬁIg;EF ANY_NUM_TO
o tor. 707 IEC operator, 682
operator, ANY 7O
_ NEW
operator, 702 IEC operator, 682
_ QUERYINTERFACE :FSFTRI/ 616
ocfféggbfﬁfm |EC operator, 692
o ATAN

operator, 707

0-9
3 GB switch on Windows 7 32-bit, 790
32-bit operating system

memory limit, 790

A

ABS

IEC operator, 664
ACOS

IEC operator, 693
ADD

IEC operator, 623
adding controllers, 64

IEC operator, 694
automatic I/O mapping, 747

B

BIT, 5690
BITADR
operator, 663
BOOL, 585
BOOL_TO
IEC operator, 667
boot application, 235
Boot Application, 229
build-time performance, 797

adding controllers by drag and drop, 60
adding devices and modules by drag and
drop, 67
adding devices from device template by drag
and drop, 62
adding devices from function template by
drag and drop, 62
adding expansion devices by drag and drop,
61
addressing, 877
ADR

operator, 667

EI00000000067 06/2017 895

Index

C

CAL
IEC operator, 664
CANopen analog inputs, 785
CANopen devices, 66
CASE
instruction, 364
Catalog view, 44
command
Convert Device, 73
Convert SoMachine Basic Project, 77
Convert Twido Project, 77
communication manager configuration, 66
communication settings, 702
configuration diagnostic, 68
constants, 526
Content
operator, 662
CONTINUE
instruction, 364
controller - HMI variable exchange, 496
Convert Device command, 73
convert SoMachine Basic project, 77
convert Twido project, 77
COS
IEC operator, 690

D

data types, 585
DATE, 587
DATE_AND_TIME, 587
DATE_TO
IEC operator, 676
device templates, 757, 752
devices
adding, 68
DIV
IEC operator, 628
download, 228, 235
boot application, 235
Boot Application, 229
DT, 587
DT_TO
IEC operator, 676

DTM, 39

E

EQ

IEC operator, 658
EXIT

instruction, 364
EXP

IEC operator, 688
expansion devices, 65
expansions, 65
EXPT

IEC operator, 695
external variables, 523

F

FAQ

login to controller not successful, 802
FB_init

IEC operator, 777
FdtConnections node, 39
FFB Finder, 428
field device configuration, 66
fieldbus health information, 68
fieldbusses supported by templates, 739
FOR

instruction, 364
Function and Function Block Finder, 428
function templates, 765

G

GE
IEC operator, 657
global variables, 522
GNVL
global network variables list, 396
GT
IEC operator, 654

896

EI00000000067 06/2017

Index

P{

health information
fieldbus, 68

HMI - controller variable exchange, 496

HMI controller

unsuccessful multiple download, 793

IEC objects

fieldbus Diagnostic/O mapping, 68

IF
instruction, 364

increasing build-time performance, 797

INI

IEC operator, 777
input and output variables, 522
input variables, 527
installation

third-party Sercos devices, 57
instructions

ST editor, 364
INT_TO

IEC operator, 677
integer, 585

J

JMP
instruction, 364

L

large SoMachine projects, 790
LE
IEC operator, 656
LIMIT
IEC operator, 657
literals
typed, 526
LN
IEC operator, 686
local variables, 527

LOG
IEC operator, 687
login, 228, 235
login to controller not successful, 802
LREAL, 586
LREAL_TO
IEC operator, 672
LT
IEC operator, 655
LTIME, 589

M
managing tags, 44
MAX
IEC operator, 649
memory consumption of SoMachine, 797
memory limit, 790
menus, 788
MIN
IEC operator, 650
MOD
IEC operator, 637
Modbus I0Scanner on a Serial Line, 792
Modbus Serial IOScanner
error detected, 792
Modbus SL devices, 66
Modbus slave disconnected, 792
MOVE
IEC operator, 632
MUL
IEC operator, 625
multiple download not working on HMI con-
troller, 793
MUX
IEC operator, 652

