
SoMachine Basic

EIO0000001474 12/2016
EI
O

00
00

00
14

74
.0

7

www.schneider-electric.com

SoMachine Basic
Generic Functions Library Guide
12/2016

The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. If you
have any suggestions for improvements or amendments or have found errors in this publication,
please notify us.
No part of this document may be reproduced in any form or by any means, electronic or
mechanical, including photocopying, without express written permission of Schneider Electric.
All pertinent state, regional, and local safety regulations must be observed when installing and
using this product. For reasons of safety and to help ensure compliance with documented system
data, only the manufacturer should perform repairs to components.
When devices are used for applications with technical safety requirements, the relevant
instructions must be followed.
Failure to use Schneider Electric software or approved software with our hardware products may
result in injury, harm, or improper operating results.
Failure to observe this information can result in injury or equipment damage.
© 2016 Schneider Electric. All Rights Reserved.
2 EIO0000001474 12/2016

Table of Contents
Safety Information. 9
About the Book . 11

Chapter 1 Introduction . 15
How to Use the Source Code Examples . 16
Operation Blocks . 19
Comparison Blocks . 22

Chapter 2 Language Objects. 23
Objects . 24
Memory Bit Objects . 25
I/O Objects. 27
Word Objects. 30
Floating Point and Double Word Objects . 34
Structured Objects. 39
Indexed Objects. 42
Function Block Objects . 44

Chapter 3 Instructions . 47
3.1 Boolean Processing. 48

Boolean Instructions . 49
Load Operators (LD, LDN, LDR, LDF) . 52
Assignment Operators (ST, STN, R, S) . 54
Logical AND Operators (AND, ANDN, ANDR, ANDF) 56
Logical OR Operators (OR, ORN, ORR, ORF) 58
Exclusive OR Operators (XOR, XORN, XORR, XORF) 60
NOT Operator (N) . 62
Comparison Instructions . 63

3.2 Numerical Processing . 65
Introduction to Numerical Operations . 66
Assignment Instructions . 67
Bit Strings Assignment . 68
Words Assignment . 70
Arithmetic Operators on Integers. 72
Logic Instructions. 76
Shift Instructions . 78
BCD/Binary Conversion Instructions . 80
Single/Double Word Conversion Instructions 82
EIO0000001474 12/2016 3

3.3 Program . 83
 END Instructions . 84
 NOP Instructions . 85
Jump Instructions . 86
Subroutine Instructions . 88

3.4 Floating Point . 90
Arithmetic Instructions on Floating Point Objects. 91
Trigonometric Instructions . 94
Angle Conversion Instructions . 96
Integer/Floating Conversion Instructions . 97

3.5 ASCII . 99
ROUND Instructions. 100
ASCII to Integer Conversion Instructions . 102
Integer to ASCII Conversion Instructions . 104
ASCII to Float Conversion Instructions . 106
Float to ASCII Conversion Instructions . 108

3.6 Stack Operators . 110
Stack Instructions (MPS, MRD, MPP) . 110

3.7 Instructions on Object Tables. 112
Word, Double Word, and Floating Point Tables Assignment 113
Table Summing Functions . 115
Table Comparison Functions . 117
Table Search Functions . 119
Table Search Functions for Maximum and Minimum Values 121
Number of Occurrences of a Value in a Table 122
Table Rotate Shift Functions . 123
Table Sort Functions . 125
Floating Point Table Interpolation (LKUP) Functions 126
MEAN Functions of the Values of a Floating Point Table 130

3.8 Instructions on I/O Objects. 131
Read Immediate Digital Embedded Input (READ_IMM_IN). 132
Write Immediate Digital Embedded Output (WRITE_IMM_OUT). 134
Read Immediate Function Block Parameter (READ_IMM) 136
Write Immediate Function Block Parameter (WRITE_IMM) 137

Chapter 4 I/O Objects . 139
4.1 Fast Counter (%FC) . 140

Fast Counter . 140
4 EIO0000001474 12/2016

4.2 High Speed Counter (%HSC) . 141
High Speed Counter . 141

4.3 Pulse (%PLS) . 142
Pulse . 142

4.4 Pulse Width Modulation (%PWM) . 143
Pulse Width Modulation. 143

Chapter 5 Network Objects . 145
Network Objects . 145

Chapter 6 Software Objects . 147
6.1 Using Function Blocks . 148

Function Block Programming Principles . 149
Adding a Function Block . 151
Configuring a Function Block. 153

6.2 Timer (%TM) . 154
Description. 155
Configuration . 156
TON: On-Delay Timer . 158
TOF: Off-Delay Timer . 160
TP: Pulse Timer. 162
Programming Example . 163

6.3 Counter (%C). 164
Description. 165
Configuration . 167
Programming Example . 169

6.4 Message (%MSG) and Exchange (EXCH) . 171
Overview . 172
Description. 174
Configuration . 177
Programming Example . 181
ASCII Examples . 183
Modbus Standard Requests and Examples . 185

6.5 LIFO/FIFO Register (%R) . 194
Description. 195
Configuration . 197
LIFO Register Operation . 199
FIFO Register Operation . 200
Programming Example . 201
EIO0000001474 12/2016 5

6.6 Drums (%DR). 202
Description . 203
Configuration . 204
Programming Example. 207

6.7 Shift Bit Register (%SBR) . 210
Description . 211
Configuration . 212
Programming Example. 214

6.8 Step Counter (%SC) . 215
Description . 216
Configuration . 217
Programming Example. 218

6.9 Schedule Blocks (%SCH) . 220
Description . 221
Programming and Configuring . 223

6.10 Real Time Clock (%RTC) . 225
Description . 226
Configuration . 229

6.11 PID . 230
PID Function . 230

6.12 Grafcet Steps . 231
Grafcet Steps . 231

Chapter 7 PTO Objects. 233
7.1 Motion Task Table (%MT) . 234

Motion Task Table . 234
7.2 Pulse Train Output (%PTO) . 235

Pulse Train Output . 235
Chapter 8 Drive Objects . 237

Drive Objects . 237
Chapter 9 Communication Objects . 239

9.1 Read Data from a Remote Device (%READ_VAR) 240
Description . 241
Function Configuration . 245
Programming Example. 248

9.2 Write Data to a Modbus Device (%WRITE_VAR) 249
Description . 250
Function Configuration . 252
Programming Example. 256
6 EIO0000001474 12/2016

9.3 Read and Write Data on a Modbus Device (%WRITE_READ_VAR) . 257
Description. 258
Function Configuration . 260
Programming Example . 263

9.4 Communication on an ASCII Link (%SEND_RECV_MSG) 264
Description. 265
Function Configuration . 268
Programming Example . 271

9.5 Send Receive SMS (%SEND_RECV_SMS) . 272
Description. 273
Function Configuration . 280

Chapter 10 Clock Functions . 287
Clock Functions . 288
Time and Date Stamping. 289
Setting Date and Time. 291

Glossary . 295
Index . 297
EIO0000001474 12/2016 7

8 EIO0000001474 12/2016

Safety Information
Important Information

NOTICE
Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, service, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to warn of potential hazards or to call attention
to information that clarifies or simplifies a procedure.
EIO0000001474 12/2016 9

PLEASE NOTE
Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of
the use of this material.
A qualified person is one who has skills and knowledge related to the construction and operation
of electrical equipment and its installation, and has received safety training to recognize and avoid
the hazards involved.
10 EIO0000001474 12/2016

About the Book
At a Glance

Document Scope
This guide describes how to use Function Blocks and Instructions in programs you create with
SoMachine Basic software. The descriptions apply to all logic controllers supported by SoMachine
Basic.

Validity Note
The information in this manual is applicable only for SoMachine Basic compatible products.
This document has been updated for the release of SoMachine Basic V1.5.
The technical characteristics of the devices described in this document also appear online. To
access this information online:

The characteristics that are presented in this manual should be the same as those characteristics
that appear online. In line with our policy of constant improvement, we may revise content over time
to improve clarity and accuracy. If you see a difference between the manual and online information,
use the online information as your reference.

Step Action
1 Go to the Schneider Electric home page www.schneider-electric.com.
2 In the Search box type the reference of a product or the name of a product range.

 Do not include blank spaces in the reference or product range.
 To get information on grouping similar modules, use asterisks (*).

3 If you entered a reference, go to the Product Datasheets search results and click on the
reference that interests you.
If you entered the name of a product range, go to the Product Ranges search results and click
on the product range that interests you.

4 If more than one reference appears in the Products search results, click on the reference that
interests you.

5 Depending on the size of your screen, you may need to scroll down to see the data sheet.
6 To save or print a data sheet as a .pdf file, click Download XXX product datasheet.
EIO0000001474 12/2016 11

http://www.schneider-electric.com

Related Documents

You can download these technical publications and other technical information from our website
at http://www.schneider-electric.com/ww/en/download

Product Related Information

Title of Documentation Reference Number
SoMachine Basic - Operating Guide EIO0000001354 (ENG)

EIO0000001355 (FRA)
EIO0000001356 (GER)
EIO0000001357 (SPA)
EIO0000001358 (ITA)
EIO0000001359 (CHS)
EIO0000001366 (POR)
EIO0000001367 (TUR)

Modicon M221 Logic Controller Advanced Functions - Library Guide EIO0000002007 (ENG)
EIO0000002008 (FRE)
EIO0000002009 (GER)
EIO0000002010 (SPA)
EIO0000002011 (ITA)
EIO0000002012 (CHS)
EIO0000002013 (POR)
EIO0000002014 (TUR)

WARNING
LOSS OF CONTROL
 The designer of any control scheme must consider the potential failure modes of control paths

and, for certain critical control functions, provide a means to achieve a safe state during and
after a path failure. Examples of critical control functions are emergency stop and overtravel
stop, power outage and restart.

 Separate or redundant control paths must be provided for critical control functions.
 System control paths may include communication links. Consideration must be given to the

implications of unanticipated transmission delays or failures of the link.
 Observe all accident prevention regulations and local safety guidelines.1
 Each implementation of this equipment must be individually and thoroughly tested for proper

operation before being placed into service.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
12 EIO0000001474 12/2016

http://www.schneider-electric.com/ww/en/download/document/EIO0000001354
http://www.schneider-electric.com/ww/en/download/document/EIO0000001355
http://www.schneider-electric.com/ww/en/download/document/EIO0000001356
http://www.schneider-electric.com/ww/en/download/document/EIO0000001357
http://www.schneider-electric.com/ww/en/download/document/EIO0000001358
http://www.schneider-electric.com/ww/en/download/document/EIO0000001359
http://www.schneider-electric.com/ww/en/download/document/EIO0000001366
http://www.schneider-electric.com/ww/en/download/document/EIO0000001367
http://www.schneider-electric.com/ww/en/download/document/EIO0000002007
http://www.schneider-electric.com/ww/en/download/document/EIO0000002008
http://www.schneider-electric.com/ww/en/download/document/EIO0000002009
http://www.schneider-electric.com/ww/en/download/document/EIO0000002010
http://www.schneider-electric.com/ww/en/download/document/EIO0000002011
http://www.schneider-electric.com/ww/en/download/document/EIO0000002012
http://www.schneider-electric.com/ww/en/download/document/EIO0000002013
http://www.schneider-electric.com/ww/en/download/document/EIO0000002014

1 For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the
Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest
edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of
Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

Terminology Derived from Standards
The technical terms, terminology, symbols and the corresponding descriptions in this manual, or
that appear in or on the products themselves, are generally derived from the terms or definitions
of international standards.
In the area of functional safety systems, drives and general automation, this may include, but is not
limited to, terms such as safety, safety function, safe state, fault, fault reset, malfunction, failure,
error, error message, dangerous, etc.
Among others, these standards include:

WARNING
UNINTENDED EQUIPMENT OPERATION
 Only use software approved by Schneider Electric for use with this equipment.
 Update your application program every time you change the physical hardware configuration.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Standard Description
EN 61131-2:2007 Programmable controllers, part 2: Equipment requirements and tests.
ISO 13849-1:2008 Safety of machinery: Safety related parts of control systems.

General principles for design.
EN 61496-1:2013 Safety of machinery: Electro-sensitive protective equipment.

Part 1: General requirements and tests.
ISO 12100:2010 Safety of machinery - General principles for design - Risk assessment and risk

reduction
EN 60204-1:2006 Safety of machinery - Electrical equipment of machines - Part 1: General

requirements
EN 1088:2008
ISO 14119:2013

Safety of machinery - Interlocking devices associated with guards - Principles
for design and selection

ISO 13850:2006 Safety of machinery - Emergency stop - Principles for design
EN/IEC 62061:2005 Safety of machinery - Functional safety of safety-related electrical, electronic,

and electronic programmable control systems
IEC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic safety-

related systems: General requirements.
IEC 61508-2:2010 Functional safety of electrical/electronic/programmable electronic safety-

related systems: Requirements for electrical/electronic/programmable
electronic safety-related systems.
EIO0000001474 12/2016 13

In addition, terms used in the present document may tangentially be used as they are derived from
other standards such as:

Finally, the term zone of operation may be used in conjunction with the description of specific
hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive
(2006/42/EC) and ISO 12100:2010.
NOTE: The aforementioned standards may or may not apply to the specific products cited in the
present documentation. For more information concerning the individual standards applicable to the
products described herein, see the characteristics tables for those product references.

IEC 61508-3:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Software requirements.

IEC 61784-3:2008 Digital data communication for measurement and control: Functional safety
field buses.

2006/42/EC Machinery Directive
2014/30/EU Electromagnetic Compatibility Directive
2014/35/EU Low Voltage Directive

Standard Description
IEC 60034 series Rotating electrical machines
IEC 61800 series Adjustable speed electrical power drive systems
IEC 61158 series Digital data communications for measurement and control – Fieldbus for use in

industrial control systems

Standard Description
14 EIO0000001474 12/2016

SoMachine Basic
Introduction
EIO0000001474 12/2016
Introduction

Chapter 1
Introduction

Overview
This chapter provides you information about how to use the source code examples and the blocks
that are required to run many of the examples of operations and assignment instructions given in
this document.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
How to Use the Source Code Examples 16
Operation Blocks 19
Comparison Blocks 22
EIO0000001474 12/2016 15

Introduction
How to Use the Source Code Examples

Overview
Except where explicitly mentioned, the source code examples contained in this book are valid for
both the Ladder Diagram and Instruction List programming languages. A complete example may
require more than one rung.

Reversibility Procedure
To obtain the equivalent Ladder Diagram source code:

Step Action
1 Select and copy (Ctrl+C) the source code for the first rung of the sample program shown in this

manual.
2

In SoMachine Basic, create a new rung by clicking on the toolbar.

3 In this rung, click the LD > IL button to display Instruction List source code.
4 Select the line number 0000, then right-click and choose Paste Instructions to paste the source

code into the rung:

NOTE: Remember to delete the LD instruction from the last line of the rung if you have pasted
the instructions by inserting the line(s) before the default LD operator.

5 Click the IL > LD button to display the Ladder Diagram source code.
6 Repeat the previous steps for any additional rungs in the sample program.
16 EIO0000001474 12/2016

Introduction
Example
Instruction List program:

Rung Source Code
0 BLK %R0

LD %M1
I
LD %I0.3
ANDN %R2.E
O
END_BLK

1 LD %I0.3
[%MW20:=%R2.O]

2 LD %I0.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1
EIO0000001474 12/2016 17

Introduction
Corresponding Ladder Diagram:
18 EIO0000001474 12/2016

Introduction
Operation Blocks

Inserting IL Operations and Assignment Instructions in Ladder Diagrams
You can use the Operation Block graphical symbol to insert Instruction List operations and
assignment instructions into Ladder Diagram rungs:

The Operation Block can contain multiple operands and levels of calculation. For example:
%MF10 := SIN(%MF12 + 60.0) + COS(%MF13) + %MF10 + 1.2

To insert an operation block in a rung:

Smart Coding Tooltips
To help you selecting functions, SoMachine Basic displays tooltips while you type function names
in operation blocks.
Two types of tooltip are available:
 A list of function names, dynamically updated with the function names that begin with the typed

characters. For example, typing “AS” displays ASCII_TO_FLOAT, ASCII_TO_INT, and ASIN.
 Help with the syntax of a function, displayed when you type an opening parenthesis. For

example, typing “ABS(“ displays:

Step Action
1

Click the Operation Block button on the toolbar.
2 Click in the Action zone (last 2 columns) of the rung to insert the Operation Block.
3 Double-click the operation expression line.

The Smart Coding (see page 19) button appears at the end of the line. Click this button for
help selecting a function and with the syntax of the instruction.

4 Type a valid Instruction List operation or assignment instruction and press ENTER.
EIO0000001474 12/2016 19

Introduction
Using the Smart Coding Assistant

The Smart Coding Assistant appears when you click the Smart Coding button in the operation
expression line:

Proceed as follows:

Step Action
1 Optionally, filter the list by category of function:

 All types
 ASCII
 Floating point
 I/O objects
 Floating Point
 Numerical Processing
 Table
 PID

2 Select a function to add to the expression.
3 Click Insert Function.
20 EIO0000001474 12/2016

Introduction
Getting Help with Syntax
If the syntax of the Instruction List operation or assignment instruction is incorrect, the border of
the operation expression box turns red. For assistance, either:
 Move the mouse over the operation expression line, or
 Select Tools → Program Messages.
EIO0000001474 12/2016 21

Introduction
Comparison Blocks

Inserting IL Comparison Expressions in Ladder Diagrams
You can use the Comparison Block graphical symbol to insert Instruction List comparison
expressions into Ladder Diagram rungs:

Proceed as follows:

Getting Help with Syntax
If the syntax of the Instruction List comparison operation is incorrect, the border of the Comparison
expression box turns red. For assistance, either:
 Move the mouse over the Comparison expression line, or
 Select Tools → Program Messages.

Step Action
1

Click the Comparison Block button on the toolbar.
2 Click anywhere in the rung to insert the Comparison Block.
3 Double-click the Comparison expression line.
4 Type a valid Instruction List comparison operation and press ENTER.
22 EIO0000001474 12/2016

SoMachine Basic
Language Objects
EIO0000001474 12/2016
Language Objects

Chapter 2
Language Objects

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Objects 24
Memory Bit Objects 25
I/O Objects 27
Word Objects 30
Floating Point and Double Word Objects 34
Structured Objects 39
Indexed Objects 42
Function Block Objects 44
EIO0000001474 12/2016 23

Language Objects
Objects

Overview
In SoMachine Basic, the term object is used to represent an area of logic controller memory
reserved for use by an application. Objects can be:
 Simple software variables, such as memory bits and words
 Addresses of digital or analog inputs and outputs
 Controller-internal variables, such as system words and system bits
 Predefined system functions or function blocks, such as timers and counters.
Controller memory is either pre-allocated for certain object types, or automatically allocated when
an application is downloaded to the logic controller.
Objects can only be addressed by a program once memory has been allocated. Objects are
addressed using the prefix %. For example, %MW12 is the address of a memory word, %Q0.3 is the
address of an embedded digital output, and %TM0 is the address of a Timer function block.
24 EIO0000001474 12/2016

Language Objects
Memory Bit Objects

Introduction
Memory bit objects are bit-type software variables that can be used as operands and tested by
Boolean instructions.
Examples of bit objects:
 Memory bits
 System bits
 Step bits
 Bits extracted from words
The range of valid objects is from 0 to the maximum reference used in your application (see the
programming guide of your logic controller).

Syntax
Use this format to address memory, system, and step bit objects:

This table describes the elements in the addressing format:

For information on addressing of I/O bits, refer to I/O objects (see page 27).
For information on addressing of bit extracted from word, refer to Extracting Bit from Word Object
(see page 33).

Group Item Description
Symbol % The percent symbol always precedes a software variable.
Object type M Memory bits store intermediary values while a program is running.

S System bits provide status and control information for the controller.
X Step bits provide status of Grafcet step activities.

Object instance identifier i The identifier of the object representing their sequential instance in
memory. The maximum number of objects depends on the number of
objects configured to the limits of available memory. For the maximum
amount of available memory, see the programming guide of your logic
controller.
EIO0000001474 12/2016 25

Language Objects
Description
This table lists and describes memory, system, and step bits objects that are used as operands in
Boolean instructions:

Example
This table shows some examples of bit object addressing:

Type Description Address or
Value

Write
Access(1)

Immediate
values

0 or 1 (False or True) 0 or 1 –

Memory Memory bits are internal memory areas used to store
binary values.
Note: Unused I/O objects cannot be used as memory bits.

%Mi Yes

System System bits %S0 to %S127 allow you to monitor the correct
operation of the controller and the correct running of the
application program, as well as control certain system-
level features.

%Si Depends on i

Grafcet steps Bits %X1 to %Xi are associated with Grafcet steps. Step bit
Xi is set to 1 when the corresponding step is active, and
set to 0 when the step is deactivated.

%Xi Yes

(1) Written by the program or by using an animation table.

Bit Object Description
%M25 Memory bit number 25
%S20 System bit number 20
%X4 Grafcet step number 4
26 EIO0000001474 12/2016

Language Objects
I/O Objects

Introduction
I/O objects include both bits and words. Each physical input and output is mapped to these objects
in internal memory. I/O bit objects can be used as operands and tested by Boolean instructions.
I/O word objects can be used in most non-Boolean instructions such as functions and instructions
containing arithmetic operators.
Examples of I/O objects:
 Digital inputs
 Digital outputs
 Analog inputs
 Analog outputs
 Communication inputs and outputs
The range of valid objects is from 0 to the maximum configured and supported for your controller
(see the Hardware Guide and Programming Guide for your logic controller).

Syntax
This figure shows the input/output address format:

This table describes the components of the addressing format:

Component Item Value Description
Symbol % – The percent symbol always precedes an internal address.
Object type I – Digital input (bit object)

Q – Digital output (bit object)
IW – Analog input value (word object)
QW – Analog output value (word object)
IWS – Analog input channel status (word object)
QWS – Analog output channel status (word object)

Module number y 0 Embedded I/O channel on the logic controller, or on a
cartridge inserted in the logic controller.

1...m(1) I/O channel on an expansion module directly connected to
the controller.

m+1...n(2) I/O channel on an expansion module connected using the
TM3 Transmitter/Receiver modules.

(1) m is the number of local modules configured (maximum 7).
(2) n is the number of remote modules configured (maximum n+7). The maximum position number is 14.
(3) p is the number of the cartridge in the controller. q is the channel number on the cartridge.
EIO0000001474 12/2016 27

Language Objects
Description
This table lists and describes all I/O objects that are used as operands in instructions:

Channel number z 0...31 I/O channel number on the logic controller or expansion
module. The number of available channels depends on the
logic controller model or expansion module type.

p0q(3) I/O channel on a cartridge inserted in the logic controller.
The number of available channels depends on the cartridge
type.

Component Item Value Description

(1) m is the number of local modules configured (maximum 7).
(2) n is the number of remote modules configured (maximum n+7). The maximum position number is 14.
(3) p is the number of the cartridge in the controller. q is the channel number on the cartridge.

Type Address or
Value

Write
Access(1)

Description

Input bits %Iy.z(2) No(3) These bits are the logical images of the electrical states of
the physical digital I/O. They are stored in data memory
and updated between each scan of the program logic. Output bits %Qy.z(2) Yes

Input word %IWy.z(2) No These word objects contain the analog value of the
corresponding channel.

Output word %QWy.z(2) Yes

Input word
status

%IWSy.z(2) No These word objects contain the status of the
corresponding analog channel.

Output word
status

%QWSy.z(2) No

(1) Written by the program or by using an animation table.
(2) y is the module number and z is the channel number. Refer to addressing syntax of I/Os (see page 27)

for descriptions of y and z.
(3) Although you cannot write to input bits, they can be forced.
28 EIO0000001474 12/2016

Language Objects
Examples
This table shows some examples of I/O addressing:

I/O Object Description
%I0.5 Digital input channel number 5 on the controller (embedded I/O are module

number 0).
%Q3.4 Digital output channel number 4 on the expansion module at address 3

(expansion module I/O).
%IW0.1 Analog input 1 on the controller (embedded I/O).
%QW2.1 Analog output 1 on the expansion module at address 2 (expansion module I/O).
%IWS0.101 Analog input channel status of input channel 1 on the first cartridge in the logic

controller).
%QWS1.1 Analog output channel status of output channel 1 on the expansion module at

address 1 (expansion module I/O).
EIO0000001474 12/2016 29

Language Objects
Word Objects

Introduction
Word objects addressed in the form of 16-bit words are stored in data memory and can contain an
integer value from -32768 to 32767 (except for the Fast Counter function block which is from 0 to
65535).
Examples of word objects:
 Immediate values
 Memory words (%MWi)
 Constant words (%KWi)
 I/O exchange words (%IWi, %QWi, %IWSi, %QWSi)
 System words (%SWi)
 Function blocks (configuration and/or runtime data)
The range of valid objects is from 0 to the maximum reference used in your application (see the
Programming Guide of your logic controller).
For example, if the maximum reference in your application for memory words is %MW9, then %MW0
through %MW9 are allocated space. %MW10 in this example is not valid and cannot be accessed
either internally or externally.

Syntax
Use this format to address memory, constant, and system words:

This table describes the elements in the addressing format:

Group Item Description
Symbol % The percent symbol always precedes an internal address.
Object type M Memory words store values while a program is running.

K Constant words store constant values or alphanumeric messages. Their
content can only be written to or modified using SoMachine Basic.

S System words provide status and control information for the logic
controller.

Format W 16-bit word.
Object instance identifier i The identifier of the object representing their sequential instance in

memory. The maximum number of objects depends on the number of
objects configured to the limits of available memory. For the maximum
amount of available memory, see the programming guide of your logic
controller.
30 EIO0000001474 12/2016

Language Objects
Format
The contents of the words or values are stored in user memory in 16-bit binary code (two’s
complement format) using the following convention:

In signed binary notation, by convention, bit 15 is allocated to the sign of the coded value:
 Bit 15 is set to 0: the content of the word is a positive value.
 Bit 15 is set to 1: the content of the word is a negative value (negative values are expressed in

two’s complement logic).
Words and immediate values (see the Exception List (see page 31) for unsigned integers) can be
entered or retrieved in the following format:
 Decimal

Min.: -32768, Max.: 32767 (1579, for example)
 Hexadecimal

Min.: 16#0000, Max.: 16#FFFF (for example, 16#A536)
Alternate syntax: #A536

 ASCII format rules as follows:
 The function always reads the most significant byte first.
 Any ASCII character that is not in the interval [0 - 9] ([16#30 - 16#39]) is considered to be an

end character, except for a minus sign '-' (16#2D) when it is placed as the first character.
 In case of overflow (>32767 or <-32768), the system bit %S18 (arithmetic overflow or

detected error) is set to 1 and 32767 or -32768 value is returned.
 If the first character of the operand is an "end" character, the value 0 is returned and the bit

%S18 is set to 1.

For example, "HELLO":
 %MW0:="HE"
 %MW1:="LL"
 %MW2:="O"

Exception List
This table lists the value range of the objects that are unsigned integers:

Object Value
%SW 0...65535
%FC.V and %FC.P 0...65535

%FC.VD and %FC.PD 0...4294967295

%HSC.V, %HSC.P, %HSC.S0, %HSC.S1, and %HSC.C 0...65535

%HSC.DV, %HSC.PD, %HSC.S0D, %HSC.S1D, and %HSC.CD 0...4294967295
EIO0000001474 12/2016 31

Language Objects
Other than the objects in the exception list, all other data has the following value ranges:
 Words: -32768...32767
 Double words: -2147483648...2147483647

Description
This table describes the word objects:

%HSC.T 100...1000
%PWM.P 0...32767
%PWM.R 0...100
%PLS.P 0...32767
%PLS.N 0...32767
%PLS.ND 0...2147483647

Object Value

Words Description Address or
Value

Write Access(1)

Immediate
values

These are integer values that are in the same format
as the 16-bit words, which enable values to be
assigned to these words.

- No

Base 10 (decimal) -32768 to
32767

Base 16 (hexadecimal) 16#0000 to
16#FFFF

Memory Used as "working" words to store values during
operation in data memory.

%MWi Yes

Constants Store constants or alphanumeric messages. Their
content can be written or modified using SoMachine
Basic during configuration and in online mode
(see SoMachine Basic, Operating Guide).

%KWi Yes, during configuration
and in online mode using
Constant word properties
(see SoMachine Basic,
Operating Guide).

System These 16-bit words have several functions:
 Provide access to data coming directly from the

controller by reading %SWi words.
 Perform operations on the application (for

example, adjusting schedule blocks).

%SWi Depends on i

Function
blocks

These words correspond to current parameters or
values of function blocks.

%TM2.P,
%Ci.P,
and so on.

Yes

(1) Written by the program or by using an animation table.
32 EIO0000001474 12/2016

Language Objects
The maximum number of objects available is determined by the logic controller. Refer to the
programming guide of your logic controller for maximum number of objects.

Example
This table shows some examples of word object addressing:

Extracting Bits from Word Objects
This table describes how to extract 1 of the 16 bits from the following word objects:

Word Object Description
%MW15 Memory word number 15
%KW26 Constant word number 26
%SW30 System word number 30

Word Object Address or Value Write Access(1)

Memory %MWi:Xk Yes
System %SWi:Xk Depends on i
Constant %KWi:Xk No
Input value %IWy.z:Xk(2) No

Output value %QWy.z:Xk(2) Yes

Input status %IWSy.z:Xk(2) No

Output status %QWSy.z:Xk(2) Yes

(1) Written by the program or by using an animation table.
(2) For information on I/O word objects, refer to Addressing I/O objects (see page 27).
Xk Indicates the bit number that has to be extracted from the word object. For example, %MW0.X3; bit stored

at the third sequential position of the memory word %MW0 will be extracted.
EIO0000001474 12/2016 33

Language Objects
Floating Point and Double Word Objects

Introduction
A floating point object is a real number; that is, a number with a fractional part (for example:
3.4E+38, 2.3, or 1.0).
A double word consists of 4 bytes stored in data memory and containing a two’s complement value
from -2147483648 to +2147483647.
Floating point and double word operations are not supported by all logic controllers.
For compatibility, refer to the Programming Guide of your logic controller

Floating Point Format and Value
The floating format used is the standard IEEE STD 734-1985 (equivalent to IEC 559). The length
of the words is 32 bits, which corresponds to single decimal point floating numbers.
This table shows the format of a floating point value:

Representation precision is from 2...24 to display floating point numbers; it is not necessary to
display more than 6 digits after the decimal point.
NOTE: The value 1285 is interpreted as a whole value; in order for it to be recognized as a floating
point value, it must be written thus: 1285.0

Limit Range of Arithmetic Functions on Floating Point Objects
This table describes the limit range of arithmetic functions on floating point objects:

Bit 31 Bits {30...23} Bits {22...0}
Sign of the exponent Exponent Significand

Arithmetic Function Limit Range and Invalid Operations
Type Syntax NaN (Not a Number) Infinity
Square root of an
operand

SQRT(x) x < 0 x >
SQRT(3.402824E+38)
is the maximum number
that can be obtained

Power of an integer by a
real
EXPT(%MF,%MW)

EXPT(y, x)
(where:
x^y = %MW^%MF)

x < 0 and y = fractional
number

X ^ Y > 3.402824E+38

Base 10 logarithm LOG(x) x < 0 Calculation possible until
maximum value of x is
obtained (3.402824E+38)
34 EIO0000001474 12/2016

Language Objects
Validity Check
When the result is not within the valid range, the system bit %S18 is set to 1.

The status word %SW17 indicates the cause of an error detected in a floating operation.

Different bits of the word %SW17:

This word is reset to 0 by the system following a cold start, and can also be reset by the program
for reusage purposes.

Syntax
Use this format to address memory and constant floating point objects:

Use this format to address memory and constant double word objects:

Natural logarithm LN(x) x < 0 No maximum value of x.
LN(3.402824E+38) is
the maximum number
that can be obtained

Natural exponential EXP(x) No limit in the real range x > 88.72283
If x < -103.973 the result
is 0

Arithmetic Function Limit Range and Invalid Operations
Type Syntax NaN (Not a Number) Infinity

%SW17:X0 Invalid operation, result is not a number (NaN)
%SW17:X1 Reserved
%SW17:X2 Division by 0, result is invalid (-Infinity or +Infinity)
%SW17:X3 Result greater in absolute value than +3.402824E+38, result is invalid (-Infinity or

+Infinity)
%SW17:X4 to X15 Reserved
EIO0000001474 12/2016 35

Language Objects
This table describes the elements in the addressing format:

Description of Floating Point and Double Word Objects
This table describes floating point and double word objects:

NOTE: The maximum number of objects is determined by the logic controller; refer to the
Programming Guide for your hardware platform for details.

Group Item Description
Symbol % The percent symbol always precedes an internal address.
Object type M Memory objects are used to store intermediary values while a program

is running.
K Constants are used to store constant values or alphanumeric messages

(only for double words).
Format F 32-bit floating point object.

D 32-bit double word object.
Object instance identifier i The identifier representing instance (sequential position) of an object in

memory. Refer to the programming guide of your logic controller for
maximum number of objects.

Type of Object Description Address Write Access
Immediate values Integers (double word) or decimal

(floating point) numbers with identical
format to 32-bit objects.

- No

Memory floating point Objects used to store values during
operation in data memory.