EI00000000067 06/2017

897

Index

N

NE
IEC operator, 659
Network Device Identification
accessing new controllers, 797
connecting via IP address and address in-
formation, 799
FAQs, 802
in Controller Selection view, 98
NodeName, 704
NOT
IEC operator, 638
NVL
configuration example, 407
considerations, 397
controllers supporting NVL, 397
network variables list, 390
rules, 398
NVL communication suspended, 793

o)

OPC client

variables mapped to %l , 823
OPC server, 878
OPC Server 3, 877
OPC server configuration, 823
OR

IEC operator, 636
output variables, 527

P

persistent variables, 525

Process communication settings dialog box,
102

programming environments for Python, 833
publishing variables, 490

publishing variables (HMI), 493

Python, 833
R
REAL, 586

REAL_TO

IEC operator, 672
reducing memory consumption, 797
refreshing variables, 496
remanent variables, 524
REPEAT

instruction, 364
retain variables, 524
RETURN

instruction, 364
ROL

IEC operator, 643
ROR

IEC operator, 645
routing, 877
run, 245

S

Script Engine, 833
searching within catalogs, 44
SEL

IEC operator, 648
selecting variables, 492
Sercos

installation of third-party devices, 57
SHL

IEC operator, 640
shortcuts, 788
SHR

IEC operator, 642
SIN

IEC operator, 689
SIZEOF

IEC operator, 633
smart coding, 580
SQRT

IEC operator, 685
ST editor

instructions, 364
startup performance of SoMachine, 787
static variables, 523
stop, 245
STRING, 587

898

EI00000000067 06/2017

Index

STRING_TO

IEC operator, 678
SuUB

IEC operator, 627
symbol configuration, 482

T

tagging catalog items, 44
TAN

IEC operator, 697
tasks

adding, 226
template libraries, 757
templates, 736
temporary variables, 523
TIME, 587
time data types, 587
TIME_OF_DAY, 587

IEC operator, 674
TIME_TO

IEC operator, 674
TO_BOOL

IEC operator, 669
TOD, 587
TRUNC

IEC operator, 680
TRUNC_INT

IEC operator, 687
typed literals, 526

U

UNION, 589
updating devices, 77

Use DTM Connection checkbox, 39

user management, 725
Users and Groups, 725

\Y

variable definition, 486
variable exchange

communication speed, 496

variable types, 486

variables, 527
persistent, 277
publishing, 490
publishing (HMI), 493
remanent, 277

visualizations, 756

W

WHILE
instruction, 364
WSTRING, 590

X

XOR
IEC operator, 637

EI00000000067 06/2017

899

	SoMachine
	Table of Contents
	Safety Information
	About the Book
	Introduction
	General Introduction to the SoMachine Logic Builder
	What is the SoMachine Logic Builder?
	Tasks Performed by the SoMachine Logic Builder

	SoMachine Logic Builder User Interface
	Elements of the SoMachine Logic Builder Screen
	Multi-Tabbed Navigators
	Multi-Tabbed Catalog View
	Customizing the User Interface
	User Interface in Online Mode
	Menus and Commands

	Basic Concepts
	Introduction and Basic Concepts

	Configuration
	Installing Devices
	Integration of Sercos Devices from Third-Party Vendors

	Managing Devices
	Adding Devices by Drag and Drop
	Adding Devices by Drag and Drop

	Adding Devices by Context Menu or Plus Button
	Adding a Controller
	Adding Expansion Devices
	Adding Communication Managers
	Adding Devices to a Communication Manager
	Adding Devices from Template

	Updating Devices
	Updating Devices

	Converting Devices
	Converting Devices

	Converting Projects
	Converting SoMachine Basic and Twido Projects

	Common Device Editor Dialogs
	Device Configuration
	General Information About Device Editors
	Controller Selection
	Communication Settings
	Configuration
	Applications
	Files
	Log
	PLC Settings
	Users and Groups
	Task Deployment
	Status
	Information

	I/O Mapping
	I/O Mapping
	Working with the I/O Mapping Dialog
	I/O Mapping in Online Mode
	Implicit Variables for Forcing I/Os

	Program
	Program Components
	Program Organization Unit (POU)
	POU
	Adding and Calling POUs
	Program
	Function
	Method
	Property
	Interface
	Interface Property
	Action
	External Function, Function Block, Method
	POUs for Implicit Checks

	Function Block
	General Information
	Function Block Instance
	Calling a Function Block
	Extension of a Function Block
	Implementing Interfaces
	Method Invocation
	SUPER Pointer
	THIS Pointer

	Application Objects
	Data Type Unit (DUT)
	Global Variable List - GVL
	Global Network Variable List - GNVL
	Persistent Variables
	External File
	Text List
	Image Pool

	Application
	Application

	Task Configuration
	Task Configuration
	Adding Tasks

	Managing Applications
	General Information
	Introduction

	Building and Downloading Applications
	Building Applications
	Login
	Build Process at Changed Applications
	Downloading an Application

	Running Applications
	Running Applications

	Maintaining Applications
	Monitoring
	Debugging

	Logic Editors
	FBD/LD/IL Editor
	Information on the FBD/LD/IL Editor
	FBD/LD/IL Editor
	Function Block Diagram (FBD) Language
	Ladder Diagram (LD) Language
	Instruction List (IL) Language
	Modifiers and Operators in IL
	Working in the FBD and LD Editor
	Working in the IL Editor
	Cursor Positions in FBD, LD, and IL
	FBD/LD/IL Menu
	FBD/LD/IL Editor in Online Mode

	FBD/LD/IL Elements
	FBD/LD/IL Toolbox
	Network in FBD/LD/IL
	Assignment in FBD/LD/IL
	Jump in FBD/LD/IL
	Label in FBD/LD/IL
	Boxes in FBD/LD/IL
	RETURN Instruction in FBD/LD/IL
	Branch / Hanging Coil in FBD/LD/IL
	Parallel Branch
	Set/Reset in FBD/LD/IL
	Set/Reset Coil

	LD Elements
	Contact
	Coil

	Continuous Function Chart (CFC) Editor
	Continuous Function Chart (CFC) Language
	CFC Editor
	Cursor Positions in CFC
	CFC Elements / ToolBox
	Working in the CFC Editor
	CFC Editor in Online Mode
	CFC Editor Page-Oriented

	Sequential Function Chart (SFC) Editor
	SFC Editor
	SFC - Sequential Function Chart Language
	Cursor Positions in SFC
	Working in the SFC Editor
	SFC Element Properties
	SFC Elements / ToolBox
	Qualifier for Actions in SFC
	Implicit Variables - SFC Flags
	Sequence of Processing in SFC
	SFC Editor in Online Mode

	Structured Text (ST) Editor
	Information on the ST Editor
	ST Editor
	ST Editor in Online Mode

	Structured Text ST / Extended Structured Text (ExST) Language
	Structured Text ST / Extended Structured Text ExST
	Expressions
	Instructions

	Object Editors
	Declaration Editors
	Textual Declaration Editor
	Tabular Declaration Editor
	Declaration Editor in Online Mode

	Device Type Manager (DTM) Editor
	DTM Editor

	Data Unit Type (DUT) Editor
	Data Unit Type Editor

	Global Variables List (GVL) Editor
	GVL Editor

	Network Variables List (NVL) Editor
	Information on the NVL Editor
	Network Variables List Editor

	General Information on Network Variables
	Introduction to Network Variables List (NVL)
	Configuring the Network Variables Exchange
	Network Variables List (NVL) Rules
	Operating State of the Sender and the Receiver
	Example
	Compatibility

	Task Editor
	Information on the Task Configuration
	Properties Tab
	Monitor Tab
	Configuration of a Specific Task
	Task Processing in Online Mode