%MFi Yes

Memory double word %MDi Yes

Floating constant value Used to store constants. %KFi Yes, during configuration
and in online mode using
Constant word properties
(see SoMachine Basic,
Operating Guide)

Double constant %KDi Yes, during configuration
and in online mode using
Constant word properties
(see SoMachine Basic,
Operating Guide)
36 EIO0000001474 12/2016

Language Objects
Example
This table shows some examples of floating point and double word objects addressing:

Possibility of Overlap Between Objects
Single, double length and floating words are stored in the data space in one memory zone. Thus,
the floating word %MFi and the double word %MDi correspond to the single length words %MWi and
%MWi+1; the word %MWi containing the least significant bits and the word %MWi+1 the most
significant bits of the word %MFi.

This table shows how floating and double memory words overlap:

Object Description
%MF15 Memory floating point object number 15
%KF26 Constant floating point object number 26
%MD15 Memory double word number 15
%KD26 Constant double word number 26

Floating and Double Odd Address Memory Words
%MF0 / %MD0 %MW0

%MF1 / %MD1 %MW1

%MF2 / %MD2 %MW2

%MF3 / %MD3 %MW3

%MF4 / %MD4 %MW4

... %MW5

... ...
%MFi / %MDi %MWi

%MFi+1 / %MDi+1 %MWi+1
EIO0000001474 12/2016 37

Language Objects
This table shows how floating and double constants overlap:

Example:
%MF0 corresponds to %MW0 and %MW1. %KF43 corresponds to %KW43 and %KW44.

Floating and Double Odd Address Memory Words
%KF0 / %KD0 %KW0

%KF1 / %KD1 %KW1

%KF2 / %KD2 %KW2

%KF3 / %KD3 %KW3

%KF4 / %KD4 %KW4

... %KW5

... ...
%KFi / %KDi %KWi

%KFi+1 / %KDi+1 %KWi+1
38 EIO0000001474 12/2016

Language Objects
Structured Objects

Introduction
Structured objects are combinations of adjacent objects. SoMachine Basic supports the following
types of structured objects:
 Bit strings
 Tables of words
 Tables of double words
 Tables of floating words

Bit Strings
Bit strings are a series of adjacent object bits of the same type and of a defined length (L). Bit
strings are referenced starting on byte boundaries.
Example: Bit string %M8:6

NOTE: %M8:6 is valid (8 is a multiple of 8) while %M10:16 is invalid (10 is not a multiple of 8).

Bit strings can be used with the Assignment instruction (see page 54).

Available Types of Bits
Available types of bits for bit strings:

The number of bits is determined by the logic controller; refer to the Programming Guide for your
hardware platform for details.

Type Address Write Access
Digital input bits %I0.0:L or %I1.0:L(1) No

Digital output bits %Q0.0:L or %Q1.0:L(1) Yes

System bits %Si:L
with i multiple of 8

Depending on i

Grafcet step bits %Xi:L
with i multiple of 8

Yes (by program)

Memory bits %Mi:L
with i multiple of 8

Yes

(1) Only I/O bits 0 to 16 can be read in a bit string. For logic controllers with 24 or 32 I/O channels, bits over
16 cannot be read in a bit string.

L Represents the length of the structured objects (bit strings, table of words, table of double words, and
table of floating words).
EIO0000001474 12/2016 39

Language Objects
Tables of Words
Word tables are a series of adjacent words of the same type and of a defined length (L, maximum
value is 255).
Example: Word table %KW10:7

Word tables can be used with the Assignment instruction (see page 54).

Available Types of Words
Available types of words for word tables:

The number of words is determined by the logic controller; refer to the Programming Guide for your
hardware platform for details.

Tables of Double Words
Double word tables are a series of adjacent words of the same type and of a defined length (L,
maximum value is 255).
Example: Double word table %KD10:7

Double word tables can be used with the Assignment instruction (see page 54).

Type Address Write Access
Memory words %MWi:L Yes
Constant words %KWi:L No
System words %SWi:L Depending on i
40 EIO0000001474 12/2016

Language Objects
Available Types of Double Words
Available types of words for double word tables:

Tables of Floating Words
Floating word tables are a series of adjacent words of the same type and of a defined length (L,
maximum value is 255).
Example: Floating point table %KF10:7

Floating point tables can be used with the Assignment instruction (see page 54).

Types of Floating Words Available
Available types of words for floating word tables:

Type Address Write Access
Memory words %MDi:L Yes
Constant words %KDi:L No

Type Address Write Access
Memory words %MFi:L Yes
Constant words %KFi:L No
EIO0000001474 12/2016 41

Language Objects
Indexed Objects

Introduction
An indexed object is a single word, double word, or floating point object with an indexed object
address. There are 2 types of object addressing:
 Direct addressing
 Indexed addressing

Direct Addressing
A direct address of an object is set and defined when a program is written.
Example: %M26 is a memory bit with the direct address 26.

Indexed Addressing
An indexed address of an object provides a method of modifying the address of an object by adding
an index to the direct address of the object. The content of the index is added to the direct address
of the object. The index is defined by a memory word %MWi.

Example: %MW108[%MW2] is a word with an address consisting of the direct address 108 plus the
contents of word %MW2.

If word %MW2 has a value of 12, writing to %MW108[%MW2] is equivalent to writing to %MW120 (108
plus 12).

Objects Available for Indexed Addressing
This table describes the available types of objects for indexed addressing:

Type Address Write Access
Memory words %MWi[MWj] Yes
Constant words %KWi[%MWj] No
Memory double words %MDi[MWj] Yes
Double constant words %KDi[%MWj] No
Memory floating points %MFi[MWj] Yes
Constant floating points %KFi[%MWj] No
i Object instance identifier that represents instance (sequential position) of an object in memory. Refer to

the programming guide of your logic controller for maximum number of objects.
j Object instance identifier of the index object whose content has to be added to the direct address of some

other object.
42 EIO0000001474 12/2016

Language Objects
Indexed objects can be used with the Assignment instruction (see page 67) and in Comparison
instructions (see page 63).
This type of addressing enables series of objects of the same type (such as memory words and
constants) to be scanned in succession, by modifying the content of the index object in the
program.

Index Overflow System Bit %S20
An overflow of the index occurs when the address of an indexed object exceeds the limits of the
memory zone containing the same type of object. In summary:
 The object address plus the content of the index is less than 0.
 The object address plus the content of the index is greater than the largest word directly

referenced in the application.
In the event of an index overflow, system bit %S20 is set to 1 and the object is assigned an index
value of 0.
NOTE: You are responsible for monitoring any overflow. Your program must read %S20 for
possible processing. You should then confirm that it is reset to 0.
%S20 (initial status = 0):
 On index overflow: set to 1 by the controller.
 Acknowledgment of overflow: manually set to 0 in the program after modifying the index.

WARNING
UNINTENDED EQUIPMENT OPERATION
 Write programming instructions to test the validity of operands intended to be used in

mathematical operations.
 Avoid using operands of different data types in mathematical operations.
 Always monitor the system bits assigned to indicate invalid mathematical results.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
EIO0000001474 12/2016 43

Language Objects
Function Block Objects

Introduction
A function block is a reusable object that accepts one or more input values and returns one or more
output values. A function block is always called through an instance (a copy of a function block with
its own dedicated name and variables). Each function block instance has a persistent state
(outputs and internal variables) from one call to another.
NOTE: The function blocks (%FC, %HSC, %PLS, and %PWM) and Status Alarm drive their inputs and
outputs (%I0.x and %Q0.x, affected in the configuration) directly with no relation with the controller
cycle. The image bits (%I0.x and %Q0.x) are not updated by the controller. So, these inputs and
outputs bits cannot be used directly in the user program, and an animation table using these
inputs/outputs cannot show the current states of these inputs/outputs.

Example
This illustration shows a Counter function block:

Bit Objects
Bit objects correspond to the function block outputs. These bits can be accessed by Boolean test
instructions using either of the following methods:
 Directly (for example, LD E) if they are wired to the block in reversible programming

(see page 149).
 By specifying the block type (for example, LD %Ci.E).

Inputs can be accessed in the form of instructions.
44 EIO0000001474 12/2016

Language Objects
Word Objects
Word objects correspond to specified parameters and values as follows:
 Block configuration parameters: some parameters are accessible by the program (for example,

pre-selection parameters), and some are inaccessible by the program (for example, time base).
 Current values: for example, %Ci.V, the current count value.

Double Word Objects
Double-word objects increase the computational capability of your logic controller while executing
system functions, such as fast counters (%FC), high speed counters (%HSC) and pulse generators
(%PLS, %PWM).

To address the 32-bit double word objects used with function blocks, simply append the character
D to the original syntax of the standard word objects.
This example shows how to address the current value of a fast counter in standard format and in
double word format:
 %FCi.V is the current value of the fast counter in standard format.
 %FCi.VD is the current value of the fast counter in double word format.
EIO0000001474 12/2016 45

Language Objects
46 EIO0000001474 12/2016

SoMachine Basic
Instructions
EIO0000001474 12/2016
Instructions

Chapter 3
Instructions

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
3.1 Boolean Processing 48
3.2 Numerical Processing 65
3.3 Program 83
3.4 Floating Point 90
3.5 ASCII 99
3.6 Stack Operators 110
3.7 Instructions on Object Tables 112
3.8 Instructions on I/O Objects 131
EIO0000001474 12/2016 47

Instructions
Boolean Processing

Section 3.1
Boolean Processing

Aim of This Section
This section provides an introduction to Boolean processing instructions.

What Is in This Section?
This section contains the following topics:

Topic Page
Boolean Instructions 49
Load Operators (LD, LDN, LDR, LDF) 52

Assignment Operators (ST, STN, R, S) 54

Logical AND Operators (AND, ANDN, ANDR, ANDF) 56

Logical OR Operators (OR, ORN, ORR, ORF) 58

Exclusive OR Operators (XOR, XORN, XORR, XORF) 60

NOT Operator (N) 62

Comparison Instructions 63
48 EIO0000001474 12/2016

Instructions
Boolean Instructions

Introduction
Boolean instructions can be compared to Ladder Diagram language elements. These instructions
are summarized in this table:

The Boolean result of the test elements is applied to the action elements as shown by the following
instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Testing Controller Inputs
Boolean test instructions can be used to detect rising or falling edges on the controller inputs. An
edge is detected when the state of an input has changed between “scan n-1” and the current “scan
n”. This edge remains detected during the current scan.

Item Operator Instruction
Example

Description

Test elements The load (LD) instruction is
equivalent to the first open
contact connected to a power
rail of a ladder diagram.
Logical AND and OR instructions
are equivalent to open contacts
after the first contact connected
to the power rail of a ladder
diagram.

LD %I0.0 Contact is closed when bit
%I0.0 is at state 1.

Action elements The store (ST) instruction is
equivalent to a coil.

ST %Q0.0 The associated bit object takes
a logical value of the bit
accumulator (result of previous
logic).

Rung Instruction
0 LD %I0.0

AND %I0.1
ST %Q0.0
EIO0000001474 12/2016 49

Instructions
Edge Detection
This table summarizes the instructions and timing for detecting edges:

NOTE: Rising and falling edges can be applied only with input bit (%I) and memory bit (%M)
objects.

Rising Edge Detection
The Load Rising Edge (LDR) instruction is equivalent to a Rising Edge detection contact. The
Rising Edge detects a change of the input value from 0 to 1.
A positive transition sensing contact is used to detect a Rising Edge as seen in this example:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Edge IL Instruction Ladder
Diagram

Timing Diagram

Rising
Edge

LDR %M0

Falling
Edge

LDF %M0

The objects are only updated at the beginning of the next MASTER cycle following edge detection. A state
change of a Memory Bit (e.g. %M0) is indicated one scan delayed.

Rung Instruction
0 LDR %I0.0
50 EIO0000001474 12/2016

Instructions
Falling Edge Detection
The Load Falling Edge (LDF) instruction is equivalent to a Falling Edge detection contact. The
Falling Edge detects a change of the controlling input from 1 to 0.
A negative transition sensing contact is used to detect a Falling Edge as seen in this example:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LDF %I0.0
EIO0000001474 12/2016 51

Instructions
Load Operators (LD, LDN, LDR, LDF)

Introduction
Load operators LD, LDN, LDR, and LDF correspond respectively to open, close, rising edge, and
falling edge contacts. LDR and LDF are used only with logic controller inputs and memory words.

Syntax
This table lists the types of load operators with Ladder Diagram equivalents and permitted
operands:

Coding Examples
Examples of Load instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Operators Ladder Diagram Equivalent Permitted Operands
LD 0/1

%I, %Q, %M, %S, %X, %BLK.x
%IW:Xk, %QW:Xk, %IWS:Xk, %QWS:Xk, %MW
:Xk, %SW:Xk, %KW:XkLDN

LDR %I, %M

LDF

Rung Instruction
0 LD %I0.1

ST %Q0.3

1 LDN %M0
ST %Q0.2

2 LDR %I0.1
ST %Q0.4

3 LDF %I0.3
ST %Q0.5
52 EIO0000001474 12/2016

Instructions
Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the code from the
coding example(s):

NOTE: The memory bit (%M) bit edge detection is performed between master task scans.
EIO0000001474 12/2016 53

Instructions
Assignment Operators (ST, STN, R, S)

Introduction
The Assignment operators ST, STN, S, and R correspond respectively to the direct, inverse, set,
and reset coils.

Syntax
This table lists the types of Assignment operators with Ladder Diagram equivalents and permitted
operands:

Coding Examples
Examples of Assignment instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Operators Ladder Diagram Equivalent Permitted Operands
ST %Q, %M, %BLK.x

%QW:Xk, %MW:Xk, %S(1), %SW:Xk(1)

STN

S %Q, %M, %S, %X, %BLK.x

%QW:Xk, %MW:Xk, %SW:Xk(1)

R

(1) %S or %SW:Xk are on non-read-only system objects.

Rung Instruction
0 LD %I0.1

ST %Q0.3
STN %Q0.2
S %Q0.4

1 LD %I0.2
R %Q0.4
54 EIO0000001474 12/2016

Instructions
Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the code from the
coding example(s):
EIO0000001474 12/2016 55

Instructions
Logical AND Operators (AND, ANDN, ANDR, ANDF)

Introduction
The AND operators perform a logical AND operation between the operand (or its inverse, rising
edge or falling edge) and the Boolean result of the preceding instruction.

Syntax
This table lists the types of AND operators with Ladder Diagram equivalents and permitted
operands:

Coding Examples
Examples of logical AND instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Operators Ladder Diagram Equivalent Permitted Operands
AND 0/1

%I, %Q, %M, %S, %X, %BLK.x
%IW:Xk, %QW:Xk, %IWS:Xk, %QWS:Xk, %MW:X
k, %SW:Xk, %KW:XkANDN

ANDR %I, %M

ANDF

Rung Instruction
0 LD %I0.1

AND %M1
ST %Q0.3

1 LD %M0
ANDN %I0.0
ST %Q0.2

2 LD %I0.3
ANDR %I0.4
S %Q0.4

3 LD %M3
ANDF %I0.5
S %Q0.5
56 EIO0000001474 12/2016

Instructions
Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the code from the
coding example(s):
EIO0000001474 12/2016 57

Instructions
Logical OR Operators (OR, ORN, ORR, ORF)

Introduction
The OR operators perform a logical OR operation between the operand (or its inverse, rising edge
or falling edge) and the Boolean result of the preceding instruction.

Syntax
This table lists the types of OR operators with Ladder Diagram equivalents and permitted operands:

Coding Examples
Examples of logical OR instructions:

Operators Ladder Diagram
Equivalent

Permitted Operands

OR 0/1
%I, %Q, %M, %S, %X, %BLK.x
%IW:Xk, %QW:Xk, %IWS:Xk, %QWS:Xk, %MW:Xk, %
SW:Xk, %KW:Xk

ORN

ORR %I, %M

ORF

Rung Instruction
0 LD %I0.1

OR %M1
ST %Q0.0

1 LD %I0.2
ORN %M2
ST %Q0.1
58 EIO0000001474 12/2016

Instructions
NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the code from the
coding example(s):

2 LD %M0
ORR %I0.3
S %Q0.5

3 LDF %I0.5
ORF %I0.6
S %Q0.0

Rung Instruction
EIO0000001474 12/2016 59

Instructions
Exclusive OR Operators (XOR, XORN, XORR, XORF)

Introduction
The XOR operator performs an exclusive OR operation between the operand and the Boolean
result of the operator instruction.
The XORN operator performs an exclusive OR operation between the inverse of the operand and
the Boolean result of the preceding instruction.
The XORR operator performs an exclusive OR operation between the rising edge of the operand
and the Boolean result of the preceding instruction.
The XORF operator performs an exclusive OR operation between the falling edge of the operand
and the Boolean result of the preceding instruction.

Syntax
This table lists the types of XOR operators and permitted operands:

Coding Examples
Using the XOR instruction:

Operators Ladder Diagram Equivalent Permitted Operands
XOR %I, %Q, %M, %S, %X, %BLK.x

%IW:Xk, %QW:Xk, %IWS:Xk, %QWS:Xk, %MW:Xk, %SW:
Xk, %KW:Xk

XORN

XORR %I, %M

XORF

Rung Instruction
0 LD %I0.1

XOR %M1
ST %Q0.3
60 EIO0000001474 12/2016

Instructions
Equivalent logical instructions of the XOR operator:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the code from the
coding example(s):

Special Cases
Do not insert:
 XOR contacts in the first position of a rung.
 XOR contacts in parallel with other Ladder Diagram elements (see the following example).

As shown in this example, inserting an element in parallel with the XOR contact will generate a
validation detected error:

Rung Instruction
0 LD %I0.1

ANDN %M1
OR(%M1
ANDN %I0.1
)
ST %Q0.3
EIO0000001474 12/2016 61

Instructions
NOT Operator (N)

Introduction
The NOT (N) operator has an implicit operand; that being, the result stored in the boolean
accumulator. The NOT negates the value of the accumulator.

Syntax
This table shows the N operator::

Coding Examples
Example of NOT instruction:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the code from the
coding example(s):

Operator Ladder Diagram Equivalent Permitted Operands
N Not applicable.

Rung Instruction
0 LD %I0.1

N
ST %Q0.0
62 EIO0000001474 12/2016

Instructions
Comparison Instructions

Introduction
Comparison operators are used to compare 2 operands.
This table lists the types of Comparison operators:

Syntax
The following describes Instruction List syntax. You can insert Instruction List comparison
expressions (see page 22) in Ladder Diagram rungs using a Comparison Block graphical element.
Syntax for Comparison instructions:

This table gives details of operands:

NOTE: Comparison instructions can be used within parentheses.

Operator Function
> Test if Op1 is greater than Op2
>= Test if Op1 is greater than or equal to Op2
< Test if Op1 is less than Op2
<= Test if Op1 is less than or equal to Op2
= Test if Op1 is equal to Op2
<> Test if Op1 is different from Op2

Operator Syntax
>, >=, <, <=, =, <> LD [Op1 operator Op2]

AND [Op1 operator Op2]
OR [Op1 operator Op2]

Type Op1 Op2
Words %MWi, %KWi, %IW, %QWi,

%SWi, %BLK.x
Immediate value, %MWi, %KWi, %IW,
%QW, %IWSi, %QWSi, %SWi, %BLK.x,
%MWi[%MWi], %KWi[%MWi]

Double words %MDi, %KDi Immediate value, %MDi, %KDi,
%MDi[%MWi], %KD[%MWi]

Floating point words %MFi, %KFi Immediate floating point value, %MFi,
%KFi, %MFi[%MWi], %KFi[%MWi]
EIO0000001474 12/2016 63

Instructions
Coding Examples
The comparison is executed inside square brackets following instructions LD, AND, and OR. The
result is 1 when the comparison requested is true.
Examples of Comparison instructions:

An example of using a Comparison instruction within parentheses:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD %I0.2

AND [%MW10>100]
ST %Q0.3

1 LD %M0
AND [%MW20<%KW35]
ST %Q0.4

2 LD %I0.2
OR [%MF30>=%MF40]
ST %Q0.5

Rung Instruction
0 LD %M0

AND([%MF20>10.0]
OR %I0.0
)
ST %Q0.1
64 EIO0000001474 12/2016

Instructions
Numerical Processing

Section 3.2
Numerical Processing

Aim of This Section
This section provides an introduction to Numerical Processing.

What Is in This Section?
This section contains the following topics:

Topic Page
Introduction to Numerical Operations 66
Assignment Instructions 67
Bit Strings Assignment 68
Words Assignment 70
Arithmetic Operators on Integers 72
Logic Instructions 76
Shift Instructions 78
BCD/Binary Conversion Instructions 80
Single/Double Word Conversion Instructions 82
EIO0000001474 12/2016 65

Instructions
Introduction to Numerical Operations

At a Glance
Numerical instructions generally apply to 16-bit words and to 32-bit double words. They are written
between square brackets. If the result of the preceding logical operation was true (Boolean
accumulator = 1), the numerical instruction is executed. If the result of the preceding logical
operation was false (Boolean accumulator = 0), the numerical instruction is not executed and the
operand remains unchanged.
66 EIO0000001474 12/2016

Instructions
Assignment Instructions

Introduction
Assignment instructions are used to load Op2 (operand 2) into Op1 (operand 1).

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for Assignment instructions:

Assignment operations can be performed on:
 Bit strings
 Words
 Double words
 Floating word
 Word tables
 Double word tables
 Floating word tables
 Pulse train output objects

Operator Syntax
:= [Op1: = Op2]

Op1 takes the value of Op2
EIO0000001474 12/2016 67

Instructions
Bit Strings Assignment

Introduction
Operations can be performed on the following bit strings:
 Bit string to bit string (Example 1)
 Bit string to word (Example 2) or double word (indexed)
 Word or double word (indexed) to bit string (Example 3)
 Immediate value to bit string

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for bit string assignments:

This table gives details for the operands:

NOTE: The abbreviation %BLK.x (for example, %C0.P) is used to describe any function block
word.

Operator Syntax
:= [Op1: = Op2]

Op1 takes the value of Op2

Type Op1 Op2
Word, double
word

%MWi,%QWi, %SWi
%MWi[%MWi], %MDi, %MDi[%MWi]
%Mi:L, %Qi:L, %Si:L, %Xi:L
%TMi.P, %Ci.P, %Ri.I, %Ri.O, %F
Ci.P, %PLSi.P, %PWMi.P
%Ci.PD, %FCi.PD

Immediate value,
%MWi, %KWi, %IW, %QWi, %IWSi, %QW
Si, %SWi,%BLK.x, %MWi[%MWi],
%KWi[%MWi], %MDi[%MWi],
%KDi[%MWi], %Mi:L,%Qi:L, %Si:L,
%Xi:L, %Ii:L
%TMi.P, %Ci.P, %Ri.I, %Ri.O,
%FCi.P, %PLSi.P, %PWMi.P
%Ci.PD, %FCi.PD
68 EIO0000001474 12/2016

Instructions
Structure
Examples of bit string assignments:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
Usage rules:
 For bit string to word assignment: the bits in the string are transferred to the word starting on the

right (first bit in the string to bit 0 in the word); and the word bits which are not involved in the
transfer (length ≤16) are set to 0.

 For word to bit string assignment: The word bits are transferred from the right (word bit 0 to the
first bit in the string).

Rung Instruction
0 LD 1

[%Q0.0:8:=%M64:8]

1 LD %I0.2
[%MW100:=%M0:16]

2 LDR %I0.3
[%MW104:16:=%KW0]
EIO0000001474 12/2016 69

Instructions
Words Assignment

Introduction
Assignment operations can be performed on the following words and double words:
 Word (indexed) to word (2, for example) (indexed or not)
 Double word (indexed) to double word (indexed or not)
 Immediate whole value to word (Example 3) or double word (indexed or not)
 Bit string to word or double word
 Floating point (indexed or not)to floating point (indexed or not)
 Word or double word to bit string
 Immediate floating point value to floating point (indexed or not)

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for word assignments:

This table gives details of operands:

NOTE: The abbreviation %BLK.x (for example, R3.I) is used to describe any function block word.
For bit strings %Mi:L, %Si:L, and %Xi:L, the base address of the first of the bit string must be a
multiple of 8 (0, 8, 16, ..., 96, ...).

Operator Syntax
:= [Op1: = Op2]

Op1 takes the value of Op2

Type Op1 Op2
Word, double word,
bit string

%BLK.x, %MWi, %QWi, %SWi %M
Wi[MWi], %MDi,
%MDi[%MWj], %Mi:L, %Qi:L, %
Si:L, %Xi:L

Immediate value,
%MWi, %KWi, %IW, %QWi, %IWSi, QWS
i, %SWi, %MWi[MWi], %KWi[MWi], %M
Di, %MDi[%MWj], %KDi, %KDi[MWj],
%Mi:L, %Qi:L, %Si:L, %Xi:L, %Ii:L

Floating point %MFi, %MFi[%MWj] Immediate floating point value,
%MFi, %MFi[%MWj], %KFi, %KFi[%MWj
]

70 EIO0000001474 12/2016

Instructions
Structure
Examples of word assignments:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD 1

[%SW112:=%MW100]

1 LD %I0.2
[%MW0[%MW10]:=%KW0[%MW20]]

2 LD %I0.3
[%MW10:=100]
EIO0000001474 12/2016 71

Instructions
Arithmetic Operators on Integers

Introduction
Arithmetic operators are used to perform arithmetic operations between 2 integer operands or on
1 integer operand.
This table lists the types of Arithmetic operators:

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for Arithmetic instructions:

Operator Function
+ Add 2 operands
- Subtract 2 operands
* Multiply 2 operands
/ Divide 2 operands
REM Remainder of division of the 2 operands
SQRT Square root of an operand
INC Increment an operand
DEC Decrement an operand
ABS Absolute value of an operand

Operator Syntax
+,-,*,/,REM [Op1: = Op2 operator Op3]
INC, DEC [operator Op1]
SQRT (1) [Op1: = SQRT(Op2)]

ABS (1) [Op1: = ABS(Op2)]
72 EIO0000001474 12/2016

Instructions
This table gives details of operands:

Structure
Examples of Arithmetic instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Special Cases
Addition
 Overflow during word operation

If the result exceeds the capacity of the result word, bit %S18 (overflow) is set to 1 and the result
is not significant (see rung 1 of application example (see page 74)). The user program manages
bit %S18.

NOTE: For double words, the limits are -2147483648 and 2147483647.
Multiplication
 Overflow during operation

If the result exceeds the capacity of the result word, bit %S18 (overflow) is set to 1 and the result
is not significant.

Type Op1 Op2 and Op3(1)

Words %MWi, %QWi, %SWi, %BLK.x(2) Immediate value, %MWi, %KWi, %IWi,
%QWi, %IWSi, %QWSi, %SWi, %BLK.x(2)

Double words %MDi, %BLK.x Immediate value, %MDi, %KDi,

%BLK.x(2)

(1) With this operator, Op2 cannot be an immediate value. The ABS function can only be used with double
words (%MD and %KD) and floating points (%MF and %KF). So, OP1 and OP2 must be double words or
floating points.

(2) %BLK.x represents all block objects.

Rung Instruction
0 LD %M0

[%MW0:=%MW10+10]

1 LD %I0.2
[%MW0:=SQRT(%MW10)]

2 LDR %I0.3
[%MW10:=32767]
EIO0000001474 12/2016 73

Instructions
Division / remainder
 Division by 0

If the divider is 0, the division is impossible and system bit %S18 is set to 1. The result is then
incorrect.

 Overflow during operation
If the division quotient exceeds the capacity of the result word, bit %S18 is set to 1.

Square root extraction
 Overflow during operation

Square root extraction is only performed on positive values. Thus, the result is always positive.
If the square root operand is negative, system bit %S18 is set to 1 and the result is incorrect.

Some of the detected mathematical errors could have significant impact on the execution of your
application. It is your responsibility to monitor for these potential errors, and to program instructions
to appropriately control the execution of your application should one or more of these detected
errors occur. The impact of any of these detected errors depends upon configuration, equipment
used, and the program instructions executed prior to and after detection of the potential error or
errors.

NOTE: The user program is responsible for managing system bits %S17 and %S18. These are set
to 1 by the controller and must be reset by the program so that they can be reused (see previous
page for example).

Application Example
Overflow during addition:

WARNING
UNINTENDED EQUIPMENT OPERATION
 Write programming instructions to test the validity of operands intended to be used in

mathematical operations.
 Avoid using operands of different data types in mathematical operations.
 Always monitor the system bits assigned to indicate invalid mathematical results.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Rung Instruction
0 LD %M0

[%MW0:=%MW1+%MW2]

1 LDN %S18
[%MW10:=%MW0]

2 LD %S18
[%MW10 :=32767]
74 EIO0000001474 12/2016

Instructions
NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
If %MW1 =23241 and %MW2=21853, the result would be (45094), which cannot be expressed in 1
signed 16-bit word. Therefore, bit %S18 is set to 1 and the value in %MW0 (-20442) is incorrect. In
this example when the result is greater than 32767, its value is fixed at 32767.
EIO0000001474 12/2016 75

Instructions
Logic Instructions

Introduction
The Logic operators can be used to perform a logical operation between 2 word operands or, in
the case of logical NOT, on 1 word operand.

This table lists the types of Logic instructions:

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for Logic instructions:

Structure
Examples of Logic instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Instruction Function
AND AND (bit-wise) between 2 operands
OR Logic OR (bit-wise) between 2 operands
XOR Exclusive OR (bit-wise) between 2 operands
NOT Logic complement (bit-wise) of an operand

Operator Syntax Op1 Op2 and Op3
AND, OR, XOR [Op1: = Op2 operator

Op3]
%MWi, %QWi, %SWi,
%BLK.x

Immediate value (1),
%MWi, %KWi, %IWi,
%QWi, %IWSi, %QWSi,
%SWi, %BLK.x

NOT [Op1:=NOT(Op2)]

(1) With NOT, Op2 cannot be an immediate value.

Rung Instruction
0 LD %M0

[%MW0:=%MW10 AND 16#00FF]

1 LD 1
[%MW0:=%KW5 OR %MW10]

2 LD %I0.3
[%MW102:=NOT(%MW100)]
76 EIO0000001474 12/2016

Instructions
Application Example
Logical AND instruction:
[%MW15:=%MW32 AND %MW12]

When %MW32 = 0001 1011 (binary) (27 (decimal)) and %MW12 = 0011 0110 (binary) (54 (decimal))
then the result will be %MW15 = 0001 0010 (binary) (18 (decimal)).
EIO0000001474 12/2016 77

Instructions
Shift Instructions

Introduction
Shift instructions move bits of an operand a specified number of positions to the right or to the left.
This table lists the types of Shift instructions:

NOTE: System bit %S17 indicates the value of the last ejected bit.

Instruction Function
Logic shift
SHL(op2,n) Logic shift of n positions to the left.
SHR(op2,n) Logic shift of n positions to the right.

Rotate shift
ROL(op2,n) Rotate shift of n positions to the left.
ROR(op2,n) Rotate shift of n positions to the

right.

n Integer immediate value for:
 word: 1...16 inclusive
 double word: 1...32 inclusive.
78 EIO0000001474 12/2016

Instructions
Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for Shift instructions:

This table gives details of operands:

Structure
Examples of Shift instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Operator Syntax
SHL, SHR [Op1: = operator (Op2,n)]

ROL, ROR

n Integer immediate value for:
 word: 1...16 inclusive
 double word: 1...32 inclusive.

Types Op1 Op2
Words %MWi, %QWi, %SWi

%BLK.x
%MWi, %KWi, %IWi, %QWi, %IWSi,
%QWSi, %SWi, %BLK.x

Double words %MDi
%BLK.x

%MDi, %KDi
%BLK.x

Rung Instruction
0 LDR %I0.1

[%MW0:=SHL(%MW10,5)]

1 LDR %I0.2
[%MW10:=ROR(%KW9,8)]
EIO0000001474 12/2016 79

Instructions
BCD/Binary Conversion Instructions

Introduction
Conversion instructions perform conversion between different representations of numbers.
This table lists the types of BCD/Binary Conversion instructions:

Review of BCD Code
Binary Coded Decimal (BCD) represents a decimal digit (0 to 9) by coding 4 binary bits. A 16-bit
word object can thus contain a number expressed in 4 digits (0000 - 9999), and a 32-bit double
word object can therefore contain an eight-figure number.
During conversion, system bit %S18 is set to 1 if the value is not BCD. This bit must be tested and
reset to 0 by the program.
BCD representation of decimal numbers:

Examples:
 Word %MW5 expresses the BCD value 2450 which corresponds to the binary value: 0010 0100

0101 0000
 Word %MW12 expresses the decimal value 2450 which corresponds to the binary value: 0000

1001 1001 0010
Word %MW5 is converted to word %MW12 by using instruction BTI.

Word %MW12 is converted to word %MW5 by using instruction ITB.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for BCD/Binary Conversion instructions:

Instruction Function
BTI BCD to Binary conversion
ITB Binary to BCD conversion

Decimal 0 1 2 3 4 5 6 7 8 9
BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Operator Syntax
BTI, ITB [Op1: = operator (Op2)]
80 EIO0000001474 12/2016

Instructions
This table gives details of operands:

Structure
Examples of BCD/Binary Conversion instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Application Example
The BTI instruction is used to process a setpoint value at controller inputs via BCD encoded thumb
wheels.
The ITB instruction is used to display numerical values (for example, the result of a calculation,
the current value of a function block) on BCD coded displays.

Types Op1 Op2
Words %MWi, %QWi, %SWi

%BLK.x
%MWi, %KWi, %IWi, %QWi, %IWSi,
%QWSi, %SWi, %BLK.x

Double word %MDi
%BLK.x

%MDi, %KDi
%BLK.x

Rung Instruction
0 LD %M0

[%MW0:=BTI(%MW10)]

1 LD %I0.2
[%MW10:=ITB(%KW9)]
EIO0000001474 12/2016 81

Instructions
Single/Double Word Conversion Instructions

Introduction
This table describes instructions used to perform conversions between single and double words:

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for single/double word Conversion instructions:

Structure
Examples of single/double word Conversion instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Instruction Function
LW LSB of double word extracted to a word.
HW MSB of double word extracted to a word.
CONCATW Concatenates 2 words into a double word.
DWORD Converts a 16-bit word into a 32-bit double word.

Operator Syntax Op1 Op2 Op3
LW, HW Op1 = operator (Op2) %MWi %MDi, %KDi,

%BLK.x
[-]

CONCATW Op1 = operator (Op2, Op3)) %MDi, %KDi,
%BLK.x

%MWi, %KWi,
immediate value

%MWi, %KWi,
immediate value

DWORD Op1 = operator (Op2) %MDi, %KDi,
%BLK.x

%MWi, %KWi [-]

Rung Instruction
0 LD %M0

[%MW0:=HW(%MD10)]

1 LD %I0.2
[%MD10:=DWORD(%KW9)]

2 LD %I0.3
[%MD11:=CONCATW(%MW10,%MW5)]
82 EIO0000001474 12/2016

Instructions
Program

Section 3.3
Program

Aim of This Section
This section provides an introduction to program instructions.

What Is in This Section?
This section contains the following topics:

Topic Page
 END Instructions 84
 NOP Instructions 85
Jump Instructions 86
Subroutine Instructions 88
EIO0000001474 12/2016 83

Instructions
 END Instructions

Introduction
The END instructions define the end of the execution of a program scan.

END, ENDC, and ENDCN
4 different END instructions are available:
 END: unconditional end of program
 ENDC: end of program if Boolean result of preceding test instruction is 1
 ENDCN: end of program if Boolean result of preceding test instruction is 0
 ENDT: end of transition rung in a Grafcet (SFC) program (only valid in a transition rung).

By default (normal mode) when the end of program is activated, the outputs are updated and the
next scan is started.
If scanning is periodic, when the end of period is reached the outputs are updated and the next
scan is started.

Examples
Example of an unconditional END instruction:

Example of a conditional END instruction:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD %M1

ST %Q0.1

1 LD %M2
ST %Q0.2

2 END

Rung Instruction
0 LD %I0.0

ST %Q0.0

1 LD %I0.1
ST %Q0.1

2 LD %I0.2
ENDC

3 LD %I0.3
ST %Q0.2

4 END
84 EIO0000001474 12/2016

Instructions
 NOP Instructions

Introduction
The NOP instructions do not perform any operation. Use them to "reserve" lines in a program so
that you can insert instructions later without modifying the line numbers.
EIO0000001474 12/2016 85

Instructions
Jump Instructions

Introduction
Jump instructions cause the execution of a program to be interrupted immediately and to be
continued from the line after the program line containing label %Li (i = maximum module number).

JMP, JMPC, and JMPCN
3 different Jump instructions are available:
 JMP: unconditional program jump
 JMPC: program jump if Boolean result of preceding logic is 1
 JMPCN: program jump if Boolean result of preceding logic is 0

Examples
Examples of Jump instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD %M15

JMPC %L8

1 LD [%MW24<%MW12]
ST %Q0.3
JMPC %L12

2 %L8:
LD %M12
AND %M13
ST %M12
JMPC %L12

3 LD %M11
S %Q0.0

4 %L12:
LD %I0.0
ST %Q0.4
86 EIO0000001474 12/2016

Instructions
Guidelines
 Jump instructions are not permitted between parentheses, and must not be placed between the

instructions AND, OR, and a close parenthesis instruction ")".
 The label can only be placed before an LD, LDN, LDR, LDF, or BLK instruction.
 The label number of label %Li must be defined only once in a program.
 The program jump is performed to a line of programming which is downstream or upstream.

When the jump is upstream, attention must be paid to the program scan time. Extended scan
time can cause triggering of the watchdog timer.
EIO0000001474 12/2016 87

Instructions
Subroutine Instructions

Introduction
The Subroutine instructions cause a program to perform a subroutine and then return to the main
program at the point from which the subroutine was called.

Procedure
A subroutine is created in a Free POU. Refer to Free POUs (see SoMachine Basic, Operating
Guide) for information on creating a Free POU and subroutine, and defining the subroutine
number. Also, refer to Managing POUs for more information on managing POUs with task and
rungs.
Calling a subroutine in 3 steps:
1 The SRn instruction calls the subroutine referenced by a Free POU SRn if the result of the

preceding boolean instruction is 1.
2 The subroutine is referenced by a Free POU SRn, where n is the number of subroutines.
3 The subroutine instruction must be written Free POU independent of the main program.
For more information about subroutines, refer to Creating Periodic Task (see SoMachine Basic,
Operating Guide).

Examples
Example of instructions containing a Subroutine:

Example of a Subroutine instruction (SR1):

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD %M15

AND %M5
ST %Q0.0

1 LD [%MW24>%MW12]
SR1

2 LD %I0.4
AND %M13
ST %Q0.1
END

Rung Instruction
0 (SR1) LD %I0.0

ST %Q0.0
88 EIO0000001474 12/2016

Instructions
Guidelines
 A subroutine cannot call up another subroutine. Attempting to call a subroutine within a free

POU will generator a detected compiler error.
 Subroutine instructions are not permitted between parentheses, and must not be placed

between the instructions AND, OR, and a close parenthesis instruction ")".
 Care should be taken when an Assignment instruction is directly follows a subroutine call in IL.

This is because the subroutine may change the content of the Boolean accumulator. Therefore
upon return, it could have a different value than before the call.
EIO0000001474 12/2016 89

Instructions
Floating Point

Section 3.4
Floating Point

Aim of This Section
This section describes the advanced instructions of floating point.

What Is in This Section?
This section contains the following topics:

Topic Page
Arithmetic Instructions on Floating Point Objects 91
Trigonometric Instructions 94
Angle Conversion Instructions 96
Integer/Floating Conversion Instructions 97
90 EIO0000001474 12/2016

Instructions
Arithmetic Instructions on Floating Point Objects

Introduction
These instructions are used to perform an arithmetic operation between 2 floating point operands
or on 1 floating point operand:

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Operators and syntax of arithmetic instructions on floating point:

Instruction Purpose
+ Addition of 2 operands
- Subtraction of 2 operands
* Multiplication of 2 operands
/ Division of 2 operands
LOG Base 10 logarithm
LN Natural logarithm
SQRT Square root of an operand
ABS Absolute value of an operand
TRUNC Whole part of a floating point value
EXP Natural exponential
EXPT Power of an integer by a real

Operators Syntax
+, - *, / Op1:=Op2 operator Op3
SQRT, ABS, TRUNC, LOG, EXP, LN Op1:=operator (Op2)
EXPT Op1:=operator (Op2,Op3)
EIO0000001474 12/2016 91

Instructions
Operands of arithmetic instructions on floating point:

Structure
Example of arithmetic instruction:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Operators Op1 Op2 Op3
+, - *, / %MFi %MFi, %KFi,

immediate value
%MFi, %KFi,
immediate value

SQRT, ABS, LOG,
EXP, LN

%MFi %MFi, %KFi [-]

TRUNC %MFi, %MDi %MFi, %KFi [-]
EXPT %MFi %MFi, %KFi %MWi, %KWi,

immediate value
Note: SoMachine Basic prevents the use of function with a %MWi as Op1.

Rung Instruction
0 LD %M0

[%MF0:=%MF10+129.7]

1 LD %I0.2
[%MF1:=SQRT(%MF10)]

2 LDR %I0.3
[%MF2:=ABS(%MF20)]

3 LDR %I0.4
[%MF3:=TRUNC(%MF2)]

4 LD %M1
[%MF4:=LOG(%MF10)]

5 LD %I0.5
[%MF5:=LN(%MF20)]

6 LD %I0.0
[%MF6:=EXP(%MF30)]

7 LD %I0.1
[%MF7:=EXPT(%MF40,%MW52)]
92 EIO0000001474 12/2016

Instructions
Rules of Use
 Operations on floating point and integer values cannot be directly mixed. Conversion operations

(see page 96) convert into one or other of these formats.
 The system bit %S18 is managed in the same way as integer operations (see page 96), the word

%SW17 indicates the cause of the detected error.
 When the operand of the function is an invalid number (for example, logarithm of a negative

number), it produces an indeterminate or infinite result and changes bit %S18 to 1. The word
%SW17 indicates the cause of the detected error.

NOTE: For the TRUNC instruction, the system bit %S17 is not affected.

Application Examples for TRUNC Instruction with %MDi
This table shows examples of TRUNC instruction when%MDi is used to store the result:

Example Result
TRUNC(3.5) 3
TRUNC(324.18765) 324
TRUNC(927.8904) 927
TRUNC(-7.7) -7
TRUNC(45.678E+20) 2 147 483 647 (maximum signed double word) (1)

%S18 is set to 1
TRUNC(-94.56E+13) - 2 147 483 648 (minimum signed double word) (1)

%S18 is set to 1
(1) This example applies to the TRUNC instruction when used with %MDi. (When used with %MFi, the TRUNC

instruction has no overflow and therefore has no maximum/minimum limits.)
EIO0000001474 12/2016 93

Instructions
Trigonometric Instructions

Introduction
These instructions enable the user to perform trigonometric operations:

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Operators, operands, and syntax of instructions for trigonometric operations

Structure
Example of Trigonometric instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

SIN sine of an angle expressed in radian, ASIN
arc sine (result within and)

COS cosine of an angle expressed in radian, ACOS arc cosine (result within 0 and)

TAN tangent of an angle expressed in radian, ATAN
arc tangent (result within and)

Operators Syntax Op1 Op2
SIN, COS, TAN,
ASIN, ACOS, ATAN

Op1:=operator(Op2) %MFi %MFi, %KFi

Rung Instruction
0 LD %M0

[%MF0:=SIN(%MF10)]

1 LD %I0.0
[%MF1:=TAN(%MF20)]

2 LD %I0.3
[%MF2:=ATAN(%MF30)]
94 EIO0000001474 12/2016

Instructions
Rules of Use
 When the operand of the function is an invalid number for example, the arc cosine of a number

greater than 1), it produces an indeterminate or infinite result and changes bit %S18 to 1. The
word %SW17 indicates the cause of the detected error.

 The functions SIN/COS/TAN allow as a parameter an angle between and but
their precision decreases progressively for angles outside the period and because
of the imprecision brought by the modulo carried out on the parameter before any
operation.
EIO0000001474 12/2016 95

Instructions
Angle Conversion Instructions

Introduction
These instructions are used to carry out conversion operations:

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Operators, operands, and syntax of conversion instructions

Structure
Example of conversion instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rules of Use
The angle to be converted must be between -737280.0 and +737280.0 (for DEG_TO_RAD

conversions) or between and (for RAD_TO_DEG conversions).

For values outside these ranges, the displayed result will be + 1.#QNAN, the %S18 and %SW17:X0
bits being set at 1.

DEG_TO_RAD Conversion of degrees into radian, the result is the value of the angle between 0 and

RAD_TO_DEG Conversion of an angle expressed in radian, the result is the value of the angle
0...360 degrees

Operators Syntax Op1 Op2
DEG_TO_RAD
RAD_TO_DEG

Op1:=operator(Op2) %MFi %MFi, %KFi

Rung Instruction
0 LD %M0

[%MF0:=DEG_TO_RAD(%MF10)]

1 LD %M2
[%MF2:=RAD_TO_DEG(%MF20)]
96 EIO0000001474 12/2016

Instructions
Integer/Floating Conversion Instructions

Introduction
4 conversion instructions are offered:

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Operators and syntax (conversion of an integer word to floating):

Operands (conversion of an integer word to floating):

Example: integer word conversion to floating: 147 to 1.47e+02
Operators and syntax (double conversion of integer word to floating):

Operands (double conversion of integer word to floating):

INT_TO_REAL conversion of an integer word to floating
DINT_TO_REAL conversion of a double word (integer) to floating
REAL_TO_INT conversation of a floating to integer word (the result is the nearest algebraic value)
REAL_TO_DINT conversation of a floating to double integer word (the result is the nearest algebraic

value)

Operators Syntax
INT_TO_REAL Op1=INT_TO_REAL(Op2)

Op1 Op2
%MFi %MWi,%KWi

Operators Syntax
DINT_TO_REAL Op1=DINT_TO_REAL(Op2)

Op1 Op2
%MFi %MDi,%KDi
EIO0000001474 12/2016 97

Instructions
Example:integer double word conversion to floating: 68905000 to 6.8905e+07
Operators and syntax (floating conversion to integer word or integer double word):

Operators (floating conversion to integer word or integer double word):

Example:
 Floating conversion to integer word: 5978.6 to 5979
 Floating conversion to integer double word: -1235978.6 to -1235979
NOTE: If during a real to integer (or real to integer double word) conversion the floating value is
outside the limits of the word (or double word),bit %S18 is set to 1.

Structure
Example of integer/ floating conversion instruction:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Precision of Rounding
Standard IEEE 754 defines 4 rounding modes for floating operations.
The mode employed by the instructions above is the "rounded to the nearest" mode:
 "if the nearest representable values are at an equal distance from the theoretical result, the value
given will be the value whose low significance bit is equal to 0".
That is to say, the value will be rounded either up or down, but to the even number.
For example:
 Rounding of the value 10.5 to 10.
 Rounding of the value 11.5 to 12.

Operators Syntax
REAL_TO_INT Op1=operator(Op2)
REAL_TO_DINT

Type Op1 Op2
Words %MWi %MFi, %KFi

Double words %MDi %MFi, %KFi

Rung Instruction
0 LD 1

[%MF0:=INT_TO_REAL(%MW10)]

1 LD %I0.8
[%MD2:=REAL_TO_DINT(%MF9)]
98 EIO0000001474 12/2016

Instructions
ASCII

Section 3.5
ASCII

Aim of This Section
This section describes the advanced instructions of ASCII.

What Is in This Section?
This section contains the following topics:

Topic Page
ROUND Instructions 100
ASCII to Integer Conversion Instructions 102
Integer to ASCII Conversion Instructions 104
ASCII to Float Conversion Instructions 106
Float to ASCII Conversion Instructions 108
EIO0000001474 12/2016 99

Instructions
ROUND Instructions

Introduction
The ROUND instruction rounds a floating point representation that is stored in an ASCII string.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the ROUND instruction, use the syntax: Op1 := ROUND(Op2,Op3).

For example:
[%MW0:7:=ROUND(%MW8,4)]

Parameters
This table describes the ROUND function parameters:

Rules of Use
The ROUND instruction rules are as follows:
 The operand is always rounded down.
 The end character of the operand string is used as an end character for the result string.
 The end character can be any ASCII character that is not in the interval [0 - 9] ([16#30 - 16#39]),

except for:
 dot '.' (16#2E),
 minus '-' (16#2D),
 plus '+' (16#2B),
 Exp 'e' or 'E' (16#65 or 16#45).

 The result and operand should not be longer than 13 bytes: Maximum size of an ASCII string is
13 bytes.

 The scientific notation is not authorized.

Parameters Description
Op1 %MW in which result is stored

Op2 %MW containing the floating point to be rounded

Op3 Number of significant digits required in rounding
Integer from 1 to 8
100 EIO0000001474 12/2016

Instructions
Special Cases
The software checks the syntax. The following examples would result in syntax errors:

Application Example
This table shows examples of ROUND instruction:

Incorrect syntax Correct syntax
%MW10:= ROUND(%MW1,4)
missing ":7" in result

%MW10:7 := ROUND(%MW1,4)

%MW10:13:= ROUND(%MW1,4)
%MW10:n where n ≠ 7 is incorrect

%MW10:7 := ROUND(%MW1,4)

Example Result
ROUND("987654321", 5) "987650000"
ROUND("-11.1", 8) "-11.1"
ROUND("NAN") "NAN"
EIO0000001474 12/2016 101

Instructions
ASCII to Integer Conversion Instructions

Introduction
The ASCII to Integer conversion instructions convert an ASCII string into an Integer value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the ASCII to Integer conversion instructions, use this syntax:
Op1 := ASCII_TO_INT(Op2)

For example:
[%MW0:=ASCII_TO_INT(%MW8)]

Parameters
This table describes the ASCII to Integer conversion function parameters:

Rules of Use
The ASCII to Integer instructions rules are as follows:
 Op2 must be between -32768 to 32767.
 The function always reads the most significant byte first.
 Any ASCII character that is not in the range [0 - 9] ([16#30 - 16#39]) is considered to be an end

character, except for a minus sign '-' (16#2D)when it is placed as the first character.
 In case of overflow (>32767 or <-32768), the system bit %S18 (arithmetic overflow or detected

error) is set to 1 and the value 32767 or -32768 is returned.
 If the first character of the operand is an "separator" character, the value 0 is returned and the

bit %S18 is set to 1.
 The scientific notation is not authorized.

Parameters Description
Op1 %MW in which result is stored

Op2 %MW or %KW
102 EIO0000001474 12/2016

Instructions
Application Example
Consider that the following ASCII data has been stored in %MW10 to %MW13:

This table shows examples of ASCII to Integer conversion:

Parameter Hexadecimal Value ASCII Value
%MW10 16#3932 9, 2
%MW11 16#3133 1, 3
%MW12 16#2038 ‘ ‘, 8
%MW13 16#3820 8, ‘ ‘

Example Result
%MW20 := ASCII_TO_INT(%MW10) %MW20 = 29318

%MW20 := ASCII_TO_INT(%MW12) %MW20 = 8

%MW20 := ASCII_TO_INT(%MW13) %MW20 = 0 and %S18 is set to 1
EIO0000001474 12/2016 103

Instructions
Integer to ASCII Conversion Instructions

Introduction
The Integer to ASCII conversion instructions convert an Integer into an ASCII string value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the Integer to ASCII conversion instructions, use this syntax:
Op1 := INT_TO_ASCII(Op2)

For example:
[%MW0:4:=INT_TO_ASCII(%MW8)]

Parameters
This table describes the Integer to ASCII conversion function parameters:

Rules of Use
The Integer to ASCII conversion rules are as follows:
 Op2 must be between -32768 to 32767.
 The function always writes the most significant byte first.
 End character is "Enter" (ASCII 13).
 The function automatically determines how many %MWs should be filled with ASCII values (from

1 to 4).

Syntax Errors
The software checks the syntax. The following examples would result in syntax errors:

Parameters Description
Op1 %MW in which result is stored

Op2 %MW, %KW, %SW, %IW, %QW or any WORD
(Immediate values are not accepted)

Incorrect syntax Correct syntax
%MW10 := INT_TO_ASCII(%MW1)
missing ":4" in result

%MW10:4 := INT_TO_ASCII(%MW1)

%MW10:n := INT_TO_ASCII(%MW1)
%MW10:n where n ≠ 4 is incorrect

%MW10:4 := INT_TO_ASCII(%MW1)
104 EIO0000001474 12/2016

Instructions
Application Example
For the instruction MW10:4 := INT_TO_ASCII(%MW1):

If ... Then...
Integer Value Hexadecimal Value ASCII Value

%MW1 = 123
%MW10 = 16#3231 2, 1

%MW11 = 16#0D33 3

%MW1 = 45
%MW10 = 16#3534 5, 4

%MW11 = 16#000D ‘enter‘
%MW1 = 7 %MW10 = 16#0D37 ‘enter’, 7

%MW1 = -12369

%MW10 = 16#3145 1, ‘-’

%MW11 = 16#3332 3, 2

%MW10 = 16#3936 9, 6

%MW11 = 16#000D ‘enter‘
EIO0000001474 12/2016 105

Instructions
ASCII to Float Conversion Instructions

Introduction
The ASCII to Float conversion instructions convert an ASCII string into a floating point value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the ASCII to Float conversion instructions, use this syntax:
Op1 := ASCII_TO_FLOAT(Op2).

For example:
[%MF0:=ASCII_TO_FLOAT(%MW8)]

Parameters
This table describes the ASCII to Float conversion function parameters:

Rules of Use
ASCII to Float conversion rules are as follows:
 The function always reads the most significant byte first.
 Any ASCII character that is not in the interval [0 - 9] ([16#30 - 16#39]) is considered to be "end"

character, except for:
 dot '.' (16#2E),
 minus '-' (16#2D),
 plus '+' (16#2B),
 Exp 'e' or 'E' (16#65 or 16#45).

 ASCII string format can be scientific notation (i.e. "-2.34567e+13") or decimal notation (that is,
9826.3457)

 In case of overflow (calculation result is >3.402824E+38 or <-3.402824E+38):
 The system bit %S18 (arithmetic overflow or detected error) is set to 1,
 %SW17:X3 is set to 1,
 Value +/- 1.#INF (+ or - infinite value) is returned.

Parameters Description
Op1 %MF

Op2 %MW or %KW
106 EIO0000001474 12/2016

Instructions
 If the calculation result is between -1.175494E-38 and 1.175494E-38, then the result is rounded
to 0.0.

 If the operand is not a number:
 Value 1.#QNAN is returned,
 The bit %SW17:X0 is set to 1.

Application Example
Consider that the following ASCII data has been stored in %MW10 to %MW14:

This table shows examples of ASCII to Float conversion:

Parameter Hexadecimal Value ASCII Value
%MW10 16#382D 8, '-'
%MW11 16#322E 2, '.'
%MW12 16#3536 5, 6
%MW13 16#2B65 '+', 'e'
%MW14 16#2032 ' ',2

Example Result
%MF20 := ASCII_TO_FLOAT(%MW10) %MF20 = -826.5
%MF20 := ASCII_TO_FLOAT(%MW11) %MF20 = 1.#QNAN

%MF20 := ASCII_TO_FLOAT(%MW12) %MF20 = 6500.0

%MF20 := ASCII_TO_FLOAT(%MW13) %MF20 = 1.#QNAN

%MF20 := ASCII_TO_FLOAT(%MW14) %MF20 = 2.0
EIO0000001474 12/2016 107

Instructions
Float to ASCII Conversion Instructions

Introduction
The Float to ASCII conversion instructions convert a floating point value into an ASCII string value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the Float to ASCII conversion instructions, use this syntax:
Op1 := FLOAT_TO_ASCII(Op2).

For example:
[%MW0:7:=FLOAT_TO_ASCII(%MF8)]

Parameters
This table describes the Float to ASCII conversion function parameters:

Rules of Use
The Float to ASCII conversion rules are as follows:
 The function always writes the most significant byte first,
 The representation is made using conventional scientific notation,
 "Infinite" or "Not a number" results return the string "NAN",
 The end character is "Enter" (ASCII 13),
 The function automatically determines how many %MWs should be filled with ASCII values,
 Conversion precision is 6 figures
 The scientific notation is not authorized.

Syntax Errors
The software checks the syntax. The following examples would result in syntax errors:

Parameter Description
Op1 %MW

Op2 %MF or %KF

Incorrect Syntax Correct Syntax
%MW10 := FLOAT_TO_ASCII(%MF1)
missing ":7" in result

%MW10:7 := FLOAT_TO_ASCII(%MF1)

%MW10:n := FLOAT_TO_ASCII(%MF1)
%MW10:n where n ≠ 7 is incorrect

%MW10:7 := FLOAT_TO_ASCII(%MF1)
108 EIO0000001474 12/2016

Instructions
Application Example
For the instruction %MW10:7 := FLOAT_TO_ASCII(%MF1):

Number to Convert Result
1234567800 1.23456e+09
0.000000921 9.21e-07
9.87654321 9.87654
1234 1.234e+03
EIO0000001474 12/2016 109

Instructions
Stack Operators

Section 3.6
Stack Operators

Stack Instructions (MPS, MRD, MPP)

Introduction
The stack instructions process routing to coils.The MPS, MRD, and MPP instructions use a temporary
storage area called the stack which can store up to 32 Boolean expressions.
NOTE: These instructions cannot be used within an expression between parentheses.

Syntax
This table describes the 3 stack instructions:

NOTE: For each MPS (push) instruction, a matching MPP (pop) instruction must appear within the
same rung.

Instruction Description Function
MPS Memory Push onto stack Stores the result of the last logical instruction (contents

of the accumulator) onto the top of the stack (a push)
and shifts the other values to the bottom of the stack.

MRD Memory Read from stack Reads the top of the stack into the accumulator.
MPP Memory Pop from stack Copies the value at the top of the stack into the

accumulator (a pop) and shifts the other values towards
the top of the stack.
110 EIO0000001474 12/2016

Instructions
Operation
This diagram displays how stack instructions operate:

Application Example
Example of using stack instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD %I0.0

AND %M1
MPS
AND %I0.1
ST %Q0.0
MRD
AND %I0.2
ST %Q0.1
MRD
AND %I0.3
ST %Q0.2
MPP
AND %I0.4
ST %Q0.3
EIO0000001474 12/2016 111

Instructions
Instructions on Object Tables

Section 3.7
Instructions on Object Tables

Aim of This Section
This section describes instructions to manage Object Tables of:
 Double words
 Floating point objects

What Is in This Section?
This section contains the following topics:

Topic Page
Word, Double Word, and Floating Point Tables Assignment 113
Table Summing Functions 115
Table Comparison Functions 117
Table Search Functions 119
Table Search Functions for Maximum and Minimum Values 121
Number of Occurrences of a Value in a Table 122
Table Rotate Shift Functions 123
Table Sort Functions 125
Floating Point Table Interpolation (LKUP) Functions 126
MEAN Functions of the Values of a Floating Point Table 130
112 EIO0000001474 12/2016

Instructions
Word, Double Word, and Floating Point Tables Assignment

Introduction
Assignment operations can be performed on the following object tables:
 Immediate whole value to word table (see rung 0 of structure example (see page 114)) or

double word table
 Word to word table (see rung 1 of structure example (see page 114))
 Word table to word table (see rung 2 of structure example (see page 114))

Table length (L) should be the same for both tables.
 Double word to double word table
 Double word table to double word table

Table length (L) should be the same for both tables.
 Immediate floating point value to floating point table
 Floating point to floating point table
 Floating point table to floating point table

Table length (L) should be the same for both tables.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax for word, double word, and floating point table assignments:

This table gives details of operands:

NOTE: The abbreviation %BLK.x (for example, R3.I) is used to describe any function block word.

Operator Syntax
:= [Op1: = Op2]

Op1 takes the value of Op2

Type Op1 Op2
Word table %MWi:L, %SWi:L %MWi:L, %SWi:L, immediate whole value,

%MWi, %KWi, %IW, %QW, %SWi, %BLK.x

Double word tables %MDi:L Immediate whole value,
%MDi, %KDi,%MDi:L, %KDi:L

Floating word tables %MFi:L Immediate floating point value, %MFi, %KFi,
%MFi:L, %KFi:L

L Length of the table (maximum 255).
EIO0000001474 12/2016 113

Instructions
Structure
Examples of word table assignments:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD 1

[%MW0:10:=100]

1 LD %I0.0
[%MW0:10:=%MW11]

2 LDR %I0.3
[%MW10:20:=%KW20:20]
114 EIO0000001474 12/2016

Instructions
Table Summing Functions

Introduction
The SUM_ARR function adds together all the elements of an object table:
 If the table is made up of double words, the result is given in the form of a double word,
 If the table is made up of floating words, the result is given in the form of a floating word.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax of table summing instruction:
Res:=SUM_ARR(Tab)

Parameters of table summing instruction:

NOTE: When the result is not within the valid double word format range according to the table
operand, the system bit %S18 is set to 1.

Structure
Example of summing function:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Type Result (Res) Table (Tab)
Double word tables %MDi %MDi:L,%KDi:L

Floating word tables %MFi %MFi:L,%KFi:L

L Length of the table (maximum 255).

Rung Instruction
0 LD %I0.2

[%MD5:=SUM_ARR(%MD3:1)]

1 LD 1
[%MD5:=SUM_ARR(%KD5:2)]

2 LD 1
[%MF2:=SUM_ARR(%MF8:5)]
EIO0000001474 12/2016 115

Instructions
Application Example
%MD4:=SUM_ARR(%MD30:4)

Where %MD30=10, %MD32=20, %MD34=30, %MD36=40

So %MD4:=10+20+30+40
116 EIO0000001474 12/2016

Instructions
Table Comparison Functions

Introduction
The EQUAL_ARR function carries out a comparison of 2 tables, element by element.

If a difference is shown, the rank of the first dissimilar elements is returned in the form of a word,
otherwise the returned value is equal to -1.
The comparison is carried out on the whole table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax of table comparison instruction:
Res:=EQUAL_ARR(Tab1,Tab2)

Parameters of table comparison instructions:

NOTE: it is mandatory that the tables are of the same length and same type.

Structure
Example of table comparison function:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Type Result (Res) Tables (Tab1 and Tab2)
Double word tables %MWi %MDi:L,%KDi:L

Floating word tables %MWi %MFi:L,%KFi:L

L Length of the table (maximum 255).

Rung Instruction
0 LD %I0.2

[%MW5:=EQUAL_ARR(%MD20:7,%KD0:7)]

1 LD 1
[%MW0:=EQUAL_ARR(%MD20:7,%KD0:7)]

2 LD 1
[%MF2:=SUM_ARR(%MF8:5)]
EIO0000001474 12/2016 117

Instructions
Application Example
%MW5:=EQUAL_ARR(%MD30:4,%KD0:4)

Comparison of 2 tables:

The value of the word %MW5 is 2 (different first rank)

Rank Word Table Constant Word Tables Difference
0 %MD30=10 %KD0=10 =
1 %MD32=20 %KD2=20 =
2 %MD34=30 %KD4=60 Different
3 %MD36=40 %KD6=40 =
118 EIO0000001474 12/2016

Instructions
Table Search Functions

Introduction
There are 3 search functions:
 FIND_EQR: searches for the position in a double or floating word table of the first element which

is equal to a given value
 FIND_GTR: searches for the position in a double or floating word table of the first element which

is greater than a given value
 FIND_LTR: searches for the position in a double or floating word table of the first element which

is less than a given value
The result of these instructions is equal to the rank of the first element which is found or at -1 if the
search is unsuccessful.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax of table search instructions:

Parameters of floating word and double word table search instructions:

Function Syntax
FIND_EQR Res:=Function(Tab,Val)
FIND_GTR

FIND_LTR

Type Result (Res) Table (Tab) Value (Val)
Floating word tables %MWi %MFi:L,%KFi:L %MFi,%KFi

Double word tables %MWi %MDi:L,%KDi:L %MDi,%KDi

L Length of the table (maximum 255).
EIO0000001474 12/2016 119

Instructions
Structure
Example of table search function:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Application Example
%MW5:=FIND_EQR(%MD30:4,%KD0)

Search for the position of the first double word = %KD0=30 in the table:

Rung Instruction
0 LD %I0.2

[%MW5:=FIND_EQR(%MD20:7,%KD0)]

1 LD %I0.3
[%MW6:=FIND_GTR(%MD20:7,%KD0)]

2 LD 1
[%MW7:=FIND_LTR(%MF40:5,%KF4)]

Rank Word Table Result
0 %MD30=10 -
1 %MD32=20 -
2 %MD34=30 Value (Val), rank
3 %MD36=40 -
120 EIO0000001474 12/2016

Instructions
Table Search Functions for Maximum and Minimum Values

Introduction
There are 2 search functions:
 MAX_ARR: search for the maximum value in a double word and floating word table
 MIN_ARR: search for the minimum value in a double word and floating word table

The result of these instructions is equal to the maximum value (or minimum) found in the table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax of table search instructions for maximum and minimum values:

Parameters of table search instructions for maximum and minimum values:

NOTE: L counts only the addresses that are not overlapped dring the search. For more information,
refer to Possibility of Overlap Between Objects (see page 37).

Structure
Example of table search function:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Function Syntax
MAX_ARR Result:=Function(Tab)
MIN_ARR

Type Result (Res) Table (Tab)
Double word tables %MDi %MDn:L,%KDn:L

Floating word tables %MFi %MFn:L,%KFn:L

i Object instance identifier for the memory variable.
n Memory index of the table that indicates the base address for the search.
L Number of positions to be considered on a search including the base address index (maximum value of L

is 255.

Rung Instruction
0 LD %I0.2

[%MD0:=MIN_ARR(%MD20:7)]

1 LD 1
[%MF8:=MIN_ARR(%MF40:5)]
EIO0000001474 12/2016 121

Instructions
Number of Occurrences of a Value in a Table

Introduction
This function OCCUR_ARR searches in a double word or floating word table for a number of
elements equal to a given value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax of table search instructions for max and min values:

Parameters of table search instructions for max and min values:

Structure
Example of number of occurrences:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Function Syntax
OCCUR_ARR Res:=Function(Tab,Val)

Type Result (Res) Table (Tab) Value (Val)
Double word tables %MWi %MDi:L,%KDi:L %MDi,%KDi

Floating word tables %MFi %MFi:L,%KFi:L %MFi,%KFi

L Length of the table (maximum 255).