	Watch List Editor
	Watch View / Watch List Editor
	Creating a Watch List
	Watch List in Online Mode

	Tools Within Logic Editors
	Function and Function Block Finder
	Input Assistant

	Tools
	Data Logging
	Introduction to Data Logging

	Recipe Manager
	Recipe Manager
	Recipe Definition
	RecipeMan Commands

	Trace Editor
	Trace Object
	Trace Basics
	Creating a Trace Object

	Trace Configuration
	Variable Settings
	Record Settings
	Advanced Trace Settings
	Edit Appearance
	Appearance of the Y-axis

	Trace Editor in Online Mode
	Trace Editor in Online Mode

	Keyboard Operations for Trace Diagrams
	Keyboard Shortcuts

	Symbol Configuration Editor
	Symbol Configuration Editor
	Symbol Configuration
	Adding a Symbol Configuration

	SoMachine Controller - HMI Data Exchange
	SoMachine Single Variable Definition
	Publishing Variables in the Controller Part
	Selecting Variables in the HMI Part
	Publishing Variables in the HMI Part
	Parametrization of the Physical Media
	Communication Performance on Controller - HMI Data Exchange

	Programming Reference
	Variables Declaration
	Declaration
	General Information
	Recommendations on the Naming of Identifiers
	Variables Initialization
	Declaration
	Shortcut Mode
	AT Declaration
	Keywords

	Variable Types
	Variable Types
	Attribute Keywords for Variable Types
	Variables Configuration - VAR_CONFIG

	Method Types
	FB_init, FB_reinit Methods
	FB_exit Method

	Pragma Instructions
	Pragma Instructions
	Message Pragmas
	Conditional Pragmas

	Attribute Pragmas
	Attribute Pragmas
	User-Defined Attributes
	Attribute call_after_init
	Attribute displaymode
	Attribute ExpandFully
	Attribute global_init_slot
	Attribute hide
	Attribute hide_all_locals
	Attribute initialize_on_call
	Attribute init_namespace
	Attribute init_On_Onlchange
	Attribute instance-path
	Attribute linkalways
	Attribute monitoring
	Attribute namespace
	Attribute no_check
	Attribute no_copy
	Attribute no-exit
	Attribute no_init
	Attribute no_virtual_actions
	Attribute obsolete
	Attribute pack_mode
	Attribute qualified_only
	Attribute reflection
	Attribute subsequent
	Attribute symbol
	Attribute warning disable

	The Smart Coding Functionality
	Smart Coding

	Data Types
	General Information
	Data Types

	Standard Data Types
	Standard Data Types

	Extensions to IEC Standard
	UNION
	LTIME
	WSTRING
	BIT
	References
	Pointers

	User-Defined Data Types
	Defined Data Types
	Arrays
	Structures
	Enumerations
	Subrange Types

	Programming Guidelines
	Naming Conventions
	General Information

	Prefixes
	Prefix Parts
	Order of Prefixes
	Scope Prefix
	Data Type Prefix
	Property Prefix
	POU Prefix
	Namespace Prefix

	Operators
	Arithmetic Operators
	ADD
	MUL
	SUB
	DIV
	MOD
	MOVE
	SIZEOF

	Bitstring Operators
	AND
	OR
	XOR
	NOT

	Bit-Shift Operators
	SHL
	SHR
	ROL
	ROR

	Selection Operators
	SEL
	MAX
	MIN
	LIMIT
	MUX

	Comparison Operators
	GT
	LT
	LE
	GE
	EQ
	NE

	Address Operators
	ADR
	Content Operator
	BITADR

	Calling Operator
	CAL

	Type Conversion Operators
	Type Conversion Functions
	BOOL_TO Conversions
	TO_BOOL Conversions
	Conversion Between Integral Number Types
	REAL_TO / LREAL_TO Conversions
	TIME_TO/TIME_OF_DAY Conversions
	DATE_TO/DT_TO Conversions
	STRING_TO Conversions
	TRUNC
	TRUNC_INT
	ANY_..._TO Conversions