Rung Instruction
0 LD %I0.3

[%MW5:=OCCUR_ARR(%MF20:7,%KF0)]

1 LD %I0.2
[%MW5:=OCCUR_ARR(%MD20:7,%MD1)]
122 EIO0000001474 12/2016

Instructions
Table Rotate Shift Functions

Introduction
There are 2 shift functions:
 ROL_ARR: performs a rotate shift of n positions from top to bottom of the elements in a floating

word table
Illustration of the ROL_ARR functions

 ROR_ARR: performs a rotate shift of n positions from bottom to top of the elements in a floating
word table

Illustration of the ROR_ARR functions

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax of rotate shift instructions in floating word or double word tables ROL_ARR and ROR_ARR

Function Syntax
ROL_ARR Function(n,Tab)
ROR_ARR
EIO0000001474 12/2016 123

Instructions
Parameters of rotate shift instructions for floating word tables: ROL_ARR and ROR_ARR:

NOTE: if the value of n is negative or null, no shift is performed.

Structure
Example of table rotate shift function:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Type Number of positions (n) Table (Tab)
Floating word tables %MWi, immediate value %MFi:L

Double word tables %MWi, immediate value %MDi:L

L Length of the table (maximum 255).

Rung Instruction
0 LD %I0.2

[ROL_ARR(%KW0,%MD20:7)]

1 LD %I0.3
[ROR_ARR(2,%MD20:7)]

2 LD %I0.4
[ROR_ARR(2,%MF40:5)]
124 EIO0000001474 12/2016

Instructions
Table Sort Functions

Introduction
The sort function SORT_ARR performs sorts in ascending or descending order of the elements of
a double word or floating word table and stores the result in the same table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax of table sort functions:

The "direction" parameter gives the order of the sort:
 Direction > 0: the sort is done in ascending order.
 Direction < 0: the sort is done in descending order.
 Direction = 0: no sort is performed
The result (sorted table) is returned in the Tab parameter (table to sort).
Parameters of table sort functions:

Structure
Example of table sort function:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Function Syntax
SORT_ARR Function(direction,Tab)

Type Sort Direction Table (Tab)
Double word tables %MWi, immediate value %MDi:L

Floating word tables %MWi, immediate value %MFi:L

L Length of the table (maximum 255).

Rung Instruction
0 LD %I0.1

[SORT_ARR(%MW20,%MF0:6)]

1 LD %I0.2
[SORT_ARR(%MW20,%MF0:6)]

2 LD %I0.3
[SORT_ARR(0,%MF40:8)]
EIO0000001474 12/2016 125

Instructions
Floating Point Table Interpolation (LKUP) Functions

Introduction
The LKUP function is used to interpolate a set of X versus Y floating point data for a given X value.

Review of Linear Interpolation
The LKUP function makes use the linear interpolation rule, as defined in this equation:

 (Equation 1)

for , where ;

assuming values are ranked in ascending order: .

NOTE: If any of two consecutive Xi values are equal (Xi=Xi+1=X), equation (1) yields an invalid
exception. In this case, to cope with this exception the following algorithm is used in place of
equation (1):

 (Equation 2)

for , where .
126 EIO0000001474 12/2016

Instructions
Graphical Representation
This graph illustrates the linear interpolation rule described above:

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
The LKUP function uses three operands, two of which are function attributes, as described in this
table:

Syntax Op1
Output Variable

Op2
User-defined (X) value

Op3
User-defined (Xi,Yi) Variable
Array

[Op1: = LKUP(Op2,Op3)] %MWi %MF0 Integer value, %MWi,or %KWi
EIO0000001474 12/2016 127

Instructions
Definition of Op1
Op1 is the memory word that contains the output variable of the interpolation function.
Depending on the value of Op1, you can know whether the interpolation was successful or not, and
what prevented success, as outlined in this table:

NOTE: Op1 does not contain the computed interpolation value (Y). For a given (X) value, the result
of the interpolation (Y) is contained in %MF2 of the Op3 array (see page 128).

Definition of Op2
Op2 is the floating point variable (%MF0 of the Op3 floating point array) that contains the user-
defined (X) value for which to compute the interpolated (Y) value.

Valid range for Op2: .

Definition of Op3
Op3 sets the size (Op3 / 2) of the floating-point array where the (Xi,Yi) data pairs are stored.

Xi and Yi data are stored in floating point objects with even indexes; starting at %MF4 (note that
%MF0 and %MF2 floating point objects are reserved for the user set-point X and the interpolated
value Y, respectively).
Given an array of (m) data pairs (Xi,Yi), the upper index (u) of the floating point array (%MFu) is set
by using these relationships:
 (Equation 3)

 (Equation 4)

Op1 (%MWi) Description

0 Successful interpolation
1 Interpolation error detected: Incorrect array, Xm < Xm-1

2 Interpolation error detected: Op2 out of range, X < X1

4 Interpolation error detected: Op2 out of range, X > Xm

8 Invalid size of data array:
 Op3 is set as odd number, or
 Op3 < 6.
128 EIO0000001474 12/2016

Instructions
The floating point array Op3 (%MFi) has a structure similar to that of this example (where Op3=8):

NOTE: As a result of the above array of floating-point structure, Op3 must meet both of the
following requirements; or otherwise this will cause an error in the LKUP function:
 Op3 is an even number, and
 Op3 ≥ 6 (for there must be at least two data points to allow linear interpolation).

Structure
Interpolation operations are performed as follows:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Application Example
Use of a LKUP interpolation function:
[%MW20:=LKUP(%MF0,10)]

In this example:
 %MW20 is Op1 (the output variable).
 %MF0 is the user-defined (X) value which corresponding (Y) value must be computed by linear

interpolation.
 %MF2 stores the computed value (Y) resulting from the linear interpolation.
 10 is Op3 (as given by equation 3 above). It sets the size of the floating point array. The highest

ranking item %MFu, where u=18 is given by equation 4, above.

There are four pairs of data points stored in Op3 array [%MF4,...%MF18]:
 %MF4 contains X1,%MF6 contains Y1.
 %MF8 contains X2,%MF10 contains Y2.
 %MF12 contains X3,%MF14 contains Y3.
 %MF16 contains X4,%MF18 contains Y4.

(X) (X1) (X2) (X3)

%MF0 %MF4 %MF8 %MF12

%MF2 %MF6 %MF10 %MF14

(Y) (Y1) (Y2) (Y3)

(Op3=8)

Rung Instruction
0 LD %I0.2

[%MW20:=LKUP(%MF0,%KW1)]

1 LD %I0.3
[%MW22:=LKUP(%MF0,10)]
EIO0000001474 12/2016 129

Instructions
MEAN Functions of the Values of a Floating Point Table

Introduction
The MEAN function is used to calculate the mean average from a given number of values in a
floating point table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
Syntax of the floating point table means calculation function:

Parameters of the calculation function for a given number L (maximum 255) of values from a
floating point table:

Structure
Example of mean function:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Function Syntax
MEAN Result=Function(Op1)

Op1 Result (Res)
%MFi:L, %KFi:L %MFi

Rung Instruction
0 LD %I3.2

[%MF0:=MEAN(%MF10:5)]
130 EIO0000001474 12/2016

Instructions
Instructions on I/O Objects

Section 3.8
Instructions on I/O Objects

Aim of This Section
This section describes the instructions on I/O objects.

What Is in This Section?
This section contains the following topics:

Topic Page
Read Immediate Digital Embedded Input (READ_IMM_IN) 132
Write Immediate Digital Embedded Output (WRITE_IMM_OUT) 134
Read Immediate Function Block Parameter (READ_IMM) 136
Write Immediate Function Block Parameter (WRITE_IMM) 137
EIO0000001474 12/2016 131

Instructions
Read Immediate Digital Embedded Input (READ_IMM_IN)

Introduction
The READ_IMM_IN instruction reads a digital embedded input during the execution of a task and
immediately updates the input image. This therefore avoids having to wait for the next task cycle
to update the input image.
NOTE: This instruction is only valid for embedded digital inputs (inputs integrated into the logic
controller).

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the READ_IMM_IN instruction, use this syntax:
Op1 := READ_IMM_IN(Op2)

Where:

Function Return Code
This table describes the function return codes:

Example
%MW0 := READ_IMM_IN(2)

Upon execution of this operation block the current value of the input %I0.2 is read and the input
image is immediately updated. The function return code is stored in the %MW0 memory word.

Operand Type Description
Op1 %MWi Stores the function return code (see the table below).
Op2 Immediate value (integer)

%MWi
%KWi

Defines the input index (%I0.x).

i Object instance identifier for the memory variable.

Code Description
0 No error detected.
1 Input declared is greater than maximum input allowed.
2 Input declared is forced.
132 EIO0000001474 12/2016

Instructions
Structure
Example of READ_IMM_IN instruction:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD %M0

[%MW0:=READ_IMM_IN(%MW5)]
EIO0000001474 12/2016 133

Instructions
Write Immediate Digital Embedded Output (WRITE_IMM_OUT)

Introduction
The WRITE_IMM_OUT instruction physically writes to a digital embedded output immediately, the
value is read from the output image. This therefore avoids having to wait for the next task cycle to
write to the embedded output.
NOTE: This function is only valid for embedded digital outputs (outputs integrated into the logic
controller).

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the WRITE_IMM_OUT instruction, use this syntax:
Op1 := WRITE_IMM_OUT(Op2)

Where:

Function Return Code
This table describes the function return codes:

Example
%MW0 := WRITE_IMM_OUT(%MW5) (with %MW5 = 2)

At execution of this operation block the output image %Q0.2 is written physically on the embedded
digital output. The function return code is stored in the %MW0 memory word.

Operand Type Description
Op1 %MWi Stores the function return code (see the table below).
Op2 Immediate value (integer)

%MWi
%KWi

Defines the output index (%Q0.x).

i Object instance identifier for the memory variable.

Code Description
0 No error detected.
3 Output declared is greater than maximum output allowed.
4 Output declared is forced.
5 Output declared is used as dedicated hardware output.
6 Output declared is used as alarm output.
134 EIO0000001474 12/2016

Instructions
Structure
Example of WRITE_IMM_OUT instruction:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 LD %M0

[%MW0:= WRITE_IMM_OUT(%MW4)]
EIO0000001474 12/2016 135

Instructions
Read Immediate Function Block Parameter (READ_IMM)

Introduction
The READ_IMM instruction reads a function block parameter during the execution of a task and
updates the input image during the same cycle.
This function is available only for certain function block parameters. The READ_IMM instruction
reads directly from the HSC.V and HSC.P registers in High Speed Counter (%HSC) function blocks.
For more details, refer to High Speed Counter (%HSC).

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the READ_IMM instruction, use this syntax:
READ_IMM(Op1)

Where:

Example
The following code is an example of using the READ_IMM instruction:

NOTE: Refer to reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
NOTE: The application must be configured with a functional level (see SoMachine Basic,
Operating Guide) of at least Level 3.3 to use the READ_IMM instruction.

Operand Type Description
Op1 %HSCx.P, %HSCx.PD,

%HSCx.V, %HSCx.VD
This instruction reads a function block parameter given in Op1
and updates the value in the I/O image and the corresponding
register.

x Object instance identifier for the function block.

Rung Instruction
0 LD %M0

[READ_IMM(%HSC0.P)]
136 EIO0000001474 12/2016

Instructions
Write Immediate Function Block Parameter (WRITE_IMM)

Introduction
The WRITE_IMM instruction writes a function block parameter during the execution of a task and
updates the output image during the same cycle.
This function is available only for certain function block parameters. The WRITE_IMM instruction
writes directly to the HSC.V and HSC.P registers in High Speed Counter (%HSC) function blocks.
For more details, refer to High Speed Counter (%HSC).

Syntax
The following describes Instruction List syntax. You can insert Instruction List operations and
assignment instructions (see page 19) in Ladder Diagram rungs using an Operation Block
graphical element.
For the WRITE_IMM instruction, use this syntax:
WRITE_IMM(Op1)

Where:

Example
The following code is an example of using the WRITE_IMM instruction:

NOTE: Refer to reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
NOTE: The application must be configured with a functional level of at least Level 3.3 to use the
WRITE_IMM instruction.

Operand Type Description
Op1 %HSCx.P, %HSCx.PD,

%HSCx.V, %HSCx.VD
This instruction writes a function block parameter given in Op1
and updates the value in the I/O image.

x Object instance identifier for the function block.

Rung Instruction
0 LD %M1

[WRITE_IMM(%HSC0.V)]
EIO0000001474 12/2016 137

Instructions
138 EIO0000001474 12/2016

SoMachine Basic
I/O Objects
EIO0000001474 12/2016
I/O Objects

Chapter 4
I/O Objects

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
4.1 Fast Counter (%FC) 140
4.2 High Speed Counter (%HSC) 141
4.3 Pulse (%PLS) 142
4.4 Pulse Width Modulation (%PWM) 143
EIO0000001474 12/2016 139

I/O Objects
Fast Counter (%FC)

Section 4.1
Fast Counter (%FC)

Fast Counter

Overview
Refer to the Advanced Functions Library Guide of your controller.
140 EIO0000001474 12/2016

I/O Objects
High Speed Counter (%HSC)

Section 4.2
High Speed Counter (%HSC)

High Speed Counter

Overview
Refer to the Advanced Functions Library Guide of your controller.
EIO0000001474 12/2016 141

I/O Objects
Pulse (%PLS)

Section 4.3
Pulse (%PLS)

Pulse

Overview
Refer to the Advanced Functions Library Guide of your controller.
142 EIO0000001474 12/2016

I/O Objects
Pulse Width Modulation (%PWM)

Section 4.4
Pulse Width Modulation (%PWM)

Pulse Width Modulation

Overview
Refer to the Advanced Functions Library Guide of your controller.
EIO0000001474 12/2016 143

I/O Objects
144 EIO0000001474 12/2016

SoMachine Basic
Network Objects
EIO0000001474 12/2016
Network Objects

Chapter 5
Network Objects

Network Objects

Presentation
Network objects are used to communicate via EtherNet/IP, Modbus TCP, or Modbus Serial
IOScanner.
There are two types of network object for EtherNet/IP communication:
 %QWE: Input Assembly
 %IWE: Output Assembly

There are two types of network object for Modbus TCP communication:
 %QWM: Input registers
 %IWM: Output registers

The following types of network object are used for the Modbus Serial IOScanner:
 %IN: Digital inputs (IOScanner)
 %QN: Digital outputs (IOScanner)
 %IWN: Input registers (IOScanner)
 %QWN: Output registers (IOScanner)
 %IWNS: IOScanner Network Diagnostic Codes

NOTE: References to input and output are from the point of view of the EtherNet/IP master or
Modbus TCP client.
For more information on how to configure network objects, refer to the programming guide for your
logic controller.
EIO0000001474 12/2016 145

Network Objects
146 EIO0000001474 12/2016

SoMachine Basic
Software Objects
EIO0000001474 12/2016
Software Objects

Chapter 6
Software Objects

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
6.1 Using Function Blocks 148
6.2 Timer (%TM) 154
6.3 Counter (%C) 164
6.4 Message (%MSG) and Exchange (EXCH) 171
6.5 LIFO/FIFO Register (%R) 194
6.6 Drums (%DR) 202
6.7 Shift Bit Register (%SBR) 210
6.8 Step Counter (%SC) 215
6.9 Schedule Blocks (%SCH) 220

6.10 Real Time Clock (%RTC) 225
6.11 PID 230
6.12 Grafcet Steps 231
EIO0000001474 12/2016 147

Software Objects
Using Function Blocks

Section 6.1
Using Function Blocks

What Is in This Section?
This section contains the following topics:

Topic Page
Function Block Programming Principles 149
Adding a Function Block 151
Configuring a Function Block 153
148 EIO0000001474 12/2016

Software Objects
Function Block Programming Principles

Overview
A function block is a reusable object that accepts one or more input values and returns one or more
output values.
The function block parameters are not available if:
 your controller does not support the function block,
 the function block is not configured.

Ladder Diagram Programs
To use a function block in a Ladder Diagram program:
1. Insert (see page 151) the function block into a rung,
2. Wire the inputs and outputs as necessary,
3. Configure (see page 153) the function block by specifying values for its parameters.

Instruction List Programs
To add a function block to an Instruction List program, you can use one of the following methods:
 Function block instructions (for example, BLK %TM2): This reversible method of programming

enables operations to be performed on the block in a single place in the program.
 Specific instructions (for example, CU %Ci). This non-reversible method enables operations to

be performed on function block inputs in several places in the program. For example:

Use the instructions BLK, OUT_BLK, and END_BLK for reversible programming of function blocks:

 BLK: Indicates the beginning of the block.
 OUT_BLK: Is used to wire directly the block outputs.
 END_BLK: Indicates the end of the block.

NOTE: Test and input instructions on the relevant block can only be placed between the BLK and
OUT_BLK instructions (or between BLK and END_BLK when OUT_BLK is not programmed).

Line Instruction
1000 CU %C1

1074 CD %C1

1209 R %C1
EIO0000001474 12/2016 149

Software Objects
Example with Output Wiring
This example shows a Counter function block in a program with wired outputs:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Example Without Output Wiring
This example shows reversible programming of a Counter function block without wired outputs:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 BLK %C8

LDF %I0.1
R
LD %I0.1
AND %M0
CU
OUT_BLK
LD D
AND %M1
ST %Q0.0
END_BLK

Rung Instruction
0 BLK %C8

LDF %I0.1
R
LD %I0.2
AND %M0
CU
END_BLK

1 LD %C8.D
AND %M1
ST %Q0.4
150 EIO0000001474 12/2016

Software Objects
Adding a Function Block

To Insert a Function Block Into a Ladder Diagram Program
Follow this procedure:

Available Function Block Objects
This table presents the available function block objects:

Step Action
1 Create a new Ladder Diagram rung in the programming workspace of SoMachine Basic. Refer

to the SoMachine Basic Operating Guide for details.
2 Click the Function button on the graphical toolbar at the top of the programming workspace.

Result: A list of all available function block objects is displayed (see the table below).
3 Select the function block.
4 Move the function block to the required position in the rung; then click to insert it.

Function Block Object Description
Timer

LIFO/FIFO Register

Shift Bit Register

Step Counter

Counter

Fast Counter

High Speed Counter

Drum

Pulse
EIO0000001474 12/2016 151

Software Objects
Pulse Width Modulation

Message

Pulse Train Output

NOTE: For a complete list of PTO objects, refer to the M221 Advanced
Functions Library Guide, PTO Function Blocks.
Communication function blocks

NOTE: For a complete list of communication function blocks, refer to
Communication Objects (see page 239).

Function Block Object Description
152 EIO0000001474 12/2016

Software Objects
Configuring a Function Block

To Configure a Function Block in a Ladder Diagram Program
Follow this procedure:

NOTE: You can also display the Properties table by double-clicking on the function block in a rung.

Step Action
1 Click the [Address] label within the function block.

A default address appears in the text box, for example "%TM0" for a Timer function block.
To change the default address, delete the final digit of the address (the instance identifier).
A list of all available addresses appears.
Select the address to use to identify this instance of the function block.
The properties of the function block appear in the center of the function block object and in the
Properties table in the bottom half of the programming workspace.
At any other time, double-click anywhere within the function block to display the properties.

2 Optionally, click the [Enter comment] label within the function block, type a short description of
the function block. For example, Pulse Timer.

3 Optionally, click the [Symbol] label within the function block and begin typing the name of the
symbol to associate with this function block.
A list of all existing symbols with names beginning with the character or characters you type
appears; click the symbol to use.
To create a new symbol for this function block, type the name of the symbol to create, and
select the object to associate with the symbol.
See the SoMachine Basic Operating Guide for details on using symbols.

4 Configure the available parameters of each function block, as described in the “Parameters”
topic of individual function block descriptions.
EIO0000001474 12/2016 153

Software Objects
Timer (%TM)

Section 6.2
Timer (%TM)

Using Timer Function Blocks
This section provides descriptions and programming guidelines for using Timer function blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 155
Configuration 156
TON: On-Delay Timer 158
TOF: Off-Delay Timer 160
TP: Pulse Timer 162
Programming Example 163
154 EIO0000001474 12/2016

Software Objects
Description

Introduction

A Timer function block is used to specify a period of time before doing something, for
example, triggering an event.

Illustration
This illustration is the Timer function block.

Inputs
The Timer function block has the following input:

Outputs
The Timer function block has the following output:

Label Description Value
IN Input address (or

instruction)
Starts the Timer when a rising edge (TON or TP types) or falling edge
(TOF type) is detected.

Label Description Value
Q Output address

(%TMi.Q)
Associated bit %TMi.Q is set to 1 (depending on the Timer type)
when the Timer expires.
EIO0000001474 12/2016 155

Software Objects
Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure (see page 153) and
read the description of Memory Allocation Modes in the SoMachine Basic Operating Guide.
The Timer function block has the following parameters:

Parameter Description Value Editable
in Online
Mode?

Used Address used If selected, this address is currently in use in a
program.

No

Address Timer object address (%TMi) A program can contain only a limited number of Timer
objects. Refer to the Programming Guide of the related
platform for the maximum number of timers.

No

Symbol Symbol The symbol associated with this object. Refer to the
SoMachine Basic Operating Guide, Defining and Using
Symbols for details.

No

Type Timer type One of the following:
 TON (see page 158): Timer on-Delay (default)
 TOF (see page 160): Timer off-Delay
 TP (see page 162): Pulse timer (monostable)

Yes1

Retentive True/False When the Retentive checkbox is not selected (default),
the value is reset when a falling edge of the IN
parameter is detected. Counting restarts from 0.
When the Retentive checkbox is selected, the timer
retains its value when a falling edge of the IN
parameter is detected before the Preset value is
reached. Counting restarts from this value.

NOTE: The application must be configured with a
functional level of at least Level 3.3 to use the
Retentive parameter

Yes1

Base Time base The base time unit of the timer. The smaller the Timer
base unit, the greater the acuity of the Timer:
 1 ms (only for the first 6 instances)
 10 ms
 100 ms
 1 sec
 1 min; (default)

Yes1
156 EIO0000001474 12/2016

Software Objects
Objects
The Timer function block has the following objects:

Preset Preset value 0 - 9999. Default value is 9999.
Timer Period = Preset x Time Base
Timer Delay = Preset x Time Base
This configured preset value can be read, tested, and
modified using the associated object %TMi.P.

Yes1

Comment Comment A comment can be associated with this object. No
1 The timer is immediately reset to 0 following any change to the parameter value when in online mode.

Parameter Description Value Editable
in Online
Mode?

Object Description Value
%TMi.P Preset value See description in Parameters table above.
%TMi.V Present value Word that increments from 0 to the preset value %TMi.P when the timer

is running. The value can be read and tested, but not written to, by the
program.
Its value can be modified in an animation table.

%TMi.Q Timer output See description in Outputs table above.
EIO0000001474 12/2016 157

Software Objects
TON: On-Delay Timer

Introduction
The TON (On-Delay Timer) type of timer is used to control on-delay actions. This delay is
programmable using the software.

Special Cases
The following table contains a list of special cases for programming the Timer function block.

Timing Diagram
This diagram illustrates the operation of the TON type Timer.

(1) The Timer starts on the rising edge of the IN input
(2) The value %TMi.V increases from 0 to %TMi.P in increments of 1 unit for each pulse of the time base

parameter TB

Special case Description
Effect of a cold restart (%S0=1) Forces the value to 0. Sets output %TMi.Q to 0. The preset value

is reset to the value defined during configuration.
Effect of a warm restart (%S1=1) Has no effect on the timer value and preset value of the timer. The

timer value does not change during a power outage.
Effect of a controller stop Stopping the controller does not freeze the value.
Effect of a program jump Jumping over the timer block does not freeze the timer. The timer

will continue to increment until it reaches the preset value
(%TMi.P). At that point, the Done bit (%TMi.Q) assigned to output
Q of the timer block changes state. However, the associated output
wired directly to the block output is not activated and not scanned
by the controller.

Testing by bit %TMi.Q (Done bit) Test bit %TMi.Q only once in the program.
Effect of modifying the preset %TMi.P Modifying the preset value by using an instruction, or by adjusting

the value with SoMachine Basic, only takes effect on the next
activation of the timer.
158 EIO0000001474 12/2016

Software Objects
(3) The %TMi.Q output bit is set to 1 when the value has reached the preset value %TMi.P
(4) The %TMi.Q output bit remains at 1 while the IN input is at 1
(5) When a falling edge is detected at the IN input, the Timer is stopped, even if the Timer has not reached

%TMi.P. %TMi.V is set to 0

Timing Diagram with Retentive Checkbox Selected
This diagram illustrates the operation of the TON type Timer when the Retentive checkbox is
selected.

(1) The Timer starts on the rising edge of the IN input
(2) The value %TMi.V increases from 0 to %TMi.P in increments of 1 unit for each pulse of the time base

parameter TB
(3) On the falling edge of the IN input, the Timer is stopped and remains unchanged awaiting the next rising

edge of the IN input
(4) On the rising edge of the IN input, the Timer starts again from the value it stopped at
(5) The %TMi.Q output bit is set to 1 when the value reaches the preset value %TMi.P
(6) When a falling edge is detected at the IN input, if the Timer has reached the preset value %TMi.P, the

%TMi.V value is set to 0
EIO0000001474 12/2016 159

Software Objects
TOF: Off-Delay Timer

Introduction
Use the TOF (Off-Delay Timer) type of Timer to control off-delay actions. This delay is
programmable using the software.

Timing Diagram
This diagram illustrates the operation of the TOF type Timer.

(1) At a rising edge of IN input, %TMi.Q is set to 1
(2) The Timer starts on the falling edge of input IN
(3) The value %TMi.V increases to the preset value %TMi.P in increments of 1 unit for each pulse of the time

base parameter TB
(4) The %TMi.Q output bit is reset to 0 when the value reaches the preset value %TMi.P
(5) At a rising edge of input IN, %TMi.V is set to 0
(6) At a rising edge of input IN, %TMi.V is set to 0 even if the preset value is not reached
160 EIO0000001474 12/2016

Software Objects
Timing Diagram with Retentive Checkbox Selected
This diagram illustrates the operation of the TOF type Timer when the Retentive checkbox is
selected.

(1) At a rising edge of IN input, %TMi.Q is set to 1
(2) The Timer starts on the falling edge of input IN
(3) The value %TMi.V increases to the preset value %TMi.P in increments of 1 unit for each pulse of the time

base parameter TB
(4) On a rising edge of the IN input, the Timer is stopped and remains unchanged awaiting the next falling

edge of the IN input.
(5) The %TMi.Q output bit is reset to 0 when the value reaches the preset value %TMi.P
(6) At a rising edge of input IN, %TMi.V is set to 0 and %TMi.Q is set to 1
EIO0000001474 12/2016 161

Software Objects
TP: Pulse Timer

Introduction
The TP (Pulse Timer) type of Timer is used to create pulses of a precise duration. This delay is
programmable using the software.

Timing Diagram
This diagram illustrates the operation of the TP type Timer.

(1) The Timer starts on the rising edge of the IN input. The current value %TMi.V is set to 0 if the Timer has
not already started and %TMi.Q is set to 1 when the Timer starts

(2) The current value %TMi.V of the Timer increases from 0 to the preset value %TMi.P in increments of one
unit per pulse of the time base parameter TB

(3) The %TMi.Q output bit is set to 0 when the current value has reached the preset value %TMi.P
(4) The current value %TMi.V is set to 0 when %TMi.V equals %TMi.P and input IN returns to 0
(5) This Timer cannot be reset
(6) When %TMi.V equals %TMi.P and input IN is 0, then %TMi.Q is set to 0
162 EIO0000001474 12/2016

Software Objects
Programming Example

Introduction
Timer function blocks have the following operating modes:
 TON (Timer On-Delay) (see page 158): used to specify a period of time between a specified

input being activated and an output sensor being switched on.
 TOF (Timer Off-Delay) (see page 160): used to specify a period of time between an output

associated with a sensor no longer being detected and the corresponding output being switched
off.

 TP (Timer - Pulse) (see page 162): used to create a pulse of a precise duration.
The delays or pulse periods of Timers are programmable and can be configured from within the
software.

Programming
This example is a Timer function block with reversible instructions:

This example is the same Timer function block with non-reversible instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Reversible Instruction
0 BLK %TM0

LD %M0
IN
OUT_BLK
LD Q
ST %Q0.0
END_BLK

1 LD [%TM0.V<400]
ST %Q0.1

2 LD [%TM0.V>=400]
ST %Q0.2

Rung Non-Reversible Instruction
0 LD %M0

IN %TM0

1 LD %TM0.Q
ST %Q0.0

2 LD [%TM0.V<400]
ST %Q0.1

3 LD [%TM0.V>=400]
ST %Q0.2
EIO0000001474 12/2016 163

Software Objects
Counter (%C)

Section 6.3
Counter (%C)

Using Counter Function Blocks
This section provides descriptions and programming guidelines for using Counter function
blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 165
Configuration 167
Programming Example 169
164 EIO0000001474 12/2016

Software Objects
Description

Introduction

The Counter function block provides up and down counting of events. These 2 operations
can be done concurrently.

Illustration
This illustration presents the Counter function block.

Inputs
The Counter function block has the following inputs:

Label Description Value
R Reset input (or

instruction)
Sets the counter (%Ci.V) to 0 when the reset input (R) is set to
1.

S Set input (or instruction) Sets the counter (%Ci.V) to the preset value (%Ci.P) when the
set input (S) is set to 1.

CU Count up Increments the counter value (%Ci.V) by 1 on a rising edge at
count up input (CU).

CD Count down Decrements the counter value (%Ci.V) by 1 on a rising edge at
count down input (CD).
EIO0000001474 12/2016 165

Software Objects
Outputs
The Counter function block has the following outputs:

Label Description Value
E Down count overflow The associated bit %Ci.E (counter empty) is set to 1 when the counter

reaches 0 value. In case of following decrement, the counter value
passes to 9999.

D Preset output reached The associated bit %Ci.D (count done) is set to 1 when
%Ci.V = %Ci.P.

F Up count overflow The associated bit %Ci.F=1 (counter full), when %Ci.V changes from
9999 to 0 (set to 1 when %Ci.V reaches 0, and reset to 0 if the
Counter continues to count up).
166 EIO0000001474 12/2016

Software Objects
Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure (see page 153) and
read the description of Memory Allocation Modes in the SoMachine Basic Operating Guide.
The Counter function block has the following parameters:

Objects
The Counter function block has the following objects:

Parameter Description Value Editable in
online
mode?

Used Address used If selected, this address is currently in use in a
program.

No

Address Counter object
address

A program can contain only a limited number of
counter objects. Refer to the Programming Guide
of your controller for the maximum number of
counters.

No

Symbol Symbol The symbol associated with this object. Refer to
the SoMachine Basic Operating Guide, Defining
and Using Symbols for details.

No

Preset Preset value Values accepted by preset value [0 − 9999].
Default value is 9999. This configured value can be
read, tested, and modified using the associated
object %Ci.P.

Yes

Comment Comment A comment can be associated with this object. No

Object Description Value
%Ci.V Current value of the

Counter
This word is incremented or decremented according to
inputs (or instructions) CU and CD (see Inputs table
(see page 165)). Can be only read.
It can be modified in an animation table.

%Ci.P Preset value See Parameters table (see page 167).
It can be modified in an animation table.

%Ci.E Empty See Outputs table (see page 166).
It can be modified in an animation table.

%Ci.D Done See Outputs table (see page 166).
It can be modified in an animation table.

%Ci.F Full See Outputs table (see page 166).
It can be modified in an animation table.
EIO0000001474 12/2016 167

Software Objects
Operations
This table describes the main stages of Counter function block operations:

Special Cases
This table shows a list of special operating/configuration cases for Counter function block:

NOTE: Effect of INIT is the same as %S0=1.

Operation Action Result
Reset Input R is set to state 1(or the R

instruction is activated).
The current value %Ci.V is forced to 0.
Outputs %Ci.E, %Ci.D,and %Ci.F are at
0. The reset input has priority.

Set If input S is set to 1 (or the S instruction
is activated) and the reset input is at 0
(or the R instruction is inactive).

The current value %Ci.V takes the %Ci.P
value and the %Ci.D output is set to 1.

Counting A rising edge appears at the Count up
input CU (or instruction CU is activated).

The %Ci.V current value is incremented by
one unit.

The %Ci.V current value is equal to
the %Ci.P preset value.

The "preset reached" output bit %Ci.D
switches to 1.

The %Ci.V current value changes from
9999 to 0.

The output bit %Ci.F (up-counting overflow)
switches to 1.

If the Counter continues to count up. The output bit %Ci.F (up-counting overflow)
is reset to 0.

Count down A rising edge appears at the down-
counting input CD (or instruction CD is
activated).

The current value %Ci.V is decremented by
1 unit.

The current value %Ci.V changes from
0 to 9999.

The output bit %Ci.E (down-counting
overflow) switches to 1.

If the Counter continues to count
down.

The output bit %Ci.F (down-counting
overflow) is reset to 0.

Special Case Description
Effect of a cold restart (%S0=1) or INIT  The current value %Ci.V is set to 0.

 Output bits %Ci.E, %Ci.D, and %Ci.F are set to 0.
 The preset value is initialized with the value defined

during configuration.
Effect of a warm restart (%S1=1) of a controller
stop

Has no effect on the current value of the Counter (%Ci.V).

Effect of modifying the preset %Ci.P Modifying the preset value via an instruction or by adjusting
it takes effect when the block is processed by the
application (activation of one of the inputs).
168 EIO0000001474 12/2016

Software Objects
Programming Example

Introduction
The following example is a counter that provides a count of up to 5000 items. Each pulse on input
%I0.2 (when memory bit %M0 is set to 1) increments the Counter function block %C8 up to its final
preset value (bit %C8.D=1). The counter is reset by input %I0.1.

Programming
This example is a Counter function block with reversible instructions:

This example is the same Counter function block with non-reversible instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Configuration
The parameters must be entered during configuration:
Preset value (%Ci.P): set to 5000 in this example.

Rung Reversible Instruction
0 BLK %C8

LD %I0.1
R
LD %I0.2
AND %M0
CU
END_BLK

1 LD %C8.D
ST %Q0.0

Rung Non-Reversible Instruction
0 LD %I0.1

R %C8

1 LD %I0.2
AND %M0
CU %C8

2 LD %C8.D
ST %Q0.0
EIO0000001474 12/2016 169

Software Objects
Example of an Up/Down Counter
This illustration is an example of a Counter function block.

In this example, %M0 is the increment (%M0 = False) and the decrement (%M0 = True) order. The
counter counts the Front edge of %I0.0. If %M0 is False, at each Front Edge on %I0.0, %C1.V is
incremented until it reaches the preset %C1.P value, and the Done indicator %C1.D switches to
TRUE. The %C1.D output sets %M0 and switches the instruction into decrement order. Then at
each Front Edge on %I0.0, %C1.V is decremented until it reaches 0. The Empty indicator (%C1.E)
switches on and resets %M0 (Increment order).
170 EIO0000001474 12/2016

Software Objects
Message (%MSG) and Exchange (EXCH)

Section 6.4
Message (%MSG) and Exchange (EXCH)

Using Message Function Blocks
This section provides descriptions and programming guidelines for using Message function
blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Overview 172
Description 174
Configuration 177
Programming Example 181
ASCII Examples 183
Modbus Standard Requests and Examples 185
EIO0000001474 12/2016 171

Software Objects
Overview

Introduction
A logic controller can be configured to communicate in Modbus protocol or can send and/or receive
messages in character mode (ASCII).
SoMachine Basic provides the following functions for these communications:
 Exchange (EXCH) instruction to transmit/receive messages.
 Message function block (%MSG) to control the data exchanges.

The logic controller uses the protocol configured for the specified port when processing an
Exchange instruction. Each communication port can be assigned a different protocol. The
communication ports are accessed by appending the port number to the Exchange instruction
(EXCH1, EXCH2) or Message function block (%MSG1, %MSG2).

The logic controllers implement Modbus TCP messaging over the Ethernet network by using the
EXCH3 instruction and %MSG3 function block.

This table shows the Exchange instruction and Message function block used to access the
communication ports of the controller:

Exchange Instruction
The Exchange instruction allows a logic controller to send and/or receive information to/from ASCII
or Modbus devices. You define a table of words (%MWi:L) containing control information and the
data to be sent and/or received. Refer to Configuring the transmission table (see page 178). A
message exchange is performed using the Exchange instruction.

Syntax
The following is the format for the Exchange instruction:
[EXCHx %MWi:L]

Where: x = port number; L = total number of words of the word table.
The logic controller must finish the exchange from the first Exchange instruction before a second
Exchange instruction can be started. The Message function block must be used when sending
several messages.

Communication Port Exchange Instruction Message Function Block
2 serial lines EXCH1 %MSG1

EXCH2 %MSG2

1 serial line and 1 Ethernet EXCH1 %MSG1

EXCH3 %MSG3
172 EIO0000001474 12/2016

Software Objects
ASCII Protocol
ASCII protocol provides the logic controller a simple character mode protocol to transmit and/or
receive data with a simple device. This protocol is supported using the Exchange instruction and
controlled using the Message function block.

3 types of communications are possible with the ASCII protocol:
 Transmission only
 Transmission/Reception
 Reception only

Modbus Protocol
In case of serial link, the Modbus protocol is a master-slave protocol that allows for one, and only
one, master to request responses from slaves, or to act based on the request. On Ethernet support,
several Master (client) can exchange with one slave (server). Each slave must have a unique
address. The master can address individual slaves, or can initiate a broadcast message to all
slaves. Slaves return a message (response) to queries that are addressed to them individually.
Responses are not returned to broadcast queries from the master.
Modbus master mode allows the controller to send a Modbus query to a slave, and to wait for the
response. The Modbus master mode is only supported via the Exchange instruction. Both Modbus
ASCII and RTU are supported in Modbus master mode.
Modbus slave mode allows the controller to respond to standard Modbus queries from a Modbus
master.
For detailed information about Modbus protocol, refer to the document Modbus application
protocol which is available at http://www.modbus.org.

Modbus Slave
The Modbus protocol supports 2 Data link layer of the OSI Model formats: ASCII and RTU. Each
is defined by the Physical Layer implementation, with ASCII using 7 data bits, and RTU using 8
data bits.
When using Modbus ASCII mode, each byte in the message is sent as 2 ASCII characters. The
Modbus ASCII frame begins with a start character (':'), and ends with 2 end characters (CR and
LF). The end of frame character defaults to 0x0A (LF). The check value for the Modbus ASCII
frame is a simple two's complement of the frame, excluding the start and end characters.
Modbus RTU mode does not reformat the message prior to transmitting; however, it uses a
different checksum calculation mode, specified as a CRC.
The Modbus Data Link Layer has the following limitations:
 Address 1-247
 Bits: 128 bits on request
 Words: 125 words of 16 bits on request
EIO0000001474 12/2016 173

http://www.modbus.org

Software Objects
Description

Introduction

The Message function block manages data exchanges and has three functions:
 Communications error checking:

Error checking verifies the size of each Exchange table, and verifies the validity of the exchange
related to the configuration.

 Coordination of multiple messages:
To ensure coordination when sending multiple messages, the Message function block provides
the information required to determine when a previous message is complete.

 Transmission of priority messages:
The Message function block allows the on-going message transmission to be stopped in order
to allow the immediate sending of an urgent message.

The programming of the Message function block is optional.

When errors are detected, codes are written to the system words %SW63, %SW64, and %SW65 for
the exchange blocks EXCH1, EXCH2 and EXCH3, respectively. For more information, refer to the
Programming Guide of your controller.

Illustration
This illustration presents the Message function block:
174 EIO0000001474 12/2016

Software Objects
Inputs
The Message function block has the following input:

Outputs
The Message function block has the following outputs:

Label Description Value
R Reset input

(%MSGx.R)
Set to 1: reinitializes communication:
 Communication done (%MSGx.D) output is set to 1

 Communication Error Detected (%MSG.E) output is set to 0

 An error is set on any active Communication function block
(%READ_VAR, %WRITE_VAR, etc.).

NOTE: Only one Message function block, EXCH instruction, or
Communication function block can be active at a time on a
communication port during a master task cycle. If you attempt to use
several communication function blocks, MSG, or EXCH instructions
concurrently on the same communication port, the function blocks return
an error code.Therefore, verify that no active exchange (%MSGx.D is
TRUE) is in progress on a communication port before starting a
Communication function block, Message function block, or EXCH
instruction. Further, verify that the IOScanner is not also active on the
communication port.

NOTE: The IOScanner does not update the outputs of the %MSG function
block. Therefore, the %MSG.D bit is irrelevant to the function of the
IOScanner.

Label Description Value
D Communication

Done (%MSGx.D)
State 1:
 End of transmission (if transmission)
 End of reception (end character received)
 Error
 Reset the block

State 0: request in progress.
E Communication

Error Detected
(%MSGx.E)

State 1:
 Undefined command
 Table incorrectly configured
 Incorrect character received (speed, parity, and so on)
 Reception table full (not updated)

State 0: message length correct, link established.
Refer to the table below for the error codes written to the system words
when communication error is detected.
EIO0000001474 12/2016 175

Software Objects
Communication Error Codes
This table describes the error codes written to the system words when communication error is
detected:

System word Function Description
%SW63 EXCH1 block

error code
EXCH1 error code:
0 - operation was successful
1 - number of bytes to be transmitted exceeds the limit (> 255)
2 - insufficient transmission table
3 - insufficient word table
4 - receive table overflowed
5 - time-out elapsed
6 - transmission
7 - incorrect command within table
8 - selected port not configured/available
9 - reception error: This error code reflects an incorrect or corrupted
reception frame. It can be caused due to an incorrect configuration in the
physical parameters (for example, parity, data bits, baudrate, and so on) or
an unreliable physical connection causing signal degradation.
10 - cannot use %KW if receiving
11 - transmission offset larger than transmission table
12 - reception offset larger than reception table
13 - controller stopped EXCH processing

%SW64 EXCH2 block
error code

EXCH2 error code: See %SW63.

%SW65 EXCH3 block
error code

1-4, 6-13: See %SW63. (Note that error code 5 is invalid and replaced by the
Ethernet-specific error codes 109 and 122 described below.)
The following are Ethernet-specific error codes:
101 - incorrect IP address
102 - no TCP connection
103 - no socket available (all connection channels are busy)
104 - network is down
105 - network cannot be reached
106 - network dropped connection on reset
107 - connection aborted by peer device
108 - connection reset by peer device
109 - connection time-out elapsed
110 - rejection on connection attempt
111 - host is down
120 - incorrect index (remote device is not indexed in configuration table)
121 - system error (MAC, chip, duplicate IP)
122 - receiving process timed-out after data was sent
123 - Ethernet initialization in progress
176 EIO0000001474 12/2016

Software Objects
Configuration

Detected Error
If an error is detected when using an Exchange instruction, bits %MSGx.D and %MSGx.E are set to
1, system word %SW63 contains the error code for port 1, and %SW64 contains the error code for
port 2. Refer to the System Words chapter of your logic controller Programming Guide.

Operations
This table describes the main stages of Message function block operations:

Special Cases
This table contains a list of special cases for the Message operation:

NOTE: Effect of INIT is the same as %S0=1.

Operation Action Result
Reset Input R is set to state 1 (or the R

instruction is activated).
 Any messages that are being transmitted

are stopped.
 The communication error output is reset to

0.
 The Done bit is set to 1.

A new message can now be sent.
Communication
done

Output D is set to state 1. The logic controller is ready to send another
message. Use of the %MSGx.D bit to help
avoid losing messages when multiple
messages are sent.

Communication
Detected Error

The communication error output is set to 1:
 Either because of a communications programming error or a message transmission

error.
 If the number of bytes defined in the data block associated with the Exchange

instruction (word 1, least significant byte) is greater than 128 (+80 in hexadecimal
by FA).

 If a problem exists in sending a Modbus message to a Modbus device. In this case,
you should check wiring, and that the destination device supports Modbus
communication.

Special Case Description
Effect of a cold restart (%S0=1) or INIT Forces a reinitialization of the communication.

Effect of a warm restart (%S1=1) Has no effect.

Effect of a controller stop If a message transmission is in progress, the controller stops its
transfer and reinitializes the outputs %MSGx.D and %MSGx.E.
EIO0000001474 12/2016 177

Software Objects
Limitations
Note the following limitations:
 Port 2 (for ASCII protocol) availability and type (see %SW7) are checked only at power-up or

reset
 Port 2 (for Modbus protocol) presence and configuration (RS-485) are checked at power-up or

reset
 Any message processing on port 1 is aborted when SoMachine Basic is connected
 Exchange instructions abort active Modbus slave processing
 Processing of Exchange instructions is not retried in the event of a detected error
 Reset input (R) can be used to abort Exchange instruction reception processing
 Exchange instructions are configured with a time-out in case of Modbus protocol.
 Multiple messages are controlled via %MSGx.D

Configuring the Transmission/Reception Table
The maximum size of the transmitted and/or received frames is:
 250 bytes for Modbus protocol.
 256 bytes for ASCII protocol.
The word table associated with the Exchange instruction is composed of the control, transmission,
and reception tables:

NOTE: In addition to queries to individual slaves, the Modbus master controller can initiate a
broadcast query to all slaves. The Command byte in case of a broadcast query must be set to 00,
while the slave address must be set to 0.

Most Significant Byte Least Significant Byte
Modbus ASCII Modbus ASCII

Control table Command Length (transmission/reception)
Rx offset Reserved (0) Tx offset Reserved (0)

Transmission table Transmitted byte 1 Transmitted byte 2

...
...
Transmitted byte n

Transmitted byte n+1
Reception table Received byte 1 Received byte 2

...
...
Received byte p

Received byte p+1
178 EIO0000001474 12/2016

Software Objects
Control Table for ASCII Protocol
The Length byte contains the length of the transmission table in bytes (250 max.), which is
overwritten by the number of characters received at the end of the reception, if reception is
requested.
The command byte must contain one of the following:
 0: Transmission only
 1: Send/receive
 2: Reception Only

Control Table for Modbus Protocol
The Length byte contains the length of the transmission table in bytes (250 max.), which is
overwritten by the number of characters received at the end of the reception, if reception is
requested.
This parameter is the length in bytes of the transmission table. If the Tx offset parameter is equal
to 0, this parameter will be equal to the length of the transmission frame. If the Tx offset parameter
is not equal to 0, one byte of the transmission table (indicated by the offset value) will not be
transmitted and this parameter is equal to the frame length itself plus 1.
The Command byte in case of Modbus RTU request (except for broadcast) must always be equal
to 1 (Tx and Rx). For broadcast, it must be 0.
The Tx offset byte contains the rank (1 for the first byte, 2 for the second byte, and so on) within
the transmission table of the byte to ignore when transmitting the bytes. This is used to handle
issues associated with byte/word values within the Modbus protocol. For example, if this byte
contains 3, the third byte would be ignored, making the fourth byte in the table the third byte to be
transmitted.
The Rx offset byte contains the rank (1 for the first byte, 2 for the second byte, and so on) within
the reception table to add when transmitting the packet. This is used to handle issues associated
with byte/word values within the Modbus protocol. For example, if this byte contains 3, the third
byte within the table would be filled with a 0, and the third byte which was received would be
entered into the fourth location in the table.

Transmission/Reception Tables for ASCII Protocol
When in transmit-only mode, the control and transmission tables of type %MW are filled prior to
executing the Exchange (EXCH) instruction. No space is required for the reception of characters
in transmit-only mode. Once all bytes are transmitted, %MSGx.D is set to 1, and a new Exchange
(EXCH) instruction can be executed.
When in transmit/receive mode, the control and transmission tables are filled in prior to executing
the Exchange (EXCH) instruction, and must be of type %MW. Space for up to 256 reception bytes
is required at the end of the transmission table. Once all bytes are transmitted, the logic controller
switches to reception mode and waits to receive any bytes.
EIO0000001474 12/2016 179

Software Objects
When in reception-only mode, the control table is filled in prior to executing the Exchange
instruction, and must be of type %MW. Space for up to 256 reception bytes is required at the end of
the control table. The logic controller immediately enters reception mode and waits to receive any
bytes.
Reception ends when end of frame bytes used have been received, or the reception table is full.
In this case, a detected error code (receive table overflowed) appears in the system words %SW63
and %SW64. If a non-zero timeout is configured, reception ends when the timeout is completed. If
a zero timeout value is selected, there is no reception timeout. Therefore, to stop reception,
%MSGx.R input must be activated.

Transmission/Reception Tables for Modbus Protocol
When using either mode (Modbus ASCII or Modbus RTU), the transmission table is filled with the
request prior to executing the Exchange (EXCH) instruction. At execution time, the logic controller
determines what the data link layer is, and performs all conversions necessary to process the
transmission and response. Start, end, and check characters are not stored in the
Transmission/Reception tables.
Once all bytes are transmitted, the logic controller switches to reception mode and waits to receive
any bytes.
Reception is completed in one of several ways:
 timeout on a character or frame has been detected,
 end of frame characters received in ASCII mode,
 the reception table is full.
Transmitted byte x entries contain Modbus protocol (RTU encoding) data that is to be transmitted.
If the communications port is configured for Modbus ASCII, the correct framing characters are
appended to the transmission. The first byte contains the device address (specific or broadcast),
the second byte contains the function code, and the rest contain the information associated with
that function code.
NOTE: This is a typical application, but does not define all the possibilities. No validation of the data
being transmitted will be performed.
Received bytes x entries contain Modbus protocol (RTU encoding) data that is to be received. If
the communications port is configured for Modbus ASCII, the correct framing characters are
removed from the response. The first byte contains the device address, the second byte contains
the function code (or response code), and the rest contain the information associated with that
function code.
NOTE: This is a typical application, but does not define all the possibilities. No validation of the data
being received is performed, except for checksum verification.
180 EIO0000001474 12/2016

Software Objects
Programming Example

Introduction
The following are examples of programming a Message function block.

Programming a Transmission of Several Successive Messages
Execution of the Exchange instruction activates a Message function block in the application
program. The message is transmitted if the Message function block is not already active
(%MSGx.D = 1). If several messages are sent in the same cycle, only the first message is
transmitted using the same port.
Example of a transmission of 2 messages in succession on port 1:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Reversible Instruction Comment
0 LD %M142

[%MW2:=16#0106]
[%MW3:=0]
[%MW4:=16#0106]
[%MW5:=4]
[%MW6:=7]

Write on a slave, at address 1: value 7 on the
register 4.
[%MW2:=16#0106]: Command code: 01 hex,
transmission length: 06 hex
[%MW3:=0]: No reception or transmission
offset
[%MW4:=16#0106]: Slave address: 01 hex,
function code: 06 hex (Write Single Register)
[%MW5:=4]: Register address
[%MW6:=7]: Value to write

1 LD %MSG1.D
AND %M0
[EXCH1 %MW2:8]
R %M0

%MSG2.D: Detects whether the port is busy or
not and thereby manages coordination of
multiple messages.

2 LDR %I0.0
AND %MSG1.D
[EXCH1 %MW2:8]
S %M0

–

EIO0000001474 12/2016 181

Software Objects
Programming a Reinitialization Exchange
An exchange is canceled by activating the input (or instruction) R. This input initializes
communication and resets output %MSGx.E to 0 and output %MSGx.D to 1. It is possible to
reinitialize an exchange if an error is detected.
Example of reinitializing an exchange:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Reversible Instruction Comment
0 BLK %MSG1

LD %M0
R
END_BLK

–

182 EIO0000001474 12/2016

Software Objects
ASCII Examples

Application Writing
Example of ASCII application:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
Use SoMachine Basic to create a program with 3 rungs:
 First, initialize the control and transmission tables to use for the Exchange instruction. In this

example, a command is set up to both send and receive data. The amount of data to send is set
to 4 bytes, as defined in the application, followed by the end of frame character defined in the
configuration. Start and end characters do not display in an animation table, only data
characters. In all cases, those characters are automatically transmitted or checked at reception
(by %SW63 and %SW64), when used.
NOTE: The end characters defined in the configuration are sent automatically in the end of the
frame. For example, if you have configured the first end character to 10 and the second end
character to 13, 16#0A0D (ASCII codes, 0A = LF and 0D = CR) is sent in the end of the frame.

 Next, check the status bit associated with %MSG2 and issue the EXCH2 instruction only if the port
is ready. For the EXCH2 instruction, a value of 8 words is specified. There are 2 control words
(%MW10 and %MW11), 2 words to be used for transmit information (%MW12 and %MW13), and 4
words to receive data (%MW14 through %MW17).

 Finally, the detected error status of the %MSG2 is sensed and stored on the first output bit on the
local base controller I/O. Additional error handling using %SW64 could also be added to make
this more accurate.

Rung Instruction Comment
0 LD 1

[%MW10:=16#0104]
[%MW11:=16#0000]
[%MW12:=16#4F4B]

[%MW10:=16#0104]: Command code: 01 hex, transmission
length: 04 hex
[%MW11:=16#0000]: 0000: Null
[%MW12:=16#4F4B]: Ok

NOTE: The table has 8 elements.1 LD 1
AND %MSG2.D
[EXCH2 %MW10:8]

2 LD %MSG2.E
ST %Q0.0
END
EIO0000001474 12/2016 183

Software Objects
Animation Table Initialization
Example of initializing an animation table in online mode:

To display the possible formats, right-click on the Values box in an animation table.
The final step is to download this application to the controller and run it. Initialize an animation table
to animate and display the %MW10 through %MW16 words. This information is exchanged with a logic
controller and displayed in an animation table.

Address Value Format
%MW10 0104 Hexadecimal
%MW11 0000 Hexadecimal
%MW12 4F4B Hexadecimal
%MW13 0A0D Hexadecimal
%MW14 AL ASCII
%MW15 OH ASCII
%MW16 A ASCII
184 EIO0000001474 12/2016

Software Objects
Modbus Standard Requests and Examples

Modbus Master: Read N Bits
This table represents requests 01 and 02 (01 for output or memory bit, 02 for input bit):

Table
Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 06 (Transmission length)(1)

1 03 (Reception offset) 00 (Transmission offset)
Transmission table 2 Slave@(1...247) 01 or 02 (Request code)

3 Address of the first bit to read in the slave
4 N1 = Number of bits to read

Reception table
(after response)

5 Slave@(1...247) 01 or 02 (Response code)
6 00 (byte added by Rx offset

action)
N2
= Number of data bytes to read
= [1+(N1-1)/8],
where the result is the integer part of
the division.

7 Value of the first bit (value
00 or 01) expanded into a
byte

Value of the second bit (if N2>1)
expanded into a byte

8 Value of the third bit (if
N1>1) expanded into a byte

–

...
(N2/2)+6 (if N2 is
even)
(N2/2+1)+6 (if N2
is odd)

Value of the N2
th bit (if N1>1)

expanded into a byte
–

(1) This byte also receives the length of the string transmitted after response.
EIO0000001474 12/2016 185

Software Objects
Modbus Master: Read N Words
This table represents requests 03 and 04 (03 for output or memory word, 04 for input word):

NOTE: The Reception offset of 3 adds a byte (value = 0) at the third position in the reception table.
This ensures a good positioning of the number of bytes read and of the read words’ values in this
table.

Modbus Master: Write Bit
This table represents request 05 (write a single bit: output or memory):

Table
Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 06 (Transmission length)(1)

1 03 (Reception offset) 00 (Transmission offset)
Transmission table 2 Slave@(1...247) 03 or 04 (Request code)

3 Address of the first word to read
4 N = Number of words to read

Reception table (after
response)

5 Slave@(1...247) 03 or 04 (Response code)
6 00 (byte added by Rx offset action) 2*N (number of bytes read)
7 First word read
8 Second word read (if N>1)
... ...
N+6 Word N read (if N>2)

(1) This byte also receives the length of the string transmitted after response.

Table
Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 06 (Transmission length)(1)

1 00 (Reception offset) 00 (Transmission offset)
Transmission
table

2 Slave@(1...247) or 0 in case of broadcast 05 (Request code)
3 Value to write for MSB of the index word 4; whether 0xFF or 0x00(2).
4 Bit value to write in the slave (16#0000 = False and 16#FF00 = True)

Reception table
(after response)

5 Slave@(1...247) 05 (Response code)
6 Address of the bit written
7 Value written

(1) This byte also receives the length of the string transmitted after response.
(2) For a bit to write 1, the associated word in the transmission table must contain the value FF00h, and 0 for

the bit to write 0.
186 EIO0000001474 12/2016

Software Objects
NOTE:
 This request does not need the use of offset.
 The response frame is the same as the request frame here (in a normal case).

Modbus Master: Write Word
This table represents request 06 (write a single word: output or memory):

NOTE:
 This request does not need the use of offset.
 The response frame is the same as the request frame here (in a normal case).

Modbus Master: Write of N Bits
This table represents request 15 (write N bits: output or memory):

Table
Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 06 (Transmission length)(1)

1 00 (Reception offset) 00 (Transmission offset)
Transmission table 2 Slave@(1...247) or 0 in case of

broadcast
06 (Request code)

3 Address of the word to write
4 Word value to write

Reception table (after
response)

5 Slave@(1...247) 06 (Response code)
6 Address of the word written
7 Value written

(1) This byte also receives the length of the string transmitted after response.

Table
Index

Most Significant Byte Least Significant Byte

Control table 0 01
(Transmission/reception)

8 + number of bytes (transmission)

1 00 (Reception offset) 07 (Transmission offset)
EIO0000001474 12/2016 187

Software Objects
NOTE: The Transmission offset = 7 suppresses the seventh byte in the sent frame. This also
allows a correct correspondence of words’ values in the transmission table.

Modbus Master: Write of N Words
This table represents request 16:

Transmission table 2 Slave@(1...247) or 0 in
case of broadcast

15 (Request code)

3 Address of the first bit to write
4 N1 = Number of bits to write

5 00 (byte not sent, offset
effect)

N2
= Number of data bytes to write
= [1+(N1-1)/8],
where the result is the integer part of
the division.

6 Value of the first byte Value of the second byte
7 Value of the third byte Value of the fourth byte
...
(N2/2)+5 (if N2 is
even)
(N2/2+1)+5 (if N2 is
odd)

Value of the N2
th byte

Reception table
(after response)

– Slave@(1...247) 15 (Response code)
– Address of the first bit written
– Number of bits written (= N1)

Table
Index

Most Significant Byte Least Significant Byte

Table
Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 8 + (2*N) (Transmission length)
1 00 (Reception offset) 07 (Transmission offset)
188 EIO0000001474 12/2016

Software Objects
NOTE: The Transmission offset = 7 suppresses the seventh byte in the sent frame. This also
allows a correct correspondence of words’ values in the transmission table.

Modbus Request: Read Device Identification
This table represents request 43 (read device identification):

Modbus Request: Diagnostic
This table represents request 8 (diagnostic):

Transmission table 2 Slave@(1...247) or 0 in case of
broadcast

16 (Request code)

3 Address of the first word to write
4 N = Number of words to write
5 00 (byte not sent, offset effect) 2*N = Number of bytes to write
6 First word value to write
7 Second value to write
... ...
N+5 N values to write

Reception table (after
response)

N+6 Slave@(1...247) 16 (Response code)
N+7 Address of the first word written
N+8 Number of words written (= N)

Table
Index

Most Significant Byte Least Significant Byte

Rung Instruction Comment
0 LD 1

[%MW800:=16#0106]
[%MW801:=16#0000]
[%MW802:=16#032B]
[%MW803:=16#0E01]
[%MW804:=16#0000]

[%MW800:=16#0106]: Standard Modbus header
[%MW801:=16#0000]: No transmission and reception offset
[%MW802:=16#032B]: Slave address, function code
[%MW803:=16#0E01]: MEI type, read device ID code
[%MW804:=16#0000]: Object ID, unused

Rung Instruction Comment
0 LD 1

[%MW1000:=16#0106]
[%MW1001:=16#0000]
[%MW1002:=16#0308]
[%MW1003:=16#0000]
[%MW1004:=16#1234]

[%MW1000:=16#0106]: Standard Modbus header
[%MW1001:=16#0000]: No transmission and reception offset
[%MW1002:=16#0308]: Slave address, function code
[%MW1003:=16#0000]: Subfunction code
[%MW1004:=16#1234]: Any data
The Slave answer will be a copy of the request. This mode is
referred to as Echo or Mirror mode.
EIO0000001474 12/2016 189

Software Objects
Example 1: Modbus Application Writing
Master program:

Slave program:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
Using SoMachine Basic, create an application program for both the master and the slave. For the
slave, write some memory words to a set of known values. In the master, the word table of the
Exchange instruction is initialized to read 4 words from the slave at Modbus address 2 starting at
location %MW0.

NOTE: Note the use of the Reception offset set in %MW1 of the Modbus master. The offset of 3 will
add a byte (value = 0) at the third position in the reception area of the table. This aligns the words
in the master so that they fall correctly on word boundaries. Without this offset, each word of data
would be split between 2 words in the Exchange block. This offset is used for convenience.
Before executing the EXCH2 instruction, the application checks the communication bit associated
with %MSG2. Finally, the error status of the %MSG2 is sensed and stored on the first output bit on
the local base controller I/O. Additional error checking using %SW64 could also be added to make
this more accurate.

Rung Instruction Comment
0 LD 1

[%MW0:=16#0106]
[%MW1:=16#0300]
[%MW2:=16#0203]
[%MW3:=16#0000]
[%MW4:=16#0004]

[%MW0:=16#0106]: Transmission length = 6
[%MW1:=16#0300] : Offset reception = 3, offset Transmission = 0
%MW2 to %MW4: Transmission
[%MW2:=16#0203]: Slave 2, Fonction 3 (Read multi-words)
[%MW3:=16#0000]: First word address to read in the slave: to 0
address
[%MW4:=16#0004]: Number of word to read: 4 words (%MW0 to %MW3)

1 LD 1
AND %MSG2.D
[EXCH2 %MW0:11]

–

2 LD %MSG2.E
ST %Q0.0
END

–

Rung Instruction Comment
0 LD 1

[%MW0:=16#6566]
[%MW1:=16#6768]
[%MW2:=16#6970]
[%MW3:=16#7172]
END

–

190 EIO0000001474 12/2016

Software Objects
Animation table initializing in online mode corresponding with the reception table part:

After downloading and setting each logic controller to run, open an animation table on the master.
Examine the response section of the table to check that the response code is 3 and that the correct
number of bytes was read. Also in this example, the words read from the slave (beginning at %MW7)
are aligned correctly with the word boundaries in the master.

Example 2: Modbus Application Writing
Master program:

Slave program:

Address Value Format
%MW5 0203 Hexadecimal
%MW6 0008 Hexadecimal
%MW7 6566 Hexadecimal
%MW8 6768 Hexadecimal
%MW9 6970 Hexadecimal
%MW10 7172 Hexadecimal

Rung Instruction Comment
0 LD 1

[%MW0:=16#010C]
[%MW1:=16#0007]
[%MW2:=16#0210]
[%MW3:=16#0010]
[%MW4:=16#0002]
[%MW5:=16#0004]
[%MW6:=16#6566]
[%MW7:=16#6768]

[%MW0:=16#010C]: Transmission table length: 0C hex = 12 dec, from
%MW2 to %MW7
[%MW1:=16#0007]
[%MW2:=16#0210]: slave address 2, 10h function code write words
[%MW3:=16#0010]: from address 16 in the slave
[%MW4:=16#0002]: write of 2 words
[%MW5:=16#0004]: number of bytes to write
[%MW6:=16#6566]: value of the first word
[%MW7:=16#6768]: value of the second word

1 LD 1
AND %MSG2.D
[EXCH2 %MW0:12]

–

2 LD %MSG2.E
ST %Q0.0
END

–

Rung Instruction Comment
0 LD 1

[%MW18:=16#FFFF]
END

–

EIO0000001474 12/2016 191

Software Objects
NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
Using SoMachine Basic, create an application program for both the master and the slave. For the
slave, write a single memory word %MW18. This will allocate space on the slave for the memory
addresses from %MW0 through %MW18. Without allocating the space, the Modbus request would be
trying to write to locations that did not exist on the slave.
In the master, the word table of the EXCH2 instruction is initialized to read 4 bytes to the slave at
Modbus address 2 at the address %MW16 (10 hexadecimal).

NOTE: Note the use of the Transmission offset set in %MW1 of the Modbus master application. The
offset of 7 will suppress the high byte in the sixth word (the value 00 hexadecimal in %MW5). This
works to align the data values in the transmission table of the word table so that they fall correctly
on word boundaries.
Before executing the EXCH2 instruction, the application checks the communication bit associated
with %MSG2. Finally, the error status of the %MSG2 is sensed and stored on the first output bit on
the local base controller I/O. Additional detected error checking using %SW64 could also be added
to make this more accurate.
Animation table initialization on the master:

Animation table initialization on the slave:

Address Value Format
%MW0 010C Hexadecimal
%MW1 0007 Hexadecimal
%MW2 0210 Hexadecimal
%MW3 0010 Hexadecimal
%MW4 0002 Hexadecimal
%MW5 0004 Hexadecimal
%MW6 6566 Hexadecimal
%MW7 6768 Hexadecimal
%MW8 0210 Hexadecimal
%MW9 0010 Hexadecimal
%MW10 0004 Hexadecimal

Address Value Format
%MW16 6566 Hexadecimal
%MW17 6768 Hexadecimal
192 EIO0000001474 12/2016

Software Objects
After downloading and setting each logic controller to run, open an animation table on the slave
controller. The 2 values in %MW16 and %MW17 are written to the slave.

In the master, an animation table can be used to examine the reception table portion of the
exchange data. This data displays the slave address, the response code, the first word written, and
the number of words written starting at %MW8 in the example above.
EIO0000001474 12/2016 193

Software Objects
LIFO/FIFO Register (%R)

Section 6.5
LIFO/FIFO Register (%R)

Using LIFO/FIFO Register Function Blocks
This section provides descriptions and programming guidelines for using LIFO/FIFO Register
function blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 195
Configuration 197
LIFO Register Operation 199
FIFO Register Operation 200
Programming Example 201
194 EIO0000001474 12/2016

Software Objects
Description

Introduction

A LIFO/FIFO Register function block is a memory block which can store up to 16 words
of 16 bits each in 2 different ways:
 Queue (First In, First Out) known as FIFO.
 Stack (Last In, First Out) known as LIFO.

Illustration
This illustration is the LIFO/FIFO Register function block.

Inputs
The LIFO/FIFO Register function block has the following inputs:

Label Description Value
R Reset input (or

instruction)
At state 1, initializes the LIFO/FIFO Register.

I Storage input (or
instruction)

On a rising edge, stores the contents of associated word %Ri.I in the
LIFO/FIFO Register.