	Numeric Functions
	ABS
	SQRT
	LN
	LOG
	EXP
	SIN
	COS
	TAN
	ASIN
	ACOS
	ATAN
	EXPT

	IEC Extending Operators
	IEC Extending Operators
	__DELETE
	__ISVALIDREF
	__NEW
	__QUERYINTERFACE
	__QUERYPOINTER
	Scope Operators

	Initialization Operator
	INI Operator

	Operands
	Constants
	BOOL Constants
	TIME Constants
	DATE Constants
	DATE_AND_TIME Constants
	TIME_OF_DAY Constants
	Number Constants
	REAL/LREAL Constants
	STRING Constants
	Typed Constants / Typed Literals

	Variables
	Variables
	Addressing Bits in Variables

	Addresses
	Address

	Functions
	Functions

	SoMachine Templates
	General Information about SoMachine Templates
	SoMachine Templates
	General Information About SoMachine Templates
	Administration of SoMachine Templates

	Managing Device Templates
	Managing Device Templates
	Facts of Device Templates
	Adding Devices from Template
	Creating a Device Template on the Basis of Field Devices or I/O Modules
	Visualizations Suitable for Creating Device Templates
	Further Information on Integrating Control Logic into Device Templates
	Steps to Create a Device Template

	Managing Function Templates
	Managing Function Templates
	Facts of Function Templates
	Adding Functions from Template
	Application Functions as Basis for Function Templates
	Steps to Create a Function Template

	Troubleshooting and FAQ
	Generic - Troubleshooting and FAQ
	Frequently Asked Questions
	How Can I Enable and Configure Analog Inputs on CANopen?
	Why is SoMachine Startup Performance Sometimes Slower?
	How Can I Manage Shortcuts and Menus?
	How Can I Increase the Memory Limit Available for SoMachine on 32-Bit Operating Systems?
	How Can I Reduce the Memory Consumption of SoMachine?
	How Can I Increase the Build-Time Performance of SoMachine?
	What Can I Do in Case of Issues with Modbus IOScanner on Serial Line?
	What Can I Do If My Network Variables List (NVL) Communication Has Been Suspended?
	What Can I Do If a Multiple Download is Unsuccessful on an HMI Controller?

	Accessing Controllers - Troubleshooting and FAQ
	Troubleshooting: Accessing New Controllers
	Accessing New Controllers
	Connecting via IP Address and Address Information

	FAQ - What Can I Do in Case of Connection Problems With the Controller?
	FAQ - Why is a Connection to the Controller not Possible?
	FAQ - Why has the Communication Between PC and Controller been Interrupted?

	Appendices
	Network Communication
	Network Topology
	Addressing and Routing
	Structure of Addresses

	Usage of the OPC Server 3
	General Information
	Declaring a Variable to be Used With OPC
	OPC Server Configuration
	Usage of the CoDeSys OPC Server

	Script Language
	General Information
	Introduction
	Executing Scripts
	Best Practices
	Reading .NET API Documentations
	Entry Points

	Schneider Electric Script Engine Examples
	Device Parameters
	Compiler Version
	Visualization Profile
	Update Libraries
	Clean and Build Application
	Communication Settings
	Reset Diagnostic Messages
	Reboot the Controller
	Convert Device
	Comparing Projects
	Advanced Library Management Functions
	Accessing POUs

	CoDeSys Script Engine Examples
	Project
	Online Application
	Objects
	Devices
	System / User Interface (UI)
	Reading Values
	Reading Values From Recipe and Send an Email
	Determine Device Tree of the Open Project
	Script Example 4: Import a Device in PLCOpenXML From Subversion

	User Management for Soft PLC
	General Information on User Management for Soft PLC
	Users and Groups
	Access Rights

	Controller Feature Sets for Migration
	Controller Feature Sets for Migration

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