O Retrieval input (or
instruction)

On a rising edge, loads a data word of the LIFO/FIFO Register into
associated word %Ri.O.
EIO0000001474 12/2016 195

Software Objects
Outputs
The LIFO/FIFO Register function block has the following outputs:

Label Description Value
E Empty output

(%Ri.E)
The associated bit %Ri.E indicates that the LIFO/FIFO Register is
empty. The value of %Ri.E can be tested, for example, in an animation
table or with an instruction.

F Full output (%Ri.F) The associated bit %Ri.F indicates that the LIFO/FIFO Register is
full. The value of %Ri.F can be tested, for example, in an animation table
or with an instruction.
196 EIO0000001474 12/2016

Software Objects
Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure (see page 153) and
read the description of Memory Allocation Modes in the SoMachine Basic Operating Guide.
The LIFO/FIFO Register function block has the following parameters:

Objects
The LIFO/FIFO Register function block has the following objects:

Parameter Description Value Editable in
Online
Mode?

Used Address used If selected, this address is currently in use in a program. No
Address LIFO/FIFO Register

object address
A program can contain only a limited number of
LIFO/FIFO Register objects. Refer to the
Programming Guide of the hardware platform for the
maximum number of registers.

No

Symbol Symbol The symbol associated with this object. Refer to the
SoMachine Basic Operating Guide, Defining and Using
Symbols for details.

No

Type LIFO/FIFO Register
type

FIFO (queue) or LIFO (stack). Yes

Comment Comment A comment can be associated with this object. No

Object Description Value
%Ri.I LIFO/FIFO Register

input word
Can be read, tested, and written.
It can be modified in an animation table.

%Ri.O LIFO/FIFO Register
output word

Can be read, tested, and written.
It can be modified in an animation table.

%Ri.E Empty output See Outputs table above.
%Ri.F Full output See Outputs table above.
EIO0000001474 12/2016 197

Software Objects
Special Cases
This table contains a list of special cases for programming the LIFO/FIFO Register function
block:

NOTE: Effect of INIT is the same as %S0=1.

Special Case Description
Effect of a cold restart (%S0=1) or INIT Initializes the contents of the LIFO/FIFO Register. The

output bit %Ri.E associated with the output E is set to 1.

Effect of a warm restart (%S1=1) or a controller
stop

Has no effect on the current value of the LIFO/FIFO
Register, nor on the state of its output bits.
198 EIO0000001474 12/2016

Software Objects
LIFO Register Operation

Introduction
In LIFO operation (Last In, First Out), the last data item entered is the first to be retrieved.

Operation
This table describes LIFO operation:

Stage Description Example
1 Storage:

When a storage request is received (rising edge at input
I or activation of instruction I), the contents of input
word %Ri.I are stored at the top of the stack (Fig. a).
When the stack is full (output F=1), no further storage is
possible.

2 Retrieval:
When a retrieval request is received (rising edge at input
O or activation of instruction O), the highest data word
(last word to be entered) is loaded into word %Ri.O (Fig.
b). When the LIFO/FIFO Register is empty (output
E=1), no further retrieval is possible. Output word %Ri.O
does not change and retains its value.

3 Reset:
The stack can be reset at any time (state 1 at input R or
activation of instruction R). The stack is empty after a
reset (%Ri.E =1).

–

EIO0000001474 12/2016 199

Software Objects
FIFO Register Operation

Introduction
In FIFO operation (First In, First Out), the first data item entered is the first to be retrieved.

Operation
This table describes FIFO operation:

Stage Description Example
1 Storage:

When a storage request is received (rising edge at input
I or activation of instruction I), the contents of input word
%Ri.I are stored at the top of the queue (Fig. a). When
the queue is full (output F=1), no further storage is
possible.

2 Retrieval:
When a retrieval request is received (rising edge at input
O or activation of instruction O), the data word lowest in
the queue is loaded into output word %Ri.O and the
contents of the LIFO/FIFO Register are moved down
one place in the queue (Fig. b).
When the LIFO/FIFO Register is empty (output
E=1), no further retrieval is possible. Output word %Ri.O
does not change and retains its value.

3 Reset:
The queue can be reset at any time (state 1 at input R or
activation of instruction R). The queue is empty after a
reset (%Ri.E=1).

–

200 EIO0000001474 12/2016

Software Objects
Programming Example

Introduction
The following programming example shows the content of a memory word (%MW34) being loaded
into a LIFO/FIFO Register (%R2.I) on reception of a storage request (%I0.2) if LIFO/FIFO
Register %R2 is not full (%R2.F = 0). The storage request in the LIFO/FIFO Register is
made by %M1. The retrieval request is confirmed by input %I0.3, and %R2.O is loaded into %MW20
if the register is not empty (%R2.E = 0).

Programming
This example is a LIFO/FIFO Register function block with reversible instructions:

This example is the same LIFO/FIFO Register function block with non-reversible instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Reversible Instruction
0 BLK %R2

LD %M1
I
LD %I0.3
ANDN %R2.E
O
END_BLK

1 LD %I0.3
[%MW20:=%R2.O]

2 LD %I0.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1

Rung Non-Reversible Instruction
0 LD %M1

I %R2

1 LD %I0.3
ANDN %R2.E
O %R2

2 LD %I0.3
[%MW20:=%R2.O]

3 LD %I0.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1
EIO0000001474 12/2016 201

Software Objects
Drums (%DR)

Section 6.6
Drums (%DR)

Using Drum Function Blocks
This section provides descriptions and programming guidelines for using Drum function blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 203
Configuration 204
Programming Example 207
202 EIO0000001474 12/2016

Software Objects
Description

Introduction

The Drum function block operates on a principle similar to an electromechanical drum
sequencer, which changes step according to external events. On each step, the high point of a cam
gives a command, which is then executed by the controller. In the case of a Drum function block,
these high points are symbolized by state 1 for each step and are assigned to output bits %Qi.j,
or memory bits %Mi.

Illustration
This illustration is the Drum function block in offline mode.

Steps Displays the total number of steps configured in the Drum Assistant.
Step Appears in offline mode when a block is created. In online mode, it displays the current step number.

Inputs
The Drum function block has the following inputs:

Outputs
The Drum function block has the following output:

Label Description Value
R To return to step 0 (or

instruction)
At state 1, sets the Drum to step 0.

U Advance input (or
instruction)

On a rising edge, causes the Drum to advance by 1 step and updates
the control bits.

Label Description Value
F Output (%DRi.F) Indicates that the current step equals the last step defined. The

associated bit %DRi.F can be tested.
EIO0000001474 12/2016 203

Software Objects
Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure (see page 153) and
read the description of Memory Allocation Modes in the SoMachine Basic Operating Guide.
The Drum function block has the following parameters:

Objects
The Drum function block has the following object:

Parameter Description Value Editable in
online mode?

Used Address used If selected, this address is currently in use in
a program.

No

Address Drum object address A program can contain only a limited number
of Drum objects. Refer to the Programming
Guide of your controller for the maximum
number of Drum objects.

No

Symbol Symbol The symbol associated with this object. Refer
to the SoMachine Basic Operating Guide,
Defining and Using Symbols for details.

No

Configuration Drum assistant Click to display the Drum Assistant
(see page 205).

Yes (all
parameters
on the Drum
Assistant
window)

Comment Comment A comment can be associated with this
object.

No

Object Description Value
%DRi.S Current step number 0<=%DRi.S<=7. Word which can be read and written.

Written value must be a decimal immediate value. When
written, the effect takes place on the next execution of the
function block.
It can be modified in an animation table or in online mode.

%DRi.F Full See Outputs table (see page 203).
204 EIO0000001474 12/2016

Software Objects
Operation
The Drum function block consists of:
 A matrix of constant data (the cams) organized in 8 steps (0 to 7) and 16 bits (state of the step)

arranged in columns numbered 0 to 15.
 A list of control bits is associated with a configured output (%Qi.j), or memory word (%Mi).

During the current step, the control bits take on the binary states defined for this step.

Drum Assistant
Use the Drum Assistant to configure the Drum function block.
Configure the Number of steps: 1...8 and the outputs or memory bits associated with each step:
Bit0 ... Bit15, then click OK

NOTE: The configuration can also be realized using memory bits (%Mi).
EIO0000001474 12/2016 205

Software Objects
Special Cases
This table contains a list of special cases for Drum operation:

Special Case Description
Effects of a cold restart
(%S0=1)

Resets the Drum to step 0 (update of control bits).

Effect of a warm restart
(%S1=1)

Updates the control bits after the current step.

Effect of a program jump The fact that the Drum is no longer scanned means the control bits retain
their last state.

Updating the control bits Only occurs when there is a change of step or in the case of a warm or cold
restart.
206 EIO0000001474 12/2016

Software Objects
Programming Example

Introduction
The following is an example of programming a Drum that is configured such that none of the
controls are set in step 0 and the controls are set for step 1 to step 6 on the outputs %Q0.0 to
%Q0.5 respectively (see the Configuration (see page 209)).
The first 6 outputs %Q0.0 to %Q0.5 are activated in succession each time input %I0.1 is set to 1.
Input %I0.0 resets the following to 0 when it is high:
 Drum output F (%DRi.F = 0)
 Current step number (%DRi.S = 0)

Programming
This example is a Drum function block program:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 BLK %DR1

LD %I0.0
R
LD %I0.1
U
OUT_BLK
LD F
ST %Q0.7
END_BLK
EIO0000001474 12/2016 207

Software Objects
Timing Diagram
This diagram illustrates the operation of the Drum:

(1) At a rising edge on U input the current step is incremented
(2) When the current step is updated, the outputs are updated
(3) When the last step is reached, the output F is set to 1
(4) A rising edge at U input when the last step is active, resets the current step to 0
(5) %DR0.R = 1 (rising edge) the current value is set to 0
(6) The user writes the value of the step number: %DR0.S = 4
(7) The value written by the user is updated at the next execution time
208 EIO0000001474 12/2016

Software Objects
Configuration
The following information is defined during configuration:
 Number of steps: 6
 The output states (control bits) for each Drum step:

 Assignment of the control bits:
This table presents the associated outputs of the control bits:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Step 0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 1: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 2: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Step 3: 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Step 4: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Step 5: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Bit Associated Output
0 No associated output
1 %Q0.1

2 %Q0.2

3 %Q0.3

4 %Q0.4

5 %Q0.5
EIO0000001474 12/2016 209

Software Objects
Shift Bit Register (%SBR)

Section 6.7
Shift Bit Register (%SBR)

Using Shift Bit Register Function Blocks
This section provides descriptions and programming guidelines for using Shift Bit Register
function blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 211
Configuration 212
Programming Example 214
210 EIO0000001474 12/2016

Software Objects
Description

Introduction

The Shift Bit Register function block provides a left or right shift of binary data bits (0
or 1).

Illustration
This illustration is the Shift Bit Register function block:

The current value of the Shift Bit Register is displayed in the centre of the function block:
 Decimal value eg 7
 Binary value eg 111
 Hex value eg 16#7

Inputs
The Shift Bit Register function block has the following inputs:

Label Description Value
R Reset input (or instruction) When function parameter R is 1, this sets register bits 0 to 15

%SBRi.j to 0.

CU Shift to left input (or instruction) On a rising edge, shifts a register bit to the left.
CD Shift to right input (or

instruction)
On a rising edge, shifts a register bit to the right.
EIO0000001474 12/2016 211

Software Objects
Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure (see page 153) and
read the description of Memory Allocation Modes in the SoMachine Basic Operating Guide.
The Shift Bit Register function block has the following parameters:

Objects
The Shift Bit Register function block has the following objects:

Operation
This illustration shows a bit pattern before and after a shift operation:

Parameter Description Value
Used Address used If selected, this address is currently in use in a program.
Address Shift Bit Register object

address
A program can contain only a limited number of Shift Bit
Register objects. Refer to the Programming Guide of the
hardware platform for the maximum number of registers.

Symbol Symbol The symbol associated with this object. Refer to the
SoMachine Basic Operating Guide, Defining and Using
Symbols for details.

Comment Comment A comment can be associated with this object.

Object Description Value
%SBRi Register number 0 to 7

It can be modified in an animation table.
%SBRi.j Register bit Bits 0 to 15 (j = 0 to 15) of the shift register can be tested by

a test instruction and written using an Assignment
instruction.
212 EIO0000001474 12/2016

Software Objects
This is also true of a request to shift a bit to the right (bit 15 to bit 0) using the CD instruction. Bit 0
is lost.
If a 16-bit register is not adequate, it is possible to use the program to cascade several Register.

Special Cases
This table contains a list of special cases for programming the Shift Bit Register function
block:

Special Case Description
Effect of a cold restart (%S0=1) Sets all the bits of the register word to 0.

Effect of a warm restart (%S1=1) Has no effect on the bits of the register word.
EIO0000001474 12/2016 213

Software Objects
Programming Example

Introduction
The Shift Bit Register function block provides a left or right shift of binary data bits (0 or 1).

Programming
In this example, a bit is shifted to the left every second while bit 0 assumes the state to bit 15.
In reversible instructions:

In non-reversible instructions:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Reversible Instruction
0 BLK %SBR0

LD %S6
CU
END_BLK

1 LD %SBR0.15
ST %SBR0.0

Rung Non-Reversible Instruction
0 LD %S6

CU %SBR0

1 LD %SBR0.15
ST %SBR0.0
214 EIO0000001474 12/2016

Software Objects
Step Counter (%SC)

Section 6.8
Step Counter (%SC)

Using Step Counter Function Blocks
This section provides descriptions and programming guidelines for using Step Counter function
blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 216
Configuration 217
Programming Example 218
EIO0000001474 12/2016 215

Software Objects
Description

Introduction

A Step Counter function block provides a series of steps to which actions can be assigned.
Moving from one step to another depends on external or internal events. Each time a step is active,
the associated bit (Step Counter bit %SCi.j) is set to 1. Only one step of a Step Counter can
be active at a time.

Illustration
This illustration is a Step Counter function block:

Inputs
The Step Counter function block has the following inputs:

Label Description Value
R Reset input (or instruction) When function parameter R is 1, this resets the Step

Counter.

CU Increment input (or
instruction)

On a rising edge, increments the Step Counter by one step.

CD Decrement input (or
instruction)

On a rising edge, decrements the Step Counter by one step.
216 EIO0000001474 12/2016

Software Objects
Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure (see page 153) and
read the description of Memory Allocation Modes in the SoMachine Basic Operating Guide.
The Step Counter function block has the following parameters:

Objects
The Step Counter function block has the following object:

Special Case
This table contains a list of special cases for operating the Step Counter function block:

Parameter Description Value
Used Address used If selected, this address is currently in use in a program.
Address Step Counter object

address
A program can contain only a limited number of Step
Counter objects. Refer to the Programming Guide of the
hardware platform for the maximum number of Step
Counter.

Symbol Symbol The symbol associated with this object. Refer to the
SoMachine Basic Operating Guide, Defining and Using
Symbols for details.

Comment Comment A comment can be associated with this object.

Object Description Value
%SCi.j Step Counter bit Step Counter bits 0 to 255 (j = 0 to 255) can be tested by a

load logical operation and written by an Assignment
instruction.
It can be modified in an animation table.

Special Case Description
Effect of a cold restart (%S0=1) Initializes the Step Counter.

Effect of a warm restart (%S1=1) Has no effect on the Step Counter.
EIO0000001474 12/2016 217

Software Objects
Programming Example

Introduction
This example is a Step Counter function block.
 Step Counter 0 is decremented by input %I0.1.
 Step Counter 0 is incremented by input %I0.2.
 Step Counter 0 is reset to 0 by input %I0.3 or when it arrives at step 3.
 Step 0 controls output %Q0.1, step 1 controls output %Q0.2, and step 2 controls output %Q0.3.

Programming
This example is a Step Counter function block with reversible instructions:

This example is a Step Counter function block with non-reversible instructions:

Rung Reversible Instruction
0 BLK %SC0

LD %SC0.3
OR %I0.3
R
LD %I0.2
CU
LD %I0.1
CD
END_BLK

1 LD %SC0.0
ST %Q0.1

2 LD %SC0.1
ST %Q0.2

3 LD %SC0.2
ST %Q0.3

Rung Non-Reversible Instruction
0 LD %SC0.3

OR %I0.3
R %SC0

1 LD %I0.2
CU %SC0

2 LD %I0.1
CD %SC0

3 LD %SC0.0
ST %Q0.1
218 EIO0000001474 12/2016

Software Objects
NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Timing Diagram
This diagram illustrates the operation of the Step Counter function block:

(1) Step 0 is active so %SC0.0 is set to 1
(2) At the rising edge of CU input, the step is incremented and the outputs are updated
(3) The step is incremented and outputs are updated
(4) The step 3 is active so the Reset input is active after one CPU cycle
(5) When Reset is active, the current step is set to 0 and the reset input is set to 0 after one CPU cycle
(6) The current step is incremented at rising edge of CU input
(7) At rising edge of CD input, the step is decremented and outputs are updated

4 LD %SC0.1
ST %Q0.2

5 LD %SC0.2
ST %Q0.3

Rung Non-Reversible Instruction
EIO0000001474 12/2016 219

Software Objects
Schedule Blocks (%SCH)

Section 6.9
Schedule Blocks (%SCH)

Using Schedule Blocks
This section provides descriptions and programming guidelines for using Schedule blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 221
Programming and Configuring 223
220 EIO0000001474 12/2016

Software Objects
Description

Introduction
Schedule blocks are used to control actions at a predefined month, day, and time.

Schedule blocks are only configured in SoMachine Basic; they are not inserted into a program
rung in the same way as other function blocks.
NOTE: Check system bit %S51 and system word %SW118 to confirm that the Real-Time Clock
(RTC) option is installed. The RTC option is required for using Schedule blocks.

Parameters
To configure parameters, follow the Configuring a Function Block procedure (see page 153) and
read the description of Memory Allocation Modes (see SoMachine Basic, Operating Guide).
The Schedule blocks has the following parameters:

Parameter Description Value
Used Address used If selected, this address is currently in use in a

program.
Address Schedule blocks object address A program can contain only a limited number of

Schedule blocks objects. Refer to the
Programming Guide of the hardware platform for
the maximum number of Schedule blocks.

Configured Whether the selected Schedule
blocks number is configured for use.

If checkbox is selected, it is configured for use.
Otherwise, it is not used.

Output bit Output bit Output assignment is activated by the Schedule
blocks: %Mi or %Qj.k.
This output is set to 1 when the current date and
time are between the setting of the start of the
active period and the setting of the end of the
active period.

Start Day The day in the month to start the
Schedule blocks.

1...31

Start Month The month to start the Schedule
blocks.

Schedule blocks.

End Day The day in the month to end the
Schedule blocks.

1...31

End Month The month to end the Schedule
blocks.

January...December

Start Time The time-of-day, hours, and minutes to
start the Schedule blocks.

Hour: 0...23
Minute: 0...59
EIO0000001474 12/2016 221

Software Objects
Enabling Schedule Blocks
The bits of system word %SW114 enable (bit set to 1) or disable (bit set to 0) the operation of each
of the 16 Schedule blocks.
Assignment of Schedule blocks in %SW114:

By default (or after a cold restart) all bits of this system word are set to 1. Use of these bits by the
program is optional.

Output of Schedule Blocks
If the same output (%Mi or %Qj.k) is assigned by several blocks, it is the OR of the results of each
of the blocks which is finally assigned to this object (it is possible to have several Schedule blocks
for the same output).
For example, schedule block %SCH0 and %SCH1 are both assigned to output %Q0.0. %SCH0 sets
the output from 12:00 h to 13:00 h on Monday, and %SCH1 sets the output from 12:00 h to 13:00 h
on Tuesday. The result is that the output is set from 12:00 h to 13:00 h on both Monday and
Tuesday.

End Time The time-of-day, hours, and minutes to
end the Schedule blocks.

Hour: 0...23
Minute: 0...59

Monday Check boxes that identify the day(s) of
the week for activation of the
Schedule blocks.

If checkbox is selected, it is configured for use.
Otherwise, it is not used.Tuesday

Wednesday
Thursday
Friday
Saturday
Sunday
Comment Comment A comment can be associated with this object.

Parameter Description Value
222 EIO0000001474 12/2016

Software Objects
Programming and Configuring

Introduction
Schedule blocks are used to control actions at a predefined month, day, and time.

Programming Example
This table shows the parameters for a summer month spray program example:

Using this program, the Schedule blocks can be disabled through a switch or a humidity
detector wired to input %I0.1:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Parameter Value Description Editable in
online mode?

Address Real-Time Clock 6 Schedule blocks number 6 No

Configured Box checked Box checked to configure the Schedule
blocks number 6.

No

Output bit %Q0.2 Activate output %Q0.2 Yes

Start Day 21 Start activity on the 21 day of June Yes
Start Month June Start activity in June Yes
Start Time 21 Start activity at 21:00 Yes
End Day 21 Stop activity on the 21st of September Yes
End Month September Stop activity in September Yes
End Time 22 Stop activity at 22:00 Yes
Monday Box checked Run activity on Monday Yes
Tuesday Box not checked No activity Yes
Wednesday Box checked Run activity on Wednesday Yes
Thursday Box not checked No activity Yes
Friday Box checked Run activity on Friday Yes
Saturday Box not checked No activity Yes
Sunday Box not checked No activity Yes

Rung Instruction Comment
0 LD %I0.1

ST %SW114:X6
In this example, the %SCH6 is validated.
EIO0000001474 12/2016 223

Software Objects
Timing Diagram
This timing diagram shows the activation of output %Q0.2:
224 EIO0000001474 12/2016

Software Objects
Real Time Clock (%RTC)

Section 6.10
Real Time Clock (%RTC)

Using RTC Function Blocks
This section provides descriptions and programming guidelines for using RTC function blocks.

NOTE: Your application must be configured with a functional level of at least Level 5.0 to use RTC
function blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 226
Configuration 229
EIO0000001474 12/2016 225

Software Objects
Description

Introduction

The RTC function block allows you to read from and write to the Real-Time Clock (RTC) of
the M221 Logic Controller.

Illustration
This illustration shows the RTC function block.

Inputs
The RTC function block has the following inputs:

Label Object Value
Enable - Enables the function block when a rising edge of

this input is detected.
At state 1, the RD and WR input values are read
continuously to determine the action to take.
At state 0, the function block is disabled and the
outputs are reset.
226 EIO0000001474 12/2016

Software Objects
RD - A combination of the values of the 2 inputs
determines the action to take:
 RD = 0 and WR = 0. No action.

The Done and Error outputs are set to 0.
 RD = 1 and WR = 0. Read the RTC value.

If successful, the Done output is set to 1 and
the Error output is set to 0.
The input objects are continuously updated
with the values read from the RTC. Use an
animation table (see SoMachine Basic,
Operating Guide) to display the object values.

 RD = 0 and WR = 1. When the rising edge of WR
is detected, update the RTC using the object
values specified in the RTC parameters
associated with this function block (see below).
If the update is successful, the Done output is
set to 1 and the Error output is set to 0. The
RTC is updated.
If not successful, the Done output is set to 0
and the Error output is set to 1.

 RD = 1 and WR = 1. Not supported.
The Done output is set to 0, the Error output
is set to 1, and the ErrorId output
(see page 228) is set to 256 (Simultaneous
read and write).

WR -

Day %RTCi.DAY Day
Default value: 12
-32767...32768

Month %RTCi.MONTH Month
Default value: 6
-32767...32768

Year %RTCi.YEAR Year
Default value:2017
-32767...32768

Hours %RTCi.HOURS Hours
Default value: 0
-32767...32768

Minutes %RTCi.MINUTES Minutes
Default value: 0
-32767...32768

Seconds %RTCi.SECONDS Seconds
Default value: 0
-32767...32768

Label Object Value
EIO0000001474 12/2016 227

Software Objects
Outputs
The RTC function block has the following outputs:

Error Codes
The following codes can be returned in the %RTCi.ErrorId object when the Error output is set
to 1.

Label Object Value
Done %RTCi.Done Set to 1 when the RTC is successfully read from or written to.

Set to 0 when the read or write operation was not successful.
Error %RTCi.Error Set to 1 if an error occurs during execution. Function block

execution is finished. The ErrorId output object indicates the
cause of the error.

DayOfWeek %RTCi.DayOfWeek Returns the day of the week, calculated from the current week
value.
Range: 0...7
0: Function block not yet executed
1...7: Day of the week.

ErrorId %RTCi.ErrorId Error code identifier.
See Error Codes (see page 228) below.

Error Code Description
0 No error
1 Year error
2 Month error
3 Day error
4 Week error
5 Hour error
6 Minute error
7 Seconds error
8 Combination error
9 RTC internal error
256 Simultaneous read and write
257 RTC update already in progress (system bit %S50 = 1)
228 EIO0000001474 12/2016

Software Objects
Configuration

Presentation
Configure the RTC function block properties with the values to use to update the RTC in the logic
controller.
To display the RTC properties page, either:
 Double-click an RTC function block.
 On the Programming tab, choose Tools → Software objects → RTC.

RTC Properties
To configure parameters, follow the Configuring a Function Block procedure (see page 153) and
read the description of Memory Allocation Modes in the SoMachine Basic Operating Guide.
The RTC Properties page displays the following properties:

Property Description Value Editable in
online mode?

Used Object address is in
use

If selected, this address is currently in use in
a program.

No

Address RTC object address %RTCi, where i is the object number.
A program can contain only a limited number
of RTC objects. Refer to the Programming
Guide of your controller for the maximum
number of RTC objects.

No

Symbol Symbol The symbol associated with this object. Refer
to the SoMachine Basic Operating Guide,
Defining and Using Symbols for details.

Yes

Day The day of the month 1...31 Yes
Month The month of the year 1...12 Yes
Year The year Greater than or equal to 2000 Yes
Hours The hour of the day 0...23 Yes
Minutes The minutes of the hour 0...59 Yes
Seconds The seconds of the

minute
0...59 Yes

Comment Comment A comment can be associated with this
object.

Yes
EIO0000001474 12/2016 229

Software Objects
PID

Section 6.11
PID

PID Function

Introduction
The PID function is used to control a dynamic process continuously. The purpose of PID control is
to keep a process running as close as possible to a desired set point.
Refer to the Advanced Functions Library Guide for detailed information on the PID behavior,
functionalities, and implementation of the PID function:
 PID Operating Modes
 PID Auto-Tuning Configuration
 PID Standard Configuration
 PID Assistant
 PID Programming
 PID Parameters
 Role and Influence of PID Parameters
 PID Parameter Adjustment Method
230 EIO0000001474 12/2016

Software Objects
Grafcet Steps

Section 6.12
Grafcet Steps

Grafcet Steps

Overview
Grafcet Step objects (%Xi) are used to identify the status of the corresponding Grafcet step i in a
program.

Parameters
The Grafcet Step Properties window shows the following properties:

Parameter Description Value
Used Address used If selected, this address is in use in a program.
Address Grafcet Step object

address
A program can contain up to 96 Grafcet Step objects.

Symbol Symbol The symbol associated with this object. Refer to the
SoMachine Basic Operating Guide, Defining and Using
Symbols (see SoMachine Basic, Operating Guide) for details.

Comment Comment A comment associated with this object.
EIO0000001474 12/2016 231

Software Objects
232 EIO0000001474 12/2016

SoMachine Basic
PTO Objects
EIO0000001474 12/2016
PTO Objects

Chapter 7
PTO Objects

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
7.1 Motion Task Table (%MT) 234
7.2 Pulse Train Output (%PTO) 235
EIO0000001474 12/2016 233

PTO Objects
Motion Task Table (%MT)

Section 7.1
Motion Task Table (%MT)

Motion Task Table

Overview
Refer to the Advanced Functions Library Guide of your controller.
234 EIO0000001474 12/2016

PTO Objects
Pulse Train Output (%PTO)

Section 7.2
Pulse Train Output (%PTO)

Pulse Train Output

Overview
Refer to the Advanced Functions Library Guide of your controller.
EIO0000001474 12/2016 235

PTO Objects
236 EIO0000001474 12/2016

SoMachine Basic
Drive Objects
EIO0000001474 12/2016
Drive Objects

Chapter 8
Drive Objects

Drive Objects

Overview
Drive objects control ATV drives and other devices configured on the Modbus Serial IOScanner
Refer to the Advanced Functions Library Guide of your logic controller.
EIO0000001474 12/2016 237

Drive Objects
238 EIO0000001474 12/2016

SoMachine Basic
Communication Objects
EIO0000001474 12/2016
Communication Objects

Chapter 9
Communication Objects

Introduction
The communication function blocks are used for communication with Modbus devices and
send/receive messages in character mode (ASCII).
NOTE: Only one communication function block can be active at a time on a communication port
during a master task cycle. If you attempt to use several communication function blocks or EXCH
instructions concurrently on the same communication port, the function blocks return an error code.
Therefore, verify that no active exchange (%MSGx.D is TRUE) is in progress on a communication
port before starting a communication function block or EXCH instruction.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
9.1 Read Data from a Remote Device (%READ_VAR) 240
9.2 Write Data to a Modbus Device (%WRITE_VAR) 249
9.3 Read and Write Data on a Modbus Device (%WRITE_READ_VAR) 257
9.4 Communication on an ASCII Link (%SEND_RECV_MSG) 264
9.5 Send Receive SMS (%SEND_RECV_SMS) 272
EIO0000001474 12/2016 239

Communication Objects
Read Data from a Remote Device (%READ_VAR)

Section 9.1
Read Data from a Remote Device (%READ_VAR)

Using %READ_VAR Function Blocks
This section provides descriptions and programming guidelines for using %READ_VAR function
blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 241
Function Configuration 245
Programming Example 248
240 EIO0000001474 12/2016

Communication Objects
Description

Introduction
The %READ_VAR function block is used to read data from a remote device on Modbus SL or
Modbus TCP.

Illustration
This illustration is the %READ_VAR function block:

Inputs
The %READ_VAR function block has the following inputs:

NOTE: Setting Execute or Abort input to TRUE at the first task cycle in RUN is not detected as a
rising edge. The function block needs to first see the input as FALSE in order to detect a
subsequent rising edge.

Label Type Value
Execute BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function block, it is
ignored and the ongoing command is not affected.

Abort BOOL Stops function block execution when a rising edge is detected.
The Aborted output is set to 1 and the %READ_VARi.CommError object contains
the code 02 hex (exchange stopped by a user request).
EIO0000001474 12/2016 241

Communication Objects
Outputs
The %READ_VAR function block has the following outputs:

This table describes the output objects of the function block:

Communication Error Codes
This table describes the error codes written to the %READ_VARi.CommError word object:

Label Type Value
Done BOOL If TRUE, indicates that the function block execution is completed

successfully with no detected errors.
Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled with the
Abort input.

Error BOOL If TRUE, indicates that an error was detected. Function block execution is
stopped.
For details on the CommError and OperError, refer to the tables
Communication Error Codes (see page 242) and the Operation Error
Codes (see page 243) .

Output object Type Description
CommError BYTE For details on %READ_VARi.CommError, refer to the table Communication

Error Codes (see page 242).
OperError DWORD For details on %READ_VARi.OperError, refer to the table Operation Error

Codes (see page 243).

Name Detected error
code

Description

CommunicationOK 0 (00 hex) Exchange is correct.
TimedOut 1 (01 hex) Exchange stopped because timeout expired.
Abort 2 (02 hex) Exchange stopped on user request (Abort input).
BadAddress 3 (03 hex) Address format is incorrect.
BadRemoteAddr 4 (04 hex) Remote address is incorrect.
BadMgtTable 5 (05 hex) Management table format is incorrect.
BadParameters 6 (06 hex) Specific parameters are incorrect.
ProblemSendingRq 7 (07 hex) Unsuccessful sending request to destination.
RecvBufferNotAlloc 9 (09 hex) Reception buffer size is insufficient.
SendBufferNotAlloc 10 (0A hex) Transmission buffer size is insufficient.
SystemResourceMissing 11 (0B hex) System resource is unavailable.
242 EIO0000001474 12/2016

Communication Objects
Operation Error Codes
This return code is significant when the communication error code (CommError object) has the
value:
 0 (00 hex) (correct)
 254 (FE hex) (Modbus exception code)
 255 (FF hex) (refused)
This table describes the error codes written to the %READ_VARi.OperError double word object:

BadLength 14 (0E hex) Length is incorrect.
ProtocolSpecificError 254 (FE hex) Indicates a Modbus protocol error. For more details, refer

to Operation Error Codes. (see page 243)
Refused 255 (FF hex) Message is refused. For more details, refer to Operation

Error Codes. (see page 243).

Name Detected error
code

Description

CommError Name Detected error
code

Description

0 (00 hex)
(correct)

OperationOK 0 (00000000 hex) Exchange is correct.
NotProcessed 1 (00000001 hex) Request has not been processed.
BadResponse 2 (00000002 hex) Received response is incorrect.
EIO0000001474 12/2016 243

Communication Objects
254
(FE hex)
(Modbus
exception
code)

IllegalFunction 1 (00000001 hex) The function code received in the
request is not an authorized action for
the slave. The slave may not be in the
correct state to process a specific
request.

IllegalDataAddress 2 (00000002 hex) The data address received by the slave
is not an authorized address for the
slave.

IllegalDataValue 3 (00000003 hex) The value in the request data field is not
an authorized value for the slave.

SlaveDeviceFailure 4 (00000004 hex) The slave cannot perform a requested
action because of a major error.

Acknowledge 5 (00000005 hex) The slave acknowledged the request
but communications timed out before
the slave complied.

SlaveDeviceBusy 6 (00000006 hex) The slave is busy processing another
command.

MemoryParityError 8 (00000008 hex) The slave detects a parity error in the
memory when attempting to read
extended memory.

GatewayPathUnavailable 10 (0000000A hex) The gateway is overloaded or not
correctly configured.

GatewayTargetDeviceFailedTo-
Respond

11 (0000000B hex) The slave is not present on the network.

255
(FF hex)
(refused)

TargetResourceMissing 1 (00000001 hex) Target system resource is unavailable.
BadLength 5 (00000005 hex) Length is incorrect.
CommChannelErr 6 (00000006 hex) Error detected on the communication

channel.
BadAddr 7 (00000007 hex) Address is incorrect.
SystemResourceMissing 11 (0000000B hex) System resource is unavailable.
TargetCommInactive 12 (0000000C hex) Target communication function is not

active.
TargetMissing 13 (0000000D hex) Target is incommunicative.
ChannelNotConfigured 15 (0000000F hex) Channel not configured.

CommError Name Detected error
code

Description
244 EIO0000001474 12/2016

Communication Objects
Function Configuration

Properties
Double-click the function block to open the function properties table (see Compact Modbus SL
Logic Controller M221 Book, System User Guide).
The properties of this function block cannot be modified in online mode.
The %READ_VAR function block has the following properties:

Property Value Description
Used Activated / deactivated check box Indicates whether the address is in use.
Address %READ_VARi, where i is from 0 to the

number of objects available on this logic
controller

i is the instance identifier. For the maximum
number of instances, refer to Maximum Number of
Objects (see Modicon M221, Logic Controller,
Programming Guide).

Symbol User-defined text The symbol uniquely identifies this object. For
details, refer to the SoMachine Basic Operating
Guide (Defining and Using Symbols)
(see SoMachine Basic, Operating Guide).

Link  SL1: Serial 1
 SL2: Serial 2
 ETH1: Ethernet

Port selection.

NOTE: SL2 and ETH1 embedded communication
ports are available on certain controller references
only.

Id This parameter depends on the link
configuration:
 1...247 for serial lines slave address
 1...16 for Ethernet index

Device identifier.
For more details about the Ethernet index, refer to
Adding Remote Servers (see Modicon M221,
Logic Controller, Programming Guide).

Timeout Specified in units of 100 ms, with a
default of 100 (10 seconds).
A value of 0 means no timeout enforced.

The timeout sets the maximum time to wait to
receive an answer.
If the timeout expires, the exchange terminates in
error with an error code (CommError = 01 hex). If
the system receives a response after the timeout
expiration, this response is ignored.

NOTE: The timeout set on the function block
overrides the value configured into SoMachine
Basic configuration screens (Modbus TCP
Configuration (see Modicon M221, Logic
Controller, Programming Guide) and Serial Line
Configuration (see Modicon M221, Logic
Controller, Programming Guide)).
EIO0000001474 12/2016 245

Communication Objects
Objects
The %READ_VAR function block has the following objects:

ObjType The type of objects to read:
 %MW (Mbs Fct 3): memory words

(default)
 %I (Mbs Fct 2): input bits
 %Q (Mbs Fct 1): output bits
 %IW (Mbs Fct 4): input words

The types of Modbus read function codes are:
 Mbs Fct 3: equivalent to Modbus function code

03
 Mbs Fct 2: equivalent to Modbus function code

02
 Mbs Fct 1: equivalent to Modbus function code

01
 Mbs Fct 4: equivalent to Modbus function code

04
FirstObj 0...65535 The address of the first object on the remote

device from which values are read.
Quantity  1...125 for %MW

 1...2000 for %I
 1...2000 for %Q or %M
 1...125 for %IW

The number of objects to read from the remote
device.

IndexData 0...7999 The address of the local word table (%MW) into
which the values read are stored .
When reading bits (%I or %Q), the retrieved bits are
written into the word table starting at the first
address specified. For example, when reading 16
bits with IndexData = 10 and Quantity = 16, the
result is stored in %MW10:X0 to %MW10:X15

Comment User-defined text A comment to associate with this object.

Property Value Description

Object Description Value
%READ_VARi.LINK Port selection Refer to Properties

(see page 245). Can be read and
written. Can be modified in an
animation table.

%READ_VARi.ID Remote device identifier Refer to Properties
(see page 245). Can be read and
written. Can be modified in an
animation table.

%READ_VARi.TIMEOUT Function block timeout Refer to Properties
(see page 245). Can be read and
written. Can be modified in an
animation table.
246 EIO0000001474 12/2016

Communication Objects
%READ_VARi.OBJTYPE Type of objects to read Refer to Properties
(see page 245). Can be read and
written. Can be modified in an
animation table.

%READ_VARi.FIRSTOBJ The address of the first object on
the remote device from which
values are read.

Refer to Properties
(see page 245). Can be read and
written. Can be modified in an
animation table.

%READ_VARi.QUANTITY The number of objects to read from
the remote device.

Refer to Properties
(see page 245). Can be read and
written. Can be modified in an
animation table.

%READ_VARi.INDEXDATA The address of the local word table
(%MW) into which the values read
are stored .

Refer to Properties
(see page 245). Can be read in an
animation table.

%READ_VARi.COMMERROR Communication Error Codes Refer to Communication Error
Codes (see page 242). Read only.
Can be read in an animation table.

%READ_VARi.OPERERROR Operation Error Codes Refer to Operation Error Codes
(see page 243). Read only. Can be
read in an animation table.

%READ_VARi.DONE Execution completed successfully Refer to Outputs (see page 242).
Read only. Can be read in an
animation table.

%READ_VARi.BUSY Execution is in progress Refer to Outputs (see page 242).
Read only. Can be read in an
animation table.

%READ_VARi.ABORTED Execution was canceled Refer to Outputs (see page 242).
Read only. Can be read in an
animation table.

%READ_VARi.ERROR An error was detected Refer to Outputs (see page 242).
Read only. Can be read in an
animation table.

Object Description Value
EIO0000001474 12/2016 247

Communication Objects
Programming Example

Introduction
The %READ_VAR function block can be configured as presented in this programming example.

Programming
This example is a %READ_VAR function block:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 BLK %READ_VAR0

LD %I0.0
EXECUTE
LD %I0.1
ABORT
OUT_BLK
LD DONE
ST %Q0.0
LD BUSY
ST %Q0.1
LD ABORTED
ST %M1
LD ERROR
ST %Q0.2
END_BLK
248 EIO0000001474 12/2016

Communication Objects
Write Data to a Modbus Device (%WRITE_VAR)

Section 9.2
Write Data to a Modbus Device (%WRITE_VAR)

Using %WRITE_VAR Function Blocks
This section provides descriptions and programming guidelines for using %WRITE_VAR function
blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 250
Function Configuration 252
Programming Example 256
EIO0000001474 12/2016 249

Communication Objects
Description

Introduction
The %WRITE_VAR function block is used to write data to an external device using the Modbus SL
or Modbus TCP protocol.

Illustration
This illustration is the %WRITE_VAR function block:

Inputs
The %WRITE_VAR function block has the following inputs:

NOTE: Setting Execute or Abort input to TRUE at the first task cycle in RUN is not detected as a
rising edge. The function block needs to first see the input as FALSE in order to detect a
subsequent rising edge.

Label Type Value
Execute BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function block, it is
ignored and the ongoing command is not affected.

Abort BOOL Stops function block execution when a rising edge is detected.
The Aborted output is set to 1 and the %WRITE_VARi.CommError object
contains the code 02 hex (exchange stopped by a user request).
250 EIO0000001474 12/2016

Communication Objects
Outputs
The %WRITE_VAR function block has the following outputs:

This table describes the output objects of the function block:

Communication Error Codes
Refer to Communication Error Codes (see page 242).

Operation Error Codes
Refer to Operation Error Codes (see page 243).

Label Type Value
Done BOOL If TRUE, indicates that the function block execution is completed

successfully with no detected errors.
Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled with the
Abort input.

Error BOOL If TRUE, indicates that an error was detected. Function block execution is
stopped.
For details on the CommError and OperError, refer to the tables
Communication Error Codes (see page 242) and the Operation Error
Codes (see page 243) .

Output object Type Description
CommError BYTE For details on %READ_VARi.CommError, refer to the table Communication

Error Codes (see page 242).
OperError DWORD For details on %READ_VARi.OperError, refer to the table Operation Error

Codes (see page 243).
EIO0000001474 12/2016 251

Communication Objects
Function Configuration

Properties
Double-click on the function block to open the function properties table.
The properties of this function block cannot be modified in online mode.
The %WRITE_VAR function block has the following properties:

Property Value Description
Used Activated / deactivated checkbox Indicates whether the address is in use.
Address %WRITE_VARi, where i is from 0 to the number of

objects available on this logic controller
i is the instance identifier. For the
maximum number of instances, refer to
Maximum Number of Objects table
(see Modicon M221, Logic Controller,
Programming Guide).

Symbol User-defined text The symbol uniquely identifies this object.
For details, refer to the SoMachine Basic
Operating Guide (Defining and Using
Symbols) (see SoMachine Basic,
Operating Guide).

Link  SL1: Serial 1
 SL2: Serial 2
 ETH1: Ethernet

Port selection.

NOTE: SL2 and ETH1 embedded
communication ports are available on
certain controller references only.

Id This parameter depends on the link configuration:
 0 for broadcast
 1...247 for serial lines slave address
 1...16 for Ethernet index

Device identifier.
For value 0, the Modbus master controller
initiates a broadcast query to all connected
slaves. In this case, the slave ID must be set
to 0. In broadcast query mode, the slaves
do not send request frames to the master.
For more details about the Ethernet index,
refer to Adding Remote Servers
(see Modicon M221, Logic Controller,
Programming Guide).
252 EIO0000001474 12/2016

Communication Objects
Timeout Specified in units of 100 ms, with a default of 100
(10 seconds).
A value of 0 means no timeout enforced.

The timeout sets the maximum time to wait
to receive an answer.
If the timeout expires, the exchange
terminates in error with an error code
(CommError = 01 hex). If the system
receives a response after the timeout
expiration, this response is ignored.

NOTE: The timeout set on the function
block overrides the value configured into
SoMachine Basic configuration screens
(Modbus TCP Configuration (see Modicon
M221, Logic Controller, Programming
Guide) and Serial Line Configuration
(see Modicon M221, Logic Controller,
Programming Guide)).

ObjType The following Modbus function codes are supported:
 Single coil (Mbs 5)
 Single register (Mbs 6)
 Multiple coil (Mbs 15)
 Multiple register (Mbs 16)

The type of objects to write:
 Single coil (Mbs 5): memory bits (%M) or

output bits (%Q). Equivalent to Modbus
function code 6

 Single register (Mbs 6): memory word
(%MW). Equivalent to Modbus function
code 6

 Multiple coil (Mbs 15): memory bits
(%M) or output bits (%Q). Equivalent to
Modbus function code 15

 Multiple register (Mbs 16): memory
words (%MW). Equivalent to Modbus
function code 16
NOTE: The application must be
configured with a functional level of at
least 5.0 to use the Single Coil (Mbs 5)
or Single Register (Mbs 6) Modbus
function codes.

FirstObj 0...65535 The address of the first object on the remote
device to which values are written.

Quantity  1...123 (internal register) for %MW
 1...1968 (internal bit) for %M or %Q

The number of objects to write to the remote
device.
Ignored for single coil and single register
object types.

Property Value Description
EIO0000001474 12/2016 253

Communication Objects
Objects
The %WRITE_VAR function block has the following objects:

IndexData 0...7999 The address of the local word table (%MW)
containing the values to be written to the
remote device.
When writing bits (%M or %Q), the values to
be written are retrieved from the word table
starting at the first address specified. For
example, when writing 16 bits with
IndexData = 10 and Quantity = 16, the
values are retrieved from %MW10:X0 to
%MW10:X15

Comment User-defined text A comment to associate with this object.

Property Value Description

Object Description Value
%WRITE_VARi.LINK Port selection Refer to Properties

(see page 252). Can be read and
written. Can be modified in an
animation table.

%WRITE_VARi.ID Remote device identifier Refer to Properties
(see page 252). Can be read and
written. Can be modified in an
animation table.

%WRITE_VARi.TIMEOUT Function block timeout Refer to Properties
(see page 252). Can be read and
written. Can be modified in an
animation table.

%WRITE_VARi.OBJTYPE Type of objects to write Refer to Properties
(see page 252). Can be read and
written. Can be modified in an
animation table.

%WRITE_VARi.FIRSTOBJ The address of the first object on
the remote device to which values
are written.

Refer to Properties
(see page 252). Can be read and
written. Can be modified in an
animation table.

%WRITE_VARi.QUANTITY The number of objects to write to
the remote device.

Refer to Properties
(see page 252). Can be read and
written. Can be modified in an
animation table.
254 EIO0000001474 12/2016

Communication Objects
%WRITE_VARi.INDEXDATA The address of the local word table
(%MW) containing the values to be
written to the remote device.

Refer to Properties
(see page 252). Can be read and
written. Can be modified in an
animation table.

%WRITE_VARi.COMMERROR Communication Error Codes Refer to Communication Error
Codes (see page 251). Read only.
Can be read in an animation table.

%WRITE_VARi.OPERERROR Operation Error Codes Refer to Operation Error Codes
(see page 251). Read only. Can be
read in an animation table.

%WRITE_VARi.DONE Execution completed successfully Refer to Outputs (see page 251).
Read only. Can be read in an
animation table.

%WRITE_VARi.BUSY Execution is in progress Refer to Outputs (see page 251).
Read only. Can be read in an
animation table.

%WRITE_VARi.ABORTED Execution was canceled Refer to Outputs (see page 251).
Read only. Can be read in an
animation table.

%WRITE_VARi.ERROR An error was detected Refer to Outputs (see page 251).
Read only. Can be read in an
animation table.

Object Description Value
EIO0000001474 12/2016 255

Communication Objects
Programming Example

Introduction
The %WRITE_VAR function block can be configured as presented in this programming example.

Programming
This example is a %WRITE_VAR function block:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 BLK %WRITE_VAR0

LD %I0.0
EXECUTE
LD %I0.1
ABORT
OUT_BLK
LD DONE
ST %Q0.0
LD BUSY
ST %Q0.1
LD ABORTED
ST %M1
LD ERROR
ST %Q0.2
END_BLK
256 EIO0000001474 12/2016

Communication Objects
Read and Write Data on a Modbus Device (%WRITE_READ_VAR)

Section 9.3
Read and Write Data on a Modbus Device
(%WRITE_READ_VAR)

Using %WRITE_READ_VAR Function Blocks
This section provides descriptions and programming guidelines for using %WRITE_READ_VAR
function blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 258
Function Configuration 260
Programming Example 263
EIO0000001474 12/2016 257

Communication Objects
Description

Introduction
The %WRITE_READ_VAR function block is used to read and write data stored in internal memory
words to an external device using the Modbus SL or Modbus TCP protocol.
This function block performs a single write request followed by a single read request in the same
transaction.

Illustration
This illustration is the %WRITE_READ_VAR function block:

Inputs
The %WRITE_READ_VAR function block has the following inputs:

NOTE: Setting Execute or Abort input to TRUE at the first task cycle in RUN is not detected as a
rising edge. The function block needs to first see the input as FALSE in order to detect a
subsequent rising edge.

Label Type Value
Execute BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function block, it is
ignored and the ongoing command is not affected.

Abort BOOL Stops function block execution when a rising edge is detected.
The Aborted output is set to 1 and the %WRITE_READ_VARi.CommError object
contains the code 02 hex (exchange stopped by a user request).
258 EIO0000001474 12/2016

Communication Objects
Outputs
The %WRITE_READ_VAR function block has the following outputs:

This table describes the output objects of the function block:

Communication Error Codes
Refer to Communication Error Codes (see page 242).

Operation Error Codes
Refer to Operation Error Codes (see page 243).

Label Type Value
Done BOOL If TRUE, indicates that the function block execution is completed

successfully with no detected errors.
Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled with the
Abort input.

Error BOOL If TRUE, indicates that an error was detected. Function block execution is
stopped.
For details on the CommError and OperError, refer to the tables
Communication Error Codes (see page 242) and the Operation Error
Codes (see page 243) .

Output object Type Description
CommError BYTE For details on %READ_VARi.CommError, refer to the table Communication

Error Codes (see page 242).
OperError DWORD For details on %READ_VARi.OperError, refer to the table Operation Error

Codes (see page 243).
EIO0000001474 12/2016 259

Communication Objects
Function Configuration

Properties
Double-click on the function block to open the function properties table.
The properties of this function block cannot be modified in online mode.
The %WRITE_READ_VAR function block has the following properties:

Property Value Description
Used Activated / deactivated checkbox Indicates whether the address is in use.
Address %WRITE_READ_VARi, where i is

from 0 to the number of objects
available on this logic controller

i is the instance identifier. For the maximum
number of instances, refer to Maximum
Number of Objects table (see Modicon M221,
Logic Controller, Programming Guide).

Symbol User-defined text The symbol uniquely identifies this object. For
details, refer to the SoMachine Basic
Operating Guide (Defining and Using
Symbols) (see SoMachine Basic, Operating
Guide).

Link  SL1: Serial 1
 SL2: Serial 2
 ETH1: Ethernet

Port selection

NOTE: SL2 and ETH1 embedded
communication ports are available on certain
controller references only.

Id This parameter depends on the link
configuration:
 1...247 for serial lines slave

address
 1...16 for Ethernet index

Device identifier
For more details about the Ethernet index,
refer to Adding Remote Servers (see Modicon
M221, Logic Controller, Programming Guide).

Timeout Specified in units of 100 ms, with a
default of 100 (10 seconds).
A value of 0 means no timeout
enforced.

The timeout sets the maximum time to wait to
receive an answer.
If the timeout expires, the exchange
terminates in error with an error code
(CommError = 01 hex). If the system receives
a response after the timeout expiration, this
response is ignored.

NOTE: The timeout set on the function block
overrides the value configured into SoMachine
Basic configuration screens (Modbus TCP
Configuration (see Modicon M221, Logic
Controller, Programming Guide) and Serial
Line Configuration (see Modicon M221, Logic
Controller, Programming Guide)).
260 EIO0000001474 12/2016

Communication Objects
Objects
The %WRITE_READ_VAR function block has the following objects:

ObjType %MW (Mbs Fct 23): memory words The type of Modbus read/write function code
is Mbs Fct 23, which is equivalent to Modbus
function code 23.

FirstWriteObj 0...65535 The address of the first object on the remote
device to which values are written.

WriteQuantity 1...121 The number of objects to write to the remote
device.

IndexDataOut 0...7999 The address of the local word table (%MW)
containing values to be written to the remote
device.

FirstReadObj 0...65535 The address of the first object on the remote
device from which values are read.

ReadQuantity 1...125 The number of objects to read from the remote
device.

IndexDataIn 0...7999 The address of the local word table (%MW) into
which the values read are stored.

Comment User-defined text A comment to associate with this object.

Property Value Description

Object Description Value
%WRITE_READ_VARi.LINK Port selection Refer to Properties

(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.ID Remote device identifier Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.TIMEOUT Function block timeout Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.OBJTYPE Type of objects to read Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.FIRSTWRITEOBJ The address of the first object
on the remote device to which
values are written.

Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.
EIO0000001474 12/2016 261

Communication Objects
%WRITE_READ_VARi.WRITEQUANTITY The number of objects to write
to the remote device.

Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.INDEXDATAOUT The address of the local word
table (%MW) containing values
to be written to the remote
device.

Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.FIRSTREADOBJ The address of the first object
on the remote device from
which values are read.

Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.READQUANTITY The number of objects to read
from the remote device.

Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.INDEXDATAIN The address of the local word
table (%MW) into which the
values read are stored.

Refer to Properties
(see page 260). Can be read
and written. Can be modified in
an animation table.

%WRITE_READ_VARi.COMMERROR Communication Error Codes Refer to Communication Error
Codes (see page 259). Read
only. Can be read in an
animation table.

%WRITE_READ_VARi.OPERERROR Operation Error Codes Refer to Operation Error Codes
(see page 259). Read only. Can
be read in an animation table.

%WRITE_READ_VARi.DONE Execution completed
successfully

Refer to Outputs
(see page 259). Read only. Can
be read in an animation table.

%WRITE_READ_VARi.BUSY Execution is in progress Refer to Outputs
(see page 259). Read only. Can
be read in an animation table.

%WRITE_READ_VARi.ABORTED Execution was canceled Refer to Outputs
(see page 259). Read only. Can
be read in an animation table.

%WRITE_READ_VARi.ERROR An error was detected Refer to Outputs
(see page 259). Read only. Can
be read in an animation table.

Object Description Value
262 EIO0000001474 12/2016

Communication Objects
Programming Example

Introduction
The %WRITE_READ_VAR function block can be configured as presented in this programming
example.

Programming
This example is a %WRITE_READ_VAR function block:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 BLK %WRITE_READ_VAR0

LD %I0.0
EXECUTE
LD %I0.1
ABORT
OUT_BLK
LD DONE
ST %Q0.0
LD BUSY
ST %Q0.1
LD ABORTED
ST %M1
LD ERROR
ST %Q0.2
END_BLK
EIO0000001474 12/2016 263

Communication Objects
Communication on an ASCII Link (%SEND_RECV_MSG)

Section 9.4
Communication on an ASCII Link (%SEND_RECV_MSG)

Using %SEND_RECV_MSG Function Blocks
This section provides descriptions and programming guidelines for using %SEND_RECV_MSG
function blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 265
Function Configuration 268
Programming Example 271
264 EIO0000001474 12/2016

Communication Objects
Description

Introduction
The %SEND_RECV_MSG function block is used to send or receive data on a serial line configured
for the ASCII protocol.

Illustration
This illustration is the %SEND_RECV_MSG function block:

Inputs
The %SEND_RECV_MSG function block has the following inputs:

NOTE: Setting Execute or Abort input to TRUE at the first task cycle in RUN is not detected as a
rising edge. The function block needs to first see the input as FALSE in order to detect a
subsequent rising edge.

Label Type Value
Execute BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function block, it is
ignored and the ongoing command is not affected.

Abort BOOL Stops function block execution when a rising edge is detected.
The Aborted output is set to 1 and the %SEND_RECV_MSGi.CommError object
contains the code 02 hex (exchange stopped by a user request).
EIO0000001474 12/2016 265

Communication Objects
Outputs
The %SEND_RECV_MSG function block has the following outputs:

Communication Error Codes
Refer to Communication Error Codes (see page 242).

Operation Error Codes
Refer to Operation Error Codes (see page 243).

End Conditions
For a send-only operation, the Done output is set to TRUE when all data (including any start/stop
characters) have been sent.
For a receive-only operation, the system receives characters until the end condition is satisfied.
When the end condition is reached, the Done output is set to TRUE. Received characters are then
copied into BufferToRecv, up to sizeRecvBuffer characters. sizeRecvBuffer is not an end
condition.

Label Type Value
Done BOOL If TRUE, indicates that the function block execution is completed

successfully with no detected errors.
Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled with the
Abort input.

Error BOOL If TRUE, indicates that an error was detected. Function block execution is
stopped.
For details on the CommError and OperError, refer to the tables
Communication Error Codes (see page 242) and the Operation Error
Codes (see page 243) .
266 EIO0000001474 12/2016

Communication Objects
The end condition must be set in the Serial line configuration screen (see Modicon M221, Logic
Controller, Programming Guide):

The end condition can be set to:
 A number of bytes received: Frame length received
 An end of frame silence: Frame received timeout (ms)
 A frame structure: First end character
For a send-receive operation, characters are first sent to the line, then characters are received until
the end condition is satisfied (same as receive-only).
EIO0000001474 12/2016 267

Communication Objects
Function Configuration

Properties
Double-click the function block to open the function properties table.
The properties of this function block cannot be modified in online mode.
The %SEND_RECV_MSG function block has the following properties:

Property Value Description
Used Activated / deactivated check box Indicates whether the address is in

use.
Address %SEND_RECV_MSGi, where i is from 0 to the

number of objects available on this logic
controller

i is the instance identifier. For the
maximum number of instances, refer
to the Programming Guide for the
logic controller.

Symbol User-defined text The symbol uniquely identifies this
object. For details, refer to the
SoMachine Basic Operating Guide
(Defining and Using Symbols)
(see SoMachine Basic, Operating
Guide).

Link  SL1: Serial 1
 SL2: Serial 2

Port selection

NOTE: SL2 embedded
communication port is available on
certain controller references only.

Timeout Specified in units of 100 ms, with a default of
100 (10 seconds).
A value of 0 means no timeout enforced.

The timeout sets the maximum time
to wait to receive an answer.
If the timeout expires, the exchange
terminates in error with an error code
(CommError = 01 hex). If the system
receives a response after the timeout
expiration, this response is ignored.

NOTE: The timeout set on the
function block overrides the value
configured into SoMachine Basic
configuration screens (Modbus TCP
Configuration and Serial Line
Configuration, refer to the
Programming Guide for the logic
controller.).

QuantityToSend 0...254
A value of 0 means that the function block only
receives data.

Number of bytes to send

BufferToSend 0...7999 Address of the first object to send
268 EIO0000001474 12/2016

Communication Objects
Objects
The %SEND_RECV_MSG function block has the following objects:

SizeRecvBuffer 0...254
A value of 0 means that the function block only
sends data.

Available size in bytes of the receive
buffer.

BufferToRecv 0...7999 The first address of the word table to
which read values are stored (%MW).

QuantityRecv 0...254 Quantity of received data in bytes
Comment User-defined text A comment to associate with this

object.

Property Value Description

Object Description Value
%SEND_RECV_MSGi.LINK Port selection Refer to Properties

(see page 268). Can be read
and written. Can be modified in
an animation table.

%SEND_RECV_MSGi.TIMEOUT Function block timeout Refer to Properties
(see page 268). Can be read
and written. Can be modified in
an animation table.

%SEND_RECV_MSGi.QUANTITYTOSEND Number of bytes to send Refer to Properties
(see page 268). Can be read
and written. Can be modified in
an animation table.

%SEND_RECV_MSGi.BUFFERTOSEND Address of the first object to
send

Refer to Properties
(see page 268). Can be read
and written. Can be modified in
an animation table.

%SEND_RECV_MSGi.SIZERECVBUFFER Available size in bytes of the
receive buffer

Refer to Properties
(see page 268). Can be read
and written. Can be modified in
an animation table.

%SEND_RECV_MSGi.BUFFERTORECV First address of the word table
to which read values are to be
stored

Refer to Properties
(see page 268). Can be read
and written. Can be modified in
an animation table.

%SEND_RECV_MSGi.QUANTITYRECV Quantity of received data in
bytes

Refer to Properties
(see page 268). Can be only
read. Can be modified in an
animation table.
EIO0000001474 12/2016 269

Communication Objects
%SEND_RECV_MSGi.COMMERROR Communication Error Codes Refer to Communication Error
Codes (see page 266). Read
only. Can be read in an
animation table.

%SEND_RECV_MSGi.OPERERROR Operation Error Codes Refer to Operation Error Codes
(see page 266). Read only.
Can be read in an animation
table.

%SEND_RECV_MSGi.DONE Execution completed
successfully

Refer to Outputs
(see page 266). Read only.
Can be read in an animation
table.

%SEND_RECV_MSGi.BUSY Execution is in progress Refer to Outputs
(see page 266). Read only.
Can be read in an animation
table.

%SEND_RECV_MSGi.ABORTED Execution was canceled Refer to Outputs
(see page 266). Read only.
Can be read in an animation
table.

%SEND_RECV_MSGi.ERROR An error was detected Refer to Outputs
(see page 266). Read only.
Can be read in an animation
table.

Object Description Value
270 EIO0000001474 12/2016

Communication Objects
Programming Example

Introduction
The %SEND_RECV_MSG function block can be configured as presented in this programming
example.

Programming
This example is a %SEND_RECV_MSG function block:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction
0 BLK %SEND_RECV_MSG0

LD %I0.0
EXECUTE
LD %I0.1
ABORT
OUT_BLK
LD DONE
ST %Q0.0
LD BUSY
ST %Q0.1
LD ABORTED
ST %M1
LD ERROR
ST %Q0.2
END_BLK
EIO0000001474 12/2016 271

Communication Objects
Send Receive SMS (%SEND_RECV_SMS)

Section 9.5
Send Receive SMS (%SEND_RECV_SMS)

Using %SEND_RECV_SMS Function Block
This section provides description and programming guidelines for using %SEND_RECV_SMS
function block.

What Is in This Section?
This section contains the following topics:

Topic Page
Description 273
Function Configuration 280
272 EIO0000001474 12/2016

Communication Objects
Description

Introduction
The %SEND_RECV_SMS function block is used to send and receive Short Message Service (SMS)
messages through a modem connected to a serial line. For example, the controller can send an
SMS to transmit an alarm to a specified mobile phone, or receive an SMS to terminate a function
of the machine.
NOTE: The application must be configured with a functional level of at least Level 3.2 to use the
SMS functionality.
The %SEND_RECV_SMS function block is used to either:
 send an SMS to one recipient only, or
 receive an SMS filtered by a table of approved phone numbers.
Only 1 %SEND_RECV_SMS function block can be used in a program.

Care must be taken and provisions made for use of the SMS functionality as a remote control
device to avoid inadvertent consequences of commanded machine operation, controller state
changes, or alteration of data memory or machine operating parameters.

The SMS functionality is dependent on an external telecommunication network and parameters.
SMS commands and messages transmitted to the machine may be delayed or not sent nor
received. Do not use the SMS functionality for safety critical functions or other critical purposes.

NOTE: Verify the SMS functionality and associated telecommunication network during
commissioning, and test it periodically to verify the network coverage.

WARNING
UNINTENDED EQUIPMENT OPERATION
 Ensure that there is a local, competent, and qualified observer present when operating from a

remote location.
 Configure and install the Run/Stop input for the application so that local control over the

starting or stopping of the controller can be maintained regardless of the remote commands
sent to the controller.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

WARNING
UNINTENDED EQUIPMENT OPERATION
 Do not allow safety critical functions in SMS commands.
 Do not use SMS commands or messages for any mission critical purposes.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
EIO0000001474 12/2016 273

Communication Objects
Illustration
This illustration is the %SEND_RECV_SMS function block:

Inputs
This table describes the inputs of the function block:

NOTE: Setting Execute or Abort input to 1 at the first task cycle in RUN is not detected as a rising
edge. The function block needs to first see the input as 0 in order to detect a subsequent rising
edge.

Label Type Value
Execute BOOL Starts the function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function block, it is
ignored and the ongoing command is not affected.

Abort BOOL Stops the function block execution when a rising edge is detected.
The Aborted output is set to 1 and the %SEND_RECV_SMSi.CommError object
contains the code 02 hex (exchange stopped on a rising edge on the Abort
input).

S BOOL If 1, the function block is configured to send an SMS.
If 0, the function block is configured to receive an SMS.
274 EIO0000001474 12/2016

Communication Objects
This table describes the input objects of the function block:

Input object Type Value range Description
Link BYTE 1 - SL1

2 - SL2
Indicates the serial line used to communicate through the
modem.

Timeout WORD 0...255 Sets the maximum time to wait to receive a response from
the modem.
Specified in units of 100 ms, with a default of 100
(10 seconds). A value of 0 means no timeout is enforced.

Index WORD 0...15 The value of the index is used:
 While sending, to select a text to send from the

Messages table.
0 corresponds to the first string in the table.

 While receiving, to select a string in the Commands
table that matches the received text.
Set to FFFF hex if no matching string is found.

VAD DINT -
2147483648...
2147483647

 While sending, the value in %SEND_RECV_SMSi.VAD
replaces the placeholder $VAD in the text of the SMS.

 While receiving, the value in %SEND_RECV_SMSi.VAD
contains the value where the placeholder $VAD is
inserted in the SMS stored in the Commands table.

VBD DINT -
2147483648...
2147483647

 While sending, the value in %SEND_RECV_SMSi.VBD
replaces the placeholder $VBD in the text of the SMS.

 While receiving, the value in %SEND_RECV_SMSi.VBD
contains the value where the placeholder $VBD is
inserted in the SMS stored in the Commands table.

MASKPHONE WORD 0...15  While sending, the mask is used to select the recipient
of the SMS from the Phone numbers table.

 While receiving, the mask is applied to the Phone
numbers table to create a list of valid numbers.
EIO0000001474 12/2016 275

Communication Objects
Outputs
This table describes the outputs of the function block:

This table describes the output objects of the function block:

Communication Error Codes
This table describes the error codes written to the %SEND_RECV_SMSi.CommError output object:

Label Type Value
Done BOOL If TRUE, indicates that the function block execution completed successfully with no

errors detected.
Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled with the
%SEND_RECV_SMSi.Abort input.

Error BOOL If TRUE, indicates that an error has been detected. The function block execution is
stopped.
For details on %SEND_RECV_SMSi.CommError and
%SEND_RECV_SMSi.OperError, refer to the tables Communication Error Codes
(see page 276) and Operation Error Codes (see page 277).

NOTE: When the Busy output is set to TRUE, the execution continues until one of the Done, Aborted, or Error
outputs is set to TRUE.

NOTE: While the Busy output is set to TRUE, changes in the Execute input do not affect the execution of the
ongoing function block. However, if another %SEND_RECV_SMS function block is called, this SMS is refused
(CommError = 255 (FF hex) and OperError = 11 (0000000B hex)).

Output object Type Description
CommError BYTE For details on %SEND_RECV_SMSi.CommError, refer to the table

Communication Error Codes (see page 276).
OperError DWORD For details on %SEND_RECV_SMSi.OperError, refer to the table

Operation Error Codes (see page 277).

Decimal
(hexadecimal)
detected error
code

Name Description

0 (00 hex) CommunicationOK Exchange is correct.

NOTE: In this case, the
%SEND_RECV_SMSi.OperError output object
contains the modem signal level, as opposed to
an error code.

1 (01 hex) TimedOut Exchange stopped because timeout expired.
276 EIO0000001474 12/2016

Communication Objects
Operation Error Codes
This return code is significant when the communication error code
(%SEND_RECV_SMSi.CommError output object) has the value:
 0 (00 hex) (correct protocol)
 254 (FE hex) (incorrect protocol)
 255 (FF hex) (SMS refused)

2 (02 hex) Abort Exchange stopped on a rising edge on the
%SEND_RECV_SMSi.Abort input.

3 (03 hex) BadLink Link is incorrect.
4 (04 hex) BadCommand Command is incorrect.
5 (05 hex) BadMgtTable Management table format is incorrect.
6 (06 hex) BadParameters Specific parameters are incorrect.
7 (07 hex) ProblemSendingSms SMS send command unsuccessful.
9 (09 hex) RecvCmdError Invalid command.
10 (0A hex) SendValueError Invalid value.
11 (0B hex) SystemResourceMissing System resource is unavailable.
14 (0E hex) BadLength Length is incorrect.
254 (FE hex) ProtocolSpecificError Indicates that a protocol error has been detected.

NOTE: In this case, the
%SEND_RECV_SMSi.OperError output object
contains more details. Refer to Operation Error
Codes. (see page 277)

255 (FF hex) Refused SMS is refused.

NOTE: In this case, the
%SEND_RECV_SMSi.OperError output object
contains more details. Refer to Operation Error
Codes. (see page 277)

Decimal
(hexadecimal)
detected error
code

Name Description
EIO0000001474 12/2016 277

Communication Objects
When the %SEND_RECV_SMSi.CommError is 0 (00 hex) (correct protocol), the
%SEND_RECV_SMSi.OperError output object indicates the Received Signal Strength Indication
(RSSI):

When the %SEND_RECV_SMSi.CommError is 254 (FE hex) (incorrect protocol), the
%SEND_RECV_SMSi.OperError output object returns more details:

Decimal value in the
%SEND_RECV_SMSi.OperError
object

RSSI modem signal level

Less than 9 Marginal value (the attenuation exceeds the limit needed to keep
the wireless network up)

10 to 14 Ok
15 to 19 Good
Greater than 20 Excellent

Decimal (hexadecimal) value in the
%SEND_RECV_SMSi.OperError
object

Name Description

256 (00000100 hex) ModemConfSLAsciiFailed The ASCII configuration of the serial line is
incorrect.

512 (00000200 hex) ModemReconfSLFailed The configuration of the serial line back to
the user configuration is incorrect.

768 (00000300 hex) ModemBusy The modem answers BUSY to the dial
command.

1024 (00000400 hex) ModemNoDialtone The modem answers NODIALTONE to the
dial command.

1280 (00000500 hex) ModemNoCarrier The modem carrier signal has been lost or
disconnected. The modem answers NO
CARRIER to the dial command.

1536 (00000600 hex) ModemBadAnswer The response from the modem is incorrect.
Specific errors for SIM card use
4096 (00001000 hex) SimConfigurationFailed The SIM card configuration is incorrect. For

example, a PUK code is requested.
8192 (00002000 hex) SimPinCodeInvalid The PIN code is incorrect.
16384 (00004000 hex) SimSmsCenterInvalid The SMS center phone number is

incorrect.
278 EIO0000001474 12/2016

Communication Objects
When the %SEND_RECV_SMSi.CommError is 255 (FF hex) (SMS refused), the
%SEND_RECV_SMSi.OperError output object returns more details:

Decimal (hexadecimal) value in
the
%SEND_RECV_SMSi.OperError
object

Name Description

1 (00000001 hex) TargetResourceMissing The target system resource is unavailable.
5 (00000005 hex) BadLength The length is incorrect.
6 (00000006 hex) CommChannelErr An error has been detected on the

communication channel.
11 (0000000B hex) SystemResourceMissing The system resource is unavailable.
12 (0000000C hex) TargetCommInactive The target communication function is not

active.
13 (0000000D hex) TargetMissing The target is unavailable.
15 (0000000F hex) ChannelNotConfigured The communication channel is not

configured.
16 (00000010 hex) PhoneNumberNotMatching The phone number in the received message

does not match with the list of approved
numbers (whitelist).

17 (00000011 hex) MessageNotMatching The received message does not match with
any message in the command list. Issued
only if the sender phone number matches an
entry in the list of approved numbers
(whitelist).
EIO0000001474 12/2016 279

Communication Objects
Function Configuration

Main Steps
The following procedure describes the main steps to configure the %SEND_RECV_SMS function
block, after connecting a modem to the serial line:

For more details on the installation and setting of SR2MOD03 modems, refer to SR2MOD02 and
SR2MOD03 Wireless Modem User Guide (EIO00000001575).

Step Action
1 In the Configuration tab in SoMachine Basic, configure the serial line with the modem, the Init

Command and ASCII protocol. For more details, refer to the Programming Guide for your logic
controller.

2 Verify that the modem is connected to the serial line of the controller and that:
 the SIM card is unlocked, that is, not protected by a PIN code.
 the SMS center phone number is correctly configured in the SIM card.

3 In the Programming tab:
 Add the %SEND_RECV_SMS function block and double-click the function block to display the

function properties table
 Click the SMS Configuration button to open the SMS Assistant window
 Edit the Messages, Commands and Phone numbers tables

For more details, refer to SMS Assistant.
 Click Apply to close the SMS Assistant

NOTE: If the function block address (for example %SEND_RECV_SMS0) is invalid and double-
clicking is disabled, verify that the functional level of your application (Programming tab > Tasks >
Behavior) is at least Level 3.2).

4 In the Programming tab, edit the fields in the function properties table.
For details about these fields, refer to Properties (see page 283).

WARNING
UNINTENDED EQUIPMENT OPERATION
Verify that the indices for the messages, commands and phone numbers used in the function
block are the intended ones before using the function block.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
280 EIO0000001474 12/2016

Communication Objects
SMS Assistant
To use the %SEND_RECV_SMS function block, configure the commands, messages, and phone
numbers tables.
Click the SMS Configuration button in the Send Receive SMS properties area to display the SMS
Assistant window.
The SMS Assistant window contains three tabs with tables to configure:
 Messages

Enter the strings that are used when the controller sends an SMS. Use placeholders to include
variables, date, and time. Consider limits on the number of characters and the format.

 Commands
Enter the strings that are used when the controller receives an SMS. Use placeholders to
include variables. Consider the limits on the number of characters and the format.

 Phone numbers
When programming the function block to send SMS messages, you select the recipient from
this table.
When programming the function block to receive SMS messages, you select the authorized
originating phone numbers from this list. The selected phone numbers list adds security to your
application. When a call and subsequent SMS is transmitted to your application via the modem,
the originating phone number is validated before acting upon the incoming SMS.
For more details, refer to the MASKPHONE line in Properties (see page 283).
NOTE: Refer to your modem documentation for international dialing code formats.

Each table contains a maximum of 16 entries with an index on each line from 0 to 15.
The strings contained in the assistant tables can be interpreted in the following formats and
message size limit:

Character format Messages and Commands tables
GSM 7-bit 105 characters max.
UNICODE 45 characters max.

NOTE: The character format is determined automatically by the characters in the text field.
EIO0000001474 12/2016 281

Communication Objects
The following placeholders can be added in the text of Messages or Commands to be interpreted
as variables:

Examples
This example illustrates the use of placeholders in messages:

This example illustrates the use of placeholders in commands:

Placeholder Replaced at execution by: Number of characters
in GSM 7-bit formats

Number of characters
in UNICODE format

$DATE(1) YY/MM/DD (present date) 8 + 1 16 + 2

$TIME(1) HH:MM:SS (present time) 8 + 1 16 + 2

$VAD The DWORD value of parameter
%SEND_RECV_SMSi.VAD converted to
text.

12 maximum 24 maximum

$VBD The DWORD value of parameter
%SEND_RECV_SMSi.VBD converted to
text.

12 maximum 24 maximum

$$ The symbol $ 1 2

NOTE: When the entered text is valid (characters limit not exceeded, valid placeholders), the Apply button
is active.
(1) Ignored for Commands

Messages
Message configured $DATE : $TIME - Value A = $VAD and Value B = $VBD !

Placeholder values VAD = 10; VBD = 2000

Final SMS sent 15/04/27 : 11:15:43 - Value A = 10 and Value B = 2000 !

Commands
Command
configured

Value A = $VAD and Value B = $VBD !

SMS received Value A = 300 and Value B = 2 !
Values captured VAD = 300; VBD = 2
282 EIO0000001474 12/2016

Communication Objects
Properties
Double-click the function block to open the function properties table.
The properties of this function block cannot be modified in online mode.
The %SEND_RECV_SMS function block has the following properties:

Property Value Description
Used Activated / deactivated check

box.
Indicates whether the address is in use.

Address %SEND_RECV_SMSi, where i
is from 0 to the number of
objects available on this logic
controller.

i is the instance identifier. For the maximum number of instances,
refer to the Programming Guide of your logic controller.

Symbol User-defined text. The symbol uniquely identifies this object. For details, refer to
Defining and Using Symbols (see SoMachine Basic, Operating
Guide).

Link 1 - SL1
2 - SL2

The serial line on which the modem is configured (Configuration
tab).

Timeout 0...255
Specified in units of 100 ms,
with a default of 100
(10 seconds).
A value of 0 means no timeout
enforced.

The timeout sets the maximum time to wait to receive a response
from the modem.
If the timeout expires, the exchange terminates with an error code
(%SEND_RECV_SMSi.CommError = 01 hex). If the system
receives a response after the timeout expiration, this response is
ignored.

NOTE: The timeout set on the function block overrides the value
configured on the SoMachine Basic configuration screen. For more
details, refer to the Programming Guide for your logic controller.

Index 0...15

NOTE: 0 corresponds to the
first string of the list.

 While sending, the value of the index is used to select a text to
send from the Messages table.

 While receiving, the value corresponds to the index in the
Commands table that matches the received text.

VAD -214748364 ...2147483647  While sending, the value in %SEND_RECV_SMSi.VAD replaces
the placeholder $VAD in the text of the SMS.

 While receiving, the value in %SEND_RECV_SMSi.VAD contains
the value where the placeholder $VAD is inserted in the SMS
stored in the Commands table.

VBD -214748364 ...2147483647  While sending, the value in %SEND_RECV_SMSi.VBD replaces
the placeholder $VBD in the text of the SMS.

 While receiving, the value in %SEND_RECV_SMSi.VBD contains
the value where the placeholder $VBD is inserted in the SMS
stored in the Commands table.
EIO0000001474 12/2016 283

Communication Objects
Objects
The %SEND_RECV_SMS function block has the following objects:

MASKPHONE 0000000000000000 bin to
1000000000000000 bin

The initial value of the mask.
 While sending, this mask is used to select the recipient of the

SMS from the Phone numbers table.
Example: 0000000000000010 bin = the SMS is sent to the
second phone number (index 1) listed in the Phone numbers
table.

 While receiving, the mask is applied to the Phone numbers table
to create a list of valid originator phone numbers. A bit of the
mask indicates which phone number was used to send the SMS
to the logic controller.
Example: 0000000000000100 bin means the third phone
number of the Phone numbers list (index 2) has sent the SMS.

Comment User-defined text A comment to associate with this object.

Property Value Description

Object Description Value
%SEND_RECV_SMSi.LINK Port selection Refer to Properties

(see page 283). Can be read and
written. Can be modified in an
animation table.

%SEND_RECV_SMSi.TIMEOUT Function block timeout Refer to Properties
(see page 283). Can be read and
written. Can be modified in an
animation table.

%SEND_RECV_SMSi.INDEX Index in messages or commands
table

Refer to Properties
(see page 283). Can be read and
written. Can be modified in an
animation table.

%SEND_RECV_SMSi.VAD VAD - placeholder A Refer to Properties
(see page 283). Can be read and
written. Can be modified in an
animation table.

%SEND_RECV_SMSi.VBD VBD - placeholder B Refer to Properties
(see page 283). Can be read and
written. Can be modified in an
animation table.

%SEND_RECV_SMSi.MASKPHONE Mask to select entries in the phone
number table

Refer to Properties
(see page 283). Can be read and
written. Can be modified in an
animation table.
284 EIO0000001474 12/2016

Communication Objects
%SEND_RECV_SMSi.COMMERROR Communication Error Codes Refer to Communication Error
Codes (see page 276). Can be
only read. Can be modified in an
animation table.

%SEND_RECV_SMSi.OPERERROR Operation Error Codes Refer to Operation Error Codes
(see page 277). Can be only read.
Can be modified in an animation
table.

%SEND_RECV_SMSi.DONE Execution completed successfully Refer to Outputs (see page 276).
Can be only read. Can be modified
in an animation table.

%SEND_RECV_SMSi.BUSY Execution is in progress Refer to Outputs (see page 276).
Can be only read. Can be modified
in an animation table.

%SEND_RECV_SMSi.ABORTED Execution was canceled Refer to Outputs (see page 276).
Can be only read. Can be modified
in an animation table.

%SEND_RECV_SMSi.ERROR An error was detected Refer to Outputs (see page 276).
Can be only read. Can be modified
in an animation table.

Object Description Value
EIO0000001474 12/2016 285

Communication Objects
286 EIO0000001474 12/2016

SoMachine Basic

EIO0000001474 12/2016
Clock Functions

Chapter 10
Clock Functions

Overview
This chapter describes the time management functions for controllers.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Clock Functions 288
Time and Date Stamping 289
Setting Date and Time 291
EIO0000001474 12/2016 287

Clock Functions

Introduction
On logic controllers equipped with a Real-Time Clock (RTC) feature, you can use the following
time-of-day clock functions when SoMachine Basic is connected to the logic controller:
 RTC function blocks (see page 225) are used to read the time and date from the RTC, or update

the RTC in the logic controller with a user-defined time and date.
 Schedule function blocks (see page 221) are used to control actions at predefined or calculated

times.
 Time/date stamping (see page 289) is used to assign time and dates to events and measure

event duration.
The time-of-day clock can be set by a program (see page 289). The controller battery facilitates
Clock settings to continue operating for up to 1 year when the controller is turned off. The controller
does not have a rechargeable battery. The battery has an average lifetime of 4 years and should
be replaced prior to its end of life. In order not to lose the data during battery replacement, change
the battery within 120 seconds after the battery is removed from the controller.
The time-of-day clock has a 24-hour format and takes leap years into account.
288 EIO0000001474 12/2016

Time and Date Stamping

Introduction
System words %SW49 to %SW53 contain the current date and time in BCD format which is useful
for display on or transmission to a peripheral device. These system words can be used to store the
time and date of an event.
The BTI instructions are used to convert dates and times from BCD format to binary format. For
more information, refer to the BCD/Binary conversion instructions (see page 80).

Dating an Event
To associate a date with an event, it is sufficient to use assignment operations to transfer the
contents of system words to memory words, and then process these memory words (for example,
transmission to a display unit using the EXCH instruction).

Programming Example
This example shows how to date a rising edge on input %I0.1:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
Once an event is detected, the word table contains:

Rung Instruction
0 LDR %I0.1

[%MW11:5:=%SW49:5]

Encoding Most Significant Byte Least Significant Byte
%MW11 - Day of the week (1)
%MW12 00 Second
%MW13 Hour Minute
%MW14 Month Day
%MW15 Century Year
(1) 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = Friday, 6 = Saturday, 7 = Sunday
EIO0000001474 12/2016 289

Example of Word Table
Example data for 13:40:30 on Monday 03 June 2013:

Date and Time of the Last Stop
System words %SW54 to %SW57 contain the date and time of the last stop, and word %SW58
contains the code showing the cause of the last stop, in BCD format.

Word Value (hex) Meaning
%MW11 0001 Monday
%MW12 0030 30 seconds
%MW13 1340 13 hours, 40 minutes
%MW14 0603 06 = June, 03rd
%MW15 2013 2013
290 EIO0000001474 12/2016

Setting Date and Time

Introduction
You can update the time and date settings in the logic controller by using one of the following
methods:
 Using the RTC Management tab on the Commissioning tab of SoMachine Basic. This method

is only available when in online mode (see SoMachine Basic, Operating Guide).
You can choose between 2 methods:
 Manual: this method displays a time/date picker and lets you manually choose what time to

set in the logic controller.
 Automatic: this method uses the time of the PC on which SoMachine Basic is running.
For more details, refer to RTC Management (see SoMachine Basic, Operating Guide).

 In a program, using RTC function blocks (see page 225).
 When in online mode, by updating the system words, either directly or programmatically using

operating blocks, %SW49 to %SW53 or system word %SW59.

NOTE: The date and time can only be set when the RTC feature is available in your logic controller
(refer to the programming guide of your logic controller).

Using %SW49 to %SW53
To use system words %SW49 to %SW53 to set the date and time, bit %S50 must be set to 1. While
%S50 is set to 1, system words %SW49 to %SW53 are no longer updated by the controller. On a
falling edge of %S50 (%S50 set to 0), the internal RTC of the controller is updated by the values in
%SW49 to %SW53.The controller then resumes updating %SW49 to %SW53 using the RTC.

This table lists the system words containing date and time values (in BCD) for real-time clock
(RTC) functions:

System Word Description
%SW49 xN Day of week (N=1 for Monday)
%SW50 00SS: seconds
%SW51 HHMM: hour and minute
%SW52 MMDD: month and day
%SW53 CCYY: century and year
EIO0000001474 12/2016 291

Refer to the programming guide of your controller for a complete list of system bits and words.
Programming example:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.
Words %MW11 to %MW14 contain the new date and time (see Review of BCD Code (see page 80))
and corresponds to the coding of words %SW50 to %SW53.

NOTE: %SW49 (Day of the week) is automatically calculated based upon the date supplied.

The word table must contain the new date and time:

Example data for 03 June 2013:

Rung Instruction Comment
0 LD %S50

R %S50
–

1 LD %I0.1
[%SW50:=%MW11]
[%SW51:=%MW12]
[%SW52:=%MW13]
[%SW53:=%MW14]
S %S50

Refer to BCD/Binary Conversion Instruction
(see page 80).

Encoding Most Significant Byte Least Significant Byte
%MW11 – Second
%MW12 Hour Minute
%MW13 Month Day
%MW14 Century Year

Word Value (hex) Meaning
%MW11 0030 30 seconds
%MW12 1340 13 hours, 40 minutes
%MW13 0603 06 = June, 03rd
%MW14 2013 2013
292 EIO0000001474 12/2016

Using %SW59
Another method of updating the date and time is to use system bit %S59 and date adjustment
system word %SW59.

Setting bit %S59 to 1 enables adjustment of the current date and time by word %SW59. %SW59
increments or decrements each of the date and time components on a rising edge.
This table describes each bit of the system word %SW59 for adjusting date and time parameters:

Refer to the programming guide of your controller for a complete list of system bits and words.

Application Example
This front panel is created to modify the hour, minutes, and seconds of the internal clock.

Description of the commands:
 The Hours/Minutes/Seconds switch selects the time display to change using inputs %I0.2,

%I0.3, and %I0.4 respectively.
 Push button "+" increments the selected time display using input %I0.0.
 Push button "-" decrements the selected time display using input %I0.1.

Increment Decrement Parameter
Bit 0 Bit 8 Day of week(1)

Bit 1 Bit 9 Seconds
Bit 2 Bit 10 Minutes
Bit 3 Bit 11 Hours
Bit 4 Bit 12 Days
Bit 5 Bit 13 Month
Bit 6 Bit 14 Years
Bit 7 Bit 15 Centuries(1)

(1) Day of week and centuries cannot be modified (increment or decrement) by the user.
EIO0000001474 12/2016 293

This program reads the inputs from the panel and sets the internal clock:

NOTE: Refer to the reversibility procedure (see page 16) to obtain the equivalent Ladder Diagram.

Rung Instruction Comment
0 LD %M0

ST %S59
–

1 LD %I0.2
ANDR %I0.0
ST %SW59:X3

Hour

2 LD %I0.2
ANDR %I0.1
ST %SW59:X11

–

3 LD %I0.3
ANDR %I0.0
ST %SW59:X2

Minute

4 LD %I0.3
ANDR %I0.1
ST %SW59:X10

–

5 LD %I0.4
ANDR %I0.0
ST %SW59:X1

Second

6 LD %I0.4
ANDR %I0.1
ST %SW59:X9

–

294 EIO0000001474 12/2016

SoMachine Basic
Glossary
EIO0000001474 12/2016
Glossary
!
%

According to the IEC standard, % is a prefix that identifies internal memory addresses in the logic
controller to store the value of program variables, constants, I/O, and so on.

%Q
According to the IEC standard, %Q represents an output bit (for example, a language object of type
digital OUT).

A
analog input

Converts received voltage or current levels into numerical values. You can store and process these
values within the logic controller.

analog output
Converts numerical values within the logic controller and sends out proportional voltage or current
levels.

application
A program including configuration data, symbols, and documentation.

ASCII
(American standard code for Information Interchange) A protocol for representing alphanumeric
characters (letters, numbers, certain graphics, and control characters).

C
configuration

The arrangement and interconnection of hardware components within a system and the hardware
and software parameters that determine the operating characteristics of the system.

controller
Automates industrial processes (also known as programmable logic controller or programmable
controller).

E
expansion bus

An electronic communication bus between expansion I/O modules and a controller.
EIO0000001474 12/2016 295

Glossary
F
function block

A programming unit that has 1 or more inputs and returns 1 or more outputs. FBs are called through
an instance (function block copy with dedicated name and variables) and each instance has a
persistent state (outputs and internal variables) from 1 call to the other.
Examples: timers, counters

I
I/O

(input/output)

instruction list language
A program written in the instruction list language that is composed of a series of text-based
instructions executed sequentially by the controller. Each instruction includes a line number, an
instruction code, and an operand (see IEC 61131-3).

L
ladder diagram language

A graphical representation of the instructions of a controller program with symbols for contacts,
coils, and blocks in a series of rungs executed sequentially by a controller (see IEC 61131-3).

P
program

The component of an application that consists of compiled source code capable of being installed
in the memory of a logic controller.

R
RTC

(real-time clock) A battery-backed time-of-day and calender clock that operates continuously, even
when the controller is not powered for the life of the battery.
296 EIO0000001474 12/2016

SoMachine Basic
Index
EIO0000001474 12/2016
Index
Symbols
%C, 165
%DR, 203
%I, 27
%IW, 27
%IWS, 27
%KD, 34
%KF, 34
%KW, 30
%M, 25
%MD, 34
%MF, 34
%MSG, 174
%MW, 30
%Q, 27
%QW, 27
%QWS, 27
%R, 195
%READ_VAR, 241

configuration, 245
description, 241
programming example, 248

%S, 25
%SBR, 211
%SC, 216
%SCH, 221
%SEND_RECV_MSG, 265

configuration, 268
description, 265
programming example, 271

%SEND_RECV_SMS, 273
configuration, 280
description, 273

%SW, 30
%TM, 155
%WRITE_READ_VAR, 258

configuration, 260
description, 258
programming example, 263
EIO0000001474 12/2016
%WRITE_VAR, 250
configuration, 252
description, 250
programming example, 256

%X, 25
%Xi (Grafcet Step) properties, 231

A
ABS, 91
absolute value, 72
ACOS, 94
add, 72
addressing

format, 27
I/O objects, 27

AND, 56
AND operators, 56
ANDF, 56
ANDN, 56
ANDR, 56
arithmetic instructions, 72
ASCII

examples, 183
ASIN, 94
assignment instructions

bit strings, 68
inserting in Ladder Diagram rungs, 19
numerical, 67
object tables, 113
words, 70

assignment operators, 54
ATAN, 94

B
bit objects

function block, 44
bit strings, 39
boolean instructions, 49
297

Index
C
calculation, 72
clock functions

overview, 288
setting date and time, 291
time and date stamping, 289

comparison blocks
inserting IL expressions in, 22

comparison expression
inserting in Ladder Diagram rungs, 22

comparison instructions, 63
conversion instructions

BCD/Binary, 80
single/double word, 82

COS, 94
counter

configuration, 167
description, 165
programming example, 169

D
decrement, 72
DEG_TO_RAD, 96
DINT_TO_REAL, 97
divide, 72
double word objects

description, 34
function block, 45

Drive objects, 237
Drum

configuration, 204
programming example, 207

Drum
description, 203

Drum assistant, 205

E
END instructions, 84
EQUAL_ARR, 117
examples, source code, 16
EXCH, 172
298
exchange instructions
EXCH1, 172
EXCH2, 172
EXCH3, 172

exclusive OR operators, 60
EXP, 91
EXPT, 91

F
falling edge

detection, 51
FIND_, 119
floating point objects

description, 34
function block

%SEND_RECV_SMS, 273
function blocks

%READ_VAR, 241
%SEND_RECV_MSG, 265
%WRITE_READ_VAR, 258
%WRITE_VAR, 250
counter, 165
Drum, 203
general description, 44
LIFO/FIFO register, 195
message, 174
programming principles, 149
Real-Time Clock (RTC), 226
Schedule blocks, 221
shift bit register, 211
step counter, 216
timer, 155

G
Grafcet Step properties, 231

I
increment, 72
index overflow, 43
input/output address format, 27
EIO0000001474 12/2016

Index
instructions
angle conversion, 96
arithmetic, 72
ASCII, 99
ASCII to float conversion, 106
ASCII to integer conversion, 102
boolean, 48
comparison, 63
END, 84
exchange, 172
float to ASCII conversion, 108
input/output objects, 139
integer to ASCII conversion, 104
integer/floating conversion, 97
jump, 86
NOP, 85
object table, 112
object tables, 115
ROUND, 100
SR, 88
stack, 110
subroutine, 88
trigonometric, 94

INT_TO_REAL, 97

L
LD, 52
LDF, 51, 52
LDN, 52
LDR, 50, 52
LIFO/FIFO register

configuration, 197
description, 195
FIFO, 200
LIFO, 199
programming example, 201

LKUP, 126
LN, 91
load operators, 52
LOG, 91
logic instructions, 76
EIO0000001474 12/2016
M
MAX_ARR, 121
MEAN, 130
memory bit objects

description, 25
message

configuration, 177
description, 174
programming example, 181

MIN_ARR, 121
modbus

standard requests and examples, 185
multiply, 72

N
N, 62
network objects, 145, 145
NOP instruction, 85
NOT operator, 62
numerical instructions

shift, 78
numerical processing

assignment, 67
overview, 66

O
objects

definition of, 24
direct address, 42
indexed, 42
indexed address, 42
network, 145
software, 147
structured, 39
tables, 39

OCCUR_ARR, 122
operation blocks

inserting assignment instructions in, 19
operations

inserting in Ladder Diagram rungs, 19
299

Index
operators
AND, 56
assignment, 54
load, 52
NOT, 62
OR, 58
XOR, 60

OR, 58
OR operators, 58
ORF, 58
ORN, 58
ORR, 58
overflow

index, 43

P
PID, 230

R
R, 54
RAD_TO_DEG, 96
READ_IMM_IN, 132
REAL_TO_DINT, 97
REAL_TO_INT, 97
remainder, 72
rising edge

detection, 50
ROL_ARR, 123
ROR_ARR, 123
RTC

configuration, 229

S
S, 54
schedule blocks

description, 221
programming and configuring, 223

shift bit register
configuration, 212
description, 211
programming example, 214

shift instructions, 78
300
SIN, 94
SORT_ARR, 125
source code, using example, 16
SQRT, 91
square root, 72
SR (subroutine) instructions, 88
ST, 54
stack instructions

MPP, 110
MPS, 110
MRD, 110

step counter
configuration, 217
description, 216
programming example, 218

STN, 54
subtract, 72
SUM_ARR, 115
system bits

%S18, 35
system words

%SW17, 35

T
tables

instructions on, 112
TAN, 94
timer

configuration, 156
description, 155
programming example, 163
TOF type, 160
TON type, 158
TP type, 162

tools
Drive objects, 237
network objects, 145

TRUNC, 91

U
using source code examples, 16
EIO0000001474 12/2016

Index
W
word objects

description, 30
function block, 45

WRITE_IMM_OUT, 134

X
XOR, 60
XORF, 60
XORN, 60
XORR, 60
EIO0000001474 12/2016
 301

Index

302 EIO0000001474 12/2016

	SoMachine Basic
	Table of Contents
	Safety Information
	About the Book
	Introduction
	How to Use the Source Code Examples
	Operation Blocks
	Comparison Blocks

	Language Objects
	Objects
	Memory Bit Objects
	I/O Objects
	Word Objects
	Floating Point and Double Word Objects
	Structured Objects
	Indexed Objects
	Function Block Objects

	Instructions
	Boolean Processing
	Boolean Instructions
	Load Operators (LD, LDN, LDR, LDF)
	Assignment Operators (ST, STN, R, S)
	Logical AND Operators (AND, ANDN, ANDR, ANDF)
	Logical OR Operators (OR, ORN, ORR, ORF)
	Exclusive OR Operators (XOR, XORN, XORR, XORF)
	NOT Operator (N)
	Comparison Instructions

	Numerical Processing
	Introduction to Numerical Operations
	Assignment Instructions
	Bit Strings Assignment
	Words Assignment
	Arithmetic Operators on Integers
	Logic Instructions
	Shift Instructions
	BCD/Binary Conversion Instructions
	Single/Double Word Conversion Instructions

	Program
	END Instructions
	NOP Instructions
	Jump Instructions
	Subroutine Instructions

	Floating Point
	Arithmetic Instructions on Floating Point Objects
	Trigonometric Instructions
	Angle Conversion Instructions
	Integer/Floating Conversion Instructions

	ASCII
	ROUND Instructions
	ASCII to Integer Conversion Instructions
	Integer to ASCII Conversion Instructions
	ASCII to Float Conversion Instructions
	Float to ASCII Conversion Instructions

	Stack Operators
	Stack Instructions (MPS, MRD, MPP)

	Instructions on Object Tables
	Word, Double Word, and Floating Point Tables Assignment
	Table Summing Functions
	Table Comparison Functions
	Table Search Functions
	Table Search Functions for Maximum and Minimum Values
	Number of Occurrences of a Value in a Table
	Table Rotate Shift Functions
	Table Sort Functions
	Floating Point Table Interpolation (LKUP) Functions
	MEAN Functions of the Values of a Floating Point Table

	Instructions on I/O Objects
	Read Immediate Digital Embedded Input (READ_IMM_IN)
	Write Immediate Digital Embedded Output (WRITE_IMM_OUT)
	Read Immediate Function Block Parameter (READ_IMM)
	Write Immediate Function Block Parameter (WRITE_IMM)

	I/O Objects
	Fast Counter (%FC)
	Fast Counter

	High Speed Counter (%HSC)
	High Speed Counter

	Pulse (%PLS)
	Pulse

	Pulse Width Modulation (%PWM)
	Pulse Width Modulation

	Network Objects
	Network Objects

	Software Objects
	Using Function Blocks
	Function Block Programming Principles
	Adding a Function Block
	Configuring a Function Block

	Timer (%TM)
	Description
	Configuration
	TON: On-Delay Timer
	TOF: Off-Delay Timer
	TP: Pulse Timer
	Programming Example

	Counter (%C)
	Description
	Configuration
	Programming Example

	Message (%MSG) and Exchange (EXCH)
	Overview
	Description
	Configuration
	Programming Example
	ASCII Examples
	Modbus Standard Requests and Examples

	LIFO/FIFO Register (%R)
	Description
	Configuration
	LIFO Register Operation
	FIFO Register Operation
	Programming Example

	Drums (%DR)
	Description
	Configuration
	Programming Example

	Shift Bit Register (%SBR)
	Description
	Configuration
	Programming Example

	Step Counter (%SC)
	Description
	Configuration
	Programming Example

	Schedule Blocks (%SCH)
	Description
	Programming and Configuring

	Real Time Clock (%RTC)
	Description
	Configuration

	PID
	PID Function

	Grafcet Steps
	Grafcet Steps

	PTO Objects
	Motion Task Table (%MT)
	Motion Task Table

	Pulse Train Output (%PTO)
	Pulse Train Output

	Drive Objects
	Drive Objects

	Communication Objects
	Read Data from a Remote Device (%READ_VAR)
	Description
	Function Configuration
	Programming Example

	Write Data to a Modbus Device (%WRITE_VAR)
	Description
	Function Configuration
	Programming Example

	Read and Write Data on a Modbus Device (%WRITE_READ_VAR)
	Description
	Function Configuration
	Programming Example

	Communication on an ASCII Link (%SEND_RECV_MSG)
	Description
	Function Configuration
	Programming Example

	Send Receive SMS (%SEND_RECV_SMS)
	Description
	Function Configuration

	Clock Functions
	Clock Functions
	Time and Date Stamping
	Setting Date and Time

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

